ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (1,860)
  • Physics  (807)
  • 1995-1999  (1,985)
  • 1980-1984
  • 1975-1979  (682)
  • 1998  (1,314)
  • 1996  (671)
  • 1978  (682)
Collection
Years
  • 1995-1999  (1,985)
  • 1980-1984
  • 1975-1979  (682)
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 590-599 
    ISSN: 0006-3592
    Keywords: protein refolding ; hollow-fibre membrane ; dialysis ; carbonic anhydrase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have used a cellulose acetate, hollow-fibre (HF) ultrafiltration membrane to refold bovine carbonic anhydrase, loaded into the lumen space, by removing the denaturant through controlled dialysis via the shell side space. When challenged with GdnHCl-denatured carbonic anhydrase, 70% of the loaded protein reptated through the membrane into the circulating dialysis buffer. Reptation occurred because the protein, in its fully unfolded configuration, was able to pass through the pores. The loss of carbonic anhydrase through the membrane was controlled by the dialysis conditions. Dialysis against 0.05 M Tris-HCl for 30 min reduced the denaturant around the protein to a concentration that allowed the return of secondary structure, increasing the hydrodynamic radius, thus preventing protein transmission. Under these conditions a maximum of 42% of carbonic anhydrase was recovered (from a starting concentration of 5 mg/mL) with 94% activity. This is an improvement over refolding carbonic anhydrase by simple batch dilution, which gave a maximum reactivation of 85% with 35% soluble protein yield. The batch refolding of carbonic anhydrase is very sensitive to temperature; however, during HF refolding between 0 and 25°C the temperature sensitivity was considerably reduced. In order to reduce the convection forces that give rise to aggregation and promote refolding the dialyzate was slowly heated from 4 to 25°C. This slow, temperature-controlled refolding gave an improved soluble protein recovery of 55% with a reactivation yield of 90%. The effect of a number of additives on the refolding system performance were tested: the presence of PEG improved both the protein recovery and the recovered activity from the membrane, while the detergents Tween 20 and IGEPAL CA-630 increased only the refolding yield. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 590-599, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 119-120 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 658-662 
    ISSN: 0006-3592
    Keywords: T4 lysozyme ; silica nanoparticles ; synthetic enzyme variants ; surface-induced conformational change ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Maintaining a specific molecular conformation is essential for the proper functioning of an enzyme. A substantial loss of catalytic activity can occur from the displacement caused by even a single amino acid substitution. Activity may also be lost as an enzyme undergoes a conformational change during adsorption. In this study, we investigated the effect of thermostability on the activities of three T4 lysozyme variants after adsorption to 9 nm colloidal silica particles. Less-stable T4 lysozyme variants lost more activity after adsorption than did more stable variants, apparently because they experienced more extensive structural alteration. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 658-662, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 139-148 
    ISSN: 0006-3592
    Keywords: metabolic engineering ; pathway analysis ; metabolic and energetic model ; physiological state ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this work, an integrated modeling approach based on a metabolic signal flow diagram and cellular energetics was used to model the metabolic pathway analysis for the cultivation of yeast on glucose. This approach enables us to make a clear analysis of the flow direction of the carbon fluxes in the metabolic pathways as well as of the degree of activation of a particular pathway for the synthesis of biomaterials for cell growth. The analyses demonstrate that the main metabolic pathways of Saccharomyces cerevisiae change significantly during batch culture. Carbon flow direction is toward glycolysis to satisfy the increase of requirement for precursors and energy. The enzymatic activation of TCA cycle seems to always be at normal level, which may result in the overflow of ethanol due to its limited capacity. The advantage of this approach is that it adopts both virtues of the metabolic signal flow diagram and the simple network analysis method, focusing on the investigation of the flow directions of carbon fluxes and the degree of activation of a particular pathway or reaction loop. All of the variables used in the model equations were determined on-line; the information obtained from the calculated metabolic coefficients may result in a better understanding of cell physiology and help to evaluate the state of the cell culture process. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:139-148, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 149-153 
    ISSN: 0006-3592
    Keywords: Metabolic Control Analysis ; flux control coefficients ; top down MCA ; metabolic engineering ; Corynebacterium glutamicum ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group (flux, as well as concentration) control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, we demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:149-153, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 154-161 
    ISSN: 0006-3592
