ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 21 (1994), S. 110-116 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: A new etchant, which we have called ‘PNP’, with the composition ( o-H3PO4)u: (HNO3)v: (H2O)(2)t: (H2O)100-(u+v+t) has been developed for thinning, after contacting, the n+ and p+ emitter layer of n+p and p+n InP structures made by thermal diffusion. By varying u, v and t, reproducible etch rates of 5-10 nm min-1 have been obtained. After thinning the 2.5-4.5 μm thick p+ InP layer down to 60-250 nm, specular surfaces have been obtained at up to 80 nm min-1 etch rates. Owing to its intrinsic qualities, the residual phosphorus-rich oxide after thinning the emitter layer provides surface passivation of p+ InP surfaces and can also serve as a first-layer antireflective coating. Very high quality p+n InP structures were also obtained using a thin (30-40 Å thick) phosphorus-rich chemical oxide, grown using this etchant as a diffusion cap layer.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 15 (1990), S. 641-650 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: Chemical composition of anodic oxides grown on lightly doped p-type InP have been investigated by XPS. Anodization was performed in the constant current density (Jc) mode using an ortho-phosphoric acid solution mixed with acetonitrile (ACN). The electrolyte was chosen after experimentation on the effect of the anodization parameters (electrolyte, viscosity of the electrolyte and pH, Jc and illumination level) and annealing conditions on the uniformity and stability of the oxide and the contamination level, as determined by SEM/EDAX, SIMS and XPS. Based on our XPS investigation, it appears that the inhomogeneity with depth of the anodic oxides grown on p-type InP is strongly dependent on the growth conditions. Depending on the anodization procedure, the anodic oxide appears complex and the presence of In(OH)3, In2O3, InPO4, In(PO3)3, In(PO3)4 and other non-stoichiometric In(POy)x compounds have been identified. Depending on the anodization conditions, it appears that both amorphous and crystalline phosphorus-rich condensed phosphates, of interest for surface passivation of InP, can be grown on p-type InP.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 15 (1990), S. 745-750 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: The effects of various surface preparation procedures, including chemical treatments in HF, HNO3, o-H3PO4 and H2SO4 solutions and anodic oxidation, on the passivating properties of InP have been investigated in order to optimize the fabrication procedures of n+p or p+n InP solar cells made by thermal diffusion. The InP substrates used in this study were p-type Cd-doped to a level of 1.7 × 1016 cm-3, Zn-doped to levels of 2.2 × 1016 and 1.2 × 1018 cm-3 and n-type S-doped to 4.4 × 1018 cm-3. The passivating properties have been evaluated from photoluminescence (PL) data; good agreement was found between the level of surface passivation and the composition of different surface layers as revealed by x-ray photoelectron spectroscopy (XPS) analysis.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Recently, we have succeeded in fabricating diffused junction p(+)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3%. The maximum AMO, 25 C efficiency recorded to date on bare cells is, however, only 13.2%. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(+)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: 1) the formation of thin p(+) InP:Cd emitter layers, 2) electroplated front contacts, 3) surface passivation and 4) the design of a new native oxide/AI203/MgF2 three layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.
    Keywords: Energy Production and Conversion
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); 63-79; NASA-CP-3278
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-04-14
    Description: It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.
    Keywords: Nonmetallic Materials
    Type: Space Photovoltaic Research and Technology 1995; 142-149; NASA-CP-10180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.
    Keywords: SOLID-STATE PHYSICS
    Type: Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12); p 33-42
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: The performance results of our most recently thermally diffused InP solar cells using the p(+)n (Cd,S) structures are presented. We have succeeded in fabricating cells with measured AMO, 25 C V(sub oc) exceeding 880 mV (bare cells) which to the best of our knowledge is higher than previously reported V(sub oc) values for any InP homojunction solar cells. The cells were fabricated by thinning the emitter, after Au-Zn front contacting, from its initial thickness of about 4.5 microns to about 0.6 microns. After thinning, the exposed surface of the emitter was passivated by a thin (approximately 50A) P-rich oxide. Based on the measured EQY and J(sub sc)-V(sub oc) characteristics of our experimental high V(sub oc) p(+)n InP solar cells, we project that reducing the emitter thickness to 0.3 microns, using an optimized AR coating, maintaining the surface hole concentration of 3 x 10(exp 18)cm(sup -3), reducing the grid shadowing from actual 10.55 percent to 6 percent and reducing the contact resistance will increase the actual measured 12.57 percent AMO 25 C efficiency to about 20.1 percent. By using our state-of-the-art p(+)n structures which have a surface hole concentration of 4 x 10(exp 18)cm(sup -3) and slightly improving the front surface passivation, an even higher practically achievable AMO, 25 C efficiency of 21.3 percent is projected.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12); p 23-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Space Photovoltaic Research and Technology, 1989; p 316-331
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Preliminary results indicate that Cd-doped substrates are better candidates for achieving high efficiency solar cells fabricated by closed-ampoule sulfur (S) diffusion than Zn-doped substrates. The differences in performance parameters (i.e., 14.3 percent efficiency for Cd-doped vs. 11.83 percent in the case of Zn-doped substrates of comparable doping and etch pit densities) were explained in terms of a large increase in dislocation density as a result of S diffusion in the case of Zn-doped as compared to Cd-doped substrates. The In(x)S(y) and probably Zn(S) precipitates in the case of Zn-doped substrates, produce a dead layer which extends deep below the surface and strongly affects the performance parameters. It should be noted that the cells had an unoptimized single layer antireflective coating of SiO, a grid shadowing of 6.25 percent, and somewhat poor contacts, all contributing to a reduction in efficiency. It is believed that by reducing the external losses and further improvement in cell design, efficiencies approaching 17 percent at 1 AMO, 25 degrees should be possible for cells fabricated on these relatively high defect density Cd-doped substrates. Even higher efficiencies, 18 to 19 percent should be possible by using long-lifetime substrates and further improving front surface passivation. If solar cells fabricated on Cd-doped substrates turn out to have comparable radiation tolerance as those reported in the case of cells fabricated on Zn-doped substrates, then for certain space missions 18 to 19 percent efficient cells made by this method of fabrication would be viable.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Space Photovoltaic Research and Technology, 1989; p 332-346
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: An extensive experimental study was conducted using various electrolytes in an effort to find an appropriate electrolyte for anodic dissolution of InP. From the analysis of electrochemical characteristics in the dark and under different illumination levels, x ray photoelectron spectroscopy and SEM/Nomarski inspection of the surfaces, it was determined that the anodic dissolution of InP front surface layers by FAP electrolyte is a very good choice for rendering smooth surfaces, free of oxides and contaminants and with good electrical characteristics. The FAP electrolyte, based on HF, CH3COOH, and H2O2 appears to be inherently superior to previously reported electrolytes for performing accurate EC-V profiling of InP at current densities of up to 0.3 mA/sq cm. It can also be used for accurate electrochemical revealing of either precipitates or dislocation density with application to EPD mapping as a function of depth, and for defect revealing of multilayer InP structures at any depth and/or at the interfaces.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Space Photovoltaic Research and Technology Conference; 12 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...