    Keywords: central carbon pathways ; metabolic optimization ; ethanol production ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Many attempts to engineer cellular metabolism have failed due to the complexity of cellular functions. Mathematical and computational methods are needed that can organize the available experimental information, and provide insight and guidance for successful metabolic engineering. Two such methods are reviewed here. Both methods employ a (log)linear kinetic model of metabolism that is constructed based on enzyme kinetics characteristics. The first method allows the description of the dynamic responses of metabolic systems subject to spatiotemporal variations in their parameters. The second method considers the product-oriented, constrained optimization of metabolic reaction networks using mixed-integer linear programming methods. The optimization framework is used in order to identify the combinations of the metabolic characteristics of the glycolytic enzymes from yeast and bacteria that will maximize ethanol production. The methods are also applied to the design of microbial ethanol production metabolism. The results of the calculations are in qualitative agreement with experimental data presented here. Experiments and calculations suggest that, in resting Escherichia coli cells, ethanol production and glucose uptake rates can be increased by 30% and 20%, respectively, by overexpression of a deregulated pyruvate kinase, while increase in phosphofructokinase expression levels has no effect on ethanol production and glucose uptake rates. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:154-161, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 170-174 
    ISSN: 0006-3592
    Keywords: catabolite repression ; phosphotransferase system ; inducer exclusion ; inducer expulsion ; protein kinase ; transcriptional regulation ; transport regulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Catabolite repression is a universal phenomenon, found in virtually all living organisms. These organisms range from the simplest bacteria to higher fungi, plants, and animals. A mechanism involving cyclic AMP and its receptor protein (CRP) in Escherichia coli was established years ago, and this mechanism has been assumed by many to serve as the prototype for catabolite repression in all organisms. However, recent studies have shown that this mechanism is restricted to enteric bacteria and their close relatives. Cyclic AMP-independent mechanisms of catabolite repression occur in other bacteria, yeast, plants, and even E. coli. In fact, single-celled organisms such as E. coli, Bacillus subtilis, and Saccharomyces cerevisiae exhibit multiple mechanisms of catabolite repression, and most of these are cyclic AMP-independent. The mechanistic features of the best of such characterized processes are briefly reviewed, and references are provided that will allow the reader to delve more deeply into these subjects. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:170-174, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 162-169 
    ISSN: 0006-3592
    Keywords: bioinformatics ; metabolic engineering ; genetic engineering ; mathematical analysis ; stoichiometry ; enzyme kinetics ; modal analysis ; genetic circuits ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Ten microbial genomes have been fully sequenced to date, and the sequencing of many more genomes is expected to be completed before the end of the century. The assignment of function to open reading frames (ORFs) is progressing, and for some genomes over 70% of functional assignments have been made. The majority of the assigned ORFs relate to metabolic functions. Thus, the complete genetic and biochemical functions of a number of microbial cells may be soon available. From a metabolic engineering standpoint, these developments open a new realm of possibilities. Metabolic analysis and engineering strategies can now be built on a sound genomic basis. An important question that now arises; how should these tasks be approached? Flux-balance analysis (FBA) has the potential to play an important role. It is based on the fundamental principle of mass conservation. It requires only the stoichiometric matrix, the metabolic demands, and some strain specific parameters. Importantly, no enzymatic kinetic data is required. In this article, we show how the genomically defined microbial metabolic genotypes can be analyzed by FBA. Fundamental concepts of metabolic genotype, metabolic phenotype, metabolic redundancy and robustness are defined and examples of their use given. We discuss the advantage of this approach, and how FBA is expected to find uses in the near future. FBA is likely to become an important analysis tool for genomically based approaches to metabolic engineering, strain design, and development. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:162-169, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 191-195 
    ISSN: 0006-3592
    Keywords: control analysis ; Lactococcus lactis ; gene expression ; flux ; oligonucleotide ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro-organisms were constructed using synthetic degenerated oligonucleotides. From this work, a promoter library was obtained for Lactococcus lactis, containing numerous individual promoters and covering a wide range of promoter activities. Importantly, the range of promoter activities was covered in small steps of activity change. Promoter libraries generated by this approach allow for optimization of gene expression and for experimental control analysis in a wide range of biological systems by choosing from the promoter library promoters giving, e.g., 25%, 50%, 200%, and 400% of the normal expression level of the gene in question. If the relevant variable (e.g., the flux or yield) is then measured with each of these constructs, then one can calculate the control coefficient and determine the optimal expression level. One advantage of the method is that the construct which is found to have the optimal expression level is then, in principle, ready for use in the industrial fermentation process; another advantage is that the system can be used to optimize the expression of different enzymes within the same cell. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:191-195, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 175-190 
    ISSN: 0006-3592
    Keywords: protein-based polymers ; inverse temperature transitions ; hydrophobic-induced pKa shifts ; waters of hydrophobic hydration ; five axioms for protein engineering; microwave dielectric relaxation ; a universal mechanism for biological energy conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Metabolism is the conversion of available energy sources to those energy forms required for sustaining and propagating living organisms; this is simply biological energy conversion. Proteins are the machines of metabolism; they are the engines of motility and the other machines that interconvert energy forms not involving motion. Accordingly, metabolic engineering becomes the use of natural protein-based machines for the good of society. In addition, metabolic engineering can utilize the principles, whereby proteins function, to design new protein-based machines to fulfill roles for society that proteins have never been called upon throughout evolution to fulfill.This article presents arguments for a universal mechanism whereby proteins perform their diverse energy conversions; it begins with background information, and then asserts a set of five axioms for protein folding, assembly, and function and for protein engineering. The key process is the hydrophobic folding and assembly transition exhibited by properly balanced amphiphilic protein sequences. The fundamental molecular process is the competition for hydration between hydrophobic and polar, e.g., charged, residues. This competition determines Tt, the onset temperature for the hydrophobic folding and assembly transition, Nhh, the numbers of waters of hydrophobic hydration, and the pKa of ionizable functions.Reported acid-base titrations and pH dependence of microwave dielectric relaxation data simultaneously demonstrate the interdependence of Tt, Nhh and the pKa using a series of microbially prepared protein-based poly(30mers) with one glutamic acid residue per 30mer and with an increasing number of more hydrophobic phenylalanine residues replacing valine residues. Also, reduction of nicotinamides and flavins is shown to lower Tt, i.e., to increase hydrophobicity.Furthermore, the argument is presented, and related to an extended Henderson-Hasselbalch equation, wherein reduction of nicotinamides represents an increase in hydrophobicity and resulting hydrophobic-induced pKa shifts become the basis for understanding a primary energy conversion (proton transport) process of mitochondria. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:175-190, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 0006-3592
    Keywords: Escherichia coli ; Chloramphenicol Acetyltransferase (CAT) ; Culture Redox Potential (CRP) ; Dithiothreitol (DTT) ; reducing agents ; molecular chaperones ; proteases ; heat shock ; stress response ; protein folding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The independent control of culture redox potential (CRP) by the regulated addition of a reducing agent, dithiothreitol (DTT) was demonstrated in aerated recombinant Escherichia coli fermentations. Moderate levels of DTT addition resulted in minimal changes to specific oxygen uptake, growth rate, and dissolved oxygen. Excessive levels of DTT addition were toxic to the cells resulting in cessation of growth. Chloramphenicol acetyltransferase (CAT) activity (nmoles/μg total protein min.) decreased in batch fermentation experiments with respect to increasing levels of DTT addition. To further investigate the mechanisms affecting CAT activity, experiments were performed to assay heat shock protein expression and specific CAT activity (nmoles/μg CAT min.). Expression of such molecular chaperones as GroEL and DnaK were found to increase after addition of DTT. Additionally, sigma factor 32 (σ32) and several proteases were seen to increase dramatically during addition of DTT. Specific CAT activity (nmoles/μg CAT min.) varied greatly as DTT was added, however, a minimum in activity was found at the highest level of DTT addition in E. coli strains RR1 [pBR329] and JM105 [pROEX-CAT]. In conjunction, cellular stress was found to reach a maximum at the same levels of DTT. Although DTT addition has the potential for directly affecting intracellular protein folding, the effects felt from the increased stress within the cell are likely the dominant effector. That the effects of DTT were measured within the cytoplasm of the cell suggests that the periplasmic redox potential was also altered. The changes in specific CAT activity, molecular chaperones, and other heat shock proteins, in the presence of minimal growth rate and oxygen uptake alterations, suggest that the ex vivo control of redox potential provides a new process for affecting the yield and conformation of heterologous proteins in aerated E. coli fermentations. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59: 248-259, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 261-272 
    ISSN: 0006-3592
    Keywords: effective diffusive permeability ; diffusion coefficient ; biofilm ; cell density ; review ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms are reviewed. Effective diffusive permeabilities, the parameter appropriate to the analysis of reaction-diffusion interactions, depend on solute type and biofilm density. Three categories of solute physical chemistry with distinct diffusive properties were distinguished by the present analysis. In order of descending mean relative effective diffusive permeability (De/Daq) these were inorganic anions or cations (0.56), nonpolar solutes with molecular weights of 44 or less (0.43), and organic solutes of molecular weight greater than 44 (0.29). Effective diffusive permeabilities decrease sharply with increasing biomass volume fraction suggesting a serial resistance model of diffusion in biofilms as proposed by Hinson and Kocher (1996). A conceptual model of biofilm structure is proposed in which each cell is surrounded by a restricted permeability envelope. Effective diffusion coefficients, which are appropriate to the analysis of transient penetration of nonreactive solutes, are generally similar to effective diffusive permeabilities in biofilms of similar composition. In three studies that examine diffusion of very large molecular weight solutes ( 〉 5000) in biofilms, the average ratio of the relative effective diffusion coefficient of the large solute to the relative effective diffusion coefficient of either sucrose or fluorescein was 0.64, 0.61, and 0.36. It is proposed that large solutes are effectively excluded from microbial cells, that small solutes partition into and diffuse within cells, and that ionic solutes are excluded from cells but exhibit increased diffusive permeability (but decreased effective diffusion coefficients) due to sorption to the biofilm matrix. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:261-272, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 281-285 
    ISSN: 0006-3592
    Keywords: protein aggregation ; RNase A ; protein formulation ; protein additives ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the previous study (part I), heat-denatured RNase A aggregation was shown to depend on the solution pH. Interestingly, at pH 3.0, the protein did not aggregate even when exposed to 75°C for 24 h. In this study, electrostatic repulsion was shown to be responsible for the absence of aggregates at that pH. While RNase A aggregation was prevented at the extremely acidic pH, this is not an environment conducive to maintaining protein function in general. Therefore, attempts were made to confer electrostatic repulsion near neutral pH. In this study, heat-denatured RNase A was mixed with charged polymers at pH 7.8 in an attempt to provide the protein with excess surface cations or anions. At 75°C, SDS and dextran sulfate were successful in preventing RNase A aggregation, whereas their cationic, nonionic, and zwitterionic analogs did not do so. We believe that the SO3- groups present in both additives transformed the protein into polyanionic species, and this may have provided a sufficient level of electrostatic repulsion at pH 7.8 and 75°C to prevent aggregation from proceeding. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:281-285, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 328-343 
    ISSN: 0006-3592
    Keywords: biotrickling filters ; biotrickling filter modeling ; mono-chlorobenzene ; biodegradation kinetics of mono-chlorobenzene ; chlorinated VOC emissions ; biofiltration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Removal of mono-chlorobenzene (m-CB) vapor from airstreams was studied in a biotrickling filter (BTF) operating under counter-current flow of the air and liquid streams. Experiments were performed under various values of inlet m-CB concentration, air and/or liquid volumetric flow rates, and pH of the recirculating liquid. Conversion of m-CB was never below 70% and at low concentrations exceeded 90%. A maximum removal rate of about 60 gm-3-reactor h-1 was observed. Conversion of m-CB was found to increase as the values of liquid and air flow rate increase and decrease, respectively. The effects of pH and frequency of medium replenishment on BTF performance were also investigated. The process was successfully described with a detailed mathematical model, which accounts for mass transfer and kinetic effects based on m-CB and oxygen availability. Solution of the model equations yielded m-CB and oxygen concentration profiles in all three phases (airstream, liquid, biofilm). It is predicted that oxygen has a controling effect on the process at high inlet m-CB concentrations. From independent, suspended culture, experiments it was found that m-CB biodegradation follows Andrews inhibitory kinetics. The kinetic constants were found to remain practically unchanged after the culture was used in BTF experiments for 8 months. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:328-343, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 344-350 
    ISSN: 0006-3592
    Keywords: electrodialysis ; citric acid ; pH ; temperature ; Faraday efficiency ; solute recovery efficiency ; specific energy consumption ; solute flux ; water flux ; feed solute concentration ; electric current density ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of pH and temperature (θ) on the overall performance indicators (i.e., solute recovery, ρ, and Faraday, η, efficiencies; specific energy consumption, ε, solute, JS, and water, JW, fluxes) of batch electrodialytic recovery of citric acid from model solutions was assessed at different values of feed solute concentration (cSf) and electric current density (j). Regardless of the initial feed concentration used, ρ and JS were found to be independent of θ; η and JW exhibited a positive trend with respect to θ, while ε a negative one. At the maximum temperature tested (33°C), as the pH of the feed solution was varied from 3 to 7, ρ increased from 0.90 ± 0.08 to 0.97 ± 0.02, η grew from 0.09 ± 0.02 to 0.50 ± 0.01, JS practically doubled, ε reduced about 8 times, but JW increased from 3 to 4 times. So, the optimal conditions for this technique are to be determined by balancing the savings in the investment and maintenance costs against the energy costs. © John Wiley & Sons, Inc. Biotechnol Bioeng 59:344-350, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 0006-3592
    Keywords: chymotrypsin ; enzyme stability ; reversed micelles ; interface ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The stability of α-chymotrypsin and δ-chymotrypsin was studied in reversed micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane. α-Chymotrypsin is inactivated at the interface and at the water pool, while δ-chymotrypsin is inactivated only at the water pool. The mechanism of inactivation at the interface is related to the interaction of N-terminal group alanine 149 (absent in δ-chymotrypsin) with the negative interface. The dependence of enzyme activity on water content of these two enzymes in reversed micelles of AOT is also related with the interface interaction, since δ-chymotrypsin does not have a bell-shaped curve as observed for α-chymotrypsin. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:360-363, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 351-359 
    ISSN: 0006-3592
    Keywords: bioreactor ; high density ; insect cells ; perfusion ; Sf9 ; ultrasonic filter ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The baculovirus/insect cell expression system has provided a vital tool to produce a high level of active proteins for many applications. We have developed a very high-density insect cell perfusion process with an ultrasonic filter as a cell retention device. The separation efficiency of the filter was studied under various operating conditions. A cell density of over 30 million cells/mL was achieved in a controlled perfusion bioreactor and cell viability remained greater than 90%. Sf9 cells from a high-density culture and a spinner culture were infected with two recombinant baculoviruses expressing genes for the production of human chitinase and monocyte-colony inhibition factor. The protein yield on a cell basis from infecting high-density Sf9 cells was the same as or higher than that from the spinner Sf9 culture. Virus production from the high-density culture was similar to that from the spinner culture. The results show that the ultrasonic filter did not affect insect cells' ability to support protein expression and virus production following infection with baculovirus. The potential applications of the high-density perfusion culture for large-scale protein expression from Sf9 cells are also highlighted. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:351-359, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 374-378 
    ISSN: 0006-3592
    Keywords: conductive paint electrode ; prevention of marine biofouling ; fishing net ; alternating potential ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conductive paint electrode was used for marine biofouling on fishing nets by electrochemical disinfection. When a potential of 1.2 V vs. a saturated calomel electrode (SCE) was applied to the conductive paint electrode, Vibrio alginolyticus cells attached on the electrode were completely killed. By applying a negative potential, the attached cells were removed from the surface of the electrode. Changes in pH and chlorine concentration were not observed at potentials in the range -0.6 ∼1.2 V vs. SCE. In a field experiment, accumulation of the bacterial cells and formation of biofilms on the electrode were prevented by application of an alternating potential, and 94% of attachment of the biofouling organisms was inhibited electrically on yarn used for fishing net coated with conductive paint. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:374-378, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 364-373 
    ISSN: 0006-3592
    Keywords: porous supports ; internal and external diffusion ; active site accessibility ; enzyme loading ; kinetically controlled dipeptide synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mass transfer limitations were studied in enzyme preparations of α-chymotrypsin made by deposition on different porous support materials such as controlled pore glasses, Celite, and polyamides of different particle sizes. It is the onset of mass transfer limitations that determines the position of the activity optimum with respect to enzyme loading on each support. The evidence of various experiments indicates that internal diffusional limitations are the important mechanism for the observed mass transfer limitations. External diffusion was not found to play an important role under the conditions used, and it was also found that when immobilizing multilayers of enzyme the buried enzyme molecules are active to a large extent. An extreme situation is observed on Celite at very high loadings. Under these conditions, this support is expected to have its pores completely filled with packed enzyme molecules, and then it is the diffusion within the enzyme layer that determines the observed rate. As the enzyme loading increases, the area of contact between the deposited enzyme layers and the liquid solution inside the pores diminishes, causing a decrease on the observed rate of an intrinsically fast reaction which apparently is incongruous with the presence of more enzyme in the system. This work shows that mass transfer limitations can be an important factor when working with immobilized enzymes in organic media, and its study should be carried out in order to avoid undesired reduced enzyme activities and specificities. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:364-373, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 438-444 
    ISSN: 0006-3592
    Keywords: bioremediation ; plasma discharge ; dichlorophenol degradation ; perchloroethylene degradation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Pulsed electric discharge (PED) and bioremediation were combined to create a novel two-stage system which dechlorinates the halogenated pollutants, 2,4-dichlorophenol and perchloroethylene, with repetitive (0.1-1 kHz), short pulse (∼100 ns), low voltage (40-80 kV) discharges and then mineralizes the less chlorinated products with aerobic bacteria. A 6.1 mM aqueous dichlorophenol sample was cycled through the PED reactor (60 kV of applied pulsed voltage and 300 Hz) 6 times, resulting in the release of 55% of the initial dichlorophenol chloride ions (1 mM Cl- removed each cycle). The respective average specific efficiency is 0.4-0.6 keV/(Cl- molecule). Pseudomonas mendocina KR1, which grows in minimal medium supplemented with phenol but not with dichlorophenol, increased in cell density in all cultures supplemented with the PED-treated DCP samples and yielded a maximum of two-fold additional Cl- released compared to the PED-related alone. The number of PED-treatment cycles, voltage, and frequency were also varied, showing that both cell densities and overall dichlorophenol dechlorination were highly dependent upon the number of PED-treatment cycles, rather than the tested voltages and frequencies. Using this two-stage treatment system, PED released 31% of the initial chloride ions from dichlorophenol (after three cycles at 40-45 kV and 1.2 kHz) while P. mendocina KR1 in the second stage increased dechlorination to 90%. These results were corroborated by the 35% additional chloride release found with activated sludge cultures. Perchloroethylene (0.6 mM) was similarly treated in a first-stage PED reactor (80% chloride removal after four cycles) followed by biodegradation of the dechlorinated products with a recombinant toluene o-monooxygenase-expressing Pseudomonas fluorescens strain. Gas chromatographic analysis showed that the PED reactor created less-chlorinated byproducts (i.e., trichloroethylene) that were removed (74%) upon exposure to the recombinant bacterium. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:438-444, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 445-450 
    ISSN: 0006-3592
    Keywords: CHO cells ; glycosylation engineering ; antisense ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Novel glycoproteins, inaccessible by other techniques, can be obtained by metabolic engineering of the oligosaccharide biosynthesis pathway. Furthermore, alteration of cell-surface oligosaccharides can change the properties of receptors involved in cell-cell adhesion. Sialyl Lewis X (sLex) is a cell-surface oligosaccharide determinant which is specifically expressed on granulocytes and monocytes and which interacts with selectins to influence leukocyte trafficking, thrombosis, inflammation, and cancer. Antisense technology targeting fucosyltransferase VI (Fuc-TVI), an enzyme necessary for the synthesis of the sLex in engineered Chinese hamster ovary (CHO) cells, has reduced Fuc-TVI activity, sLex synthesis, and adhesion to endothelial cells. Antisense methodology to reduce targeted activity in oligosaccharide biosynthesis or other pathways is an important addition to CHO cell metabolic engineering capabilities. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:445-450, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 451-460 
    ISSN: 0006-3592
    Keywords: protein fouling ; membrane transport ; ultrafiltration ; adsorption ; filtration ; composite membrane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Protein fouling can significantly alter both the flux and retention characteristics of ultrafiltration membranes. There has, however, been considerable controversy over the nature of this fouling layer. In this study, hydraulic permeability and dextran sieving data were obtained both before and after albumin adsorption and/or filtration using polyethersulfone ultrafiltration membranes. The dextran molecular weight distributions were analyzed by gel permeation chromatography to evaluate the sieving characteristics over a broad range of solute size. Protein fouling caused a significant reduction in the dextran sieving coefficients, with very different effects seen for the diffusive and convective contributions to dextran transport. The changes in dextran sieving coefficients and diffusive permeabilities were analyzed using a two-layer membrane model in which a distinct protein layer is assumed to form on the upstream surface of the membrane. The data suggest that the protein layer formed during filtration was more tightly packed than that formed by simple static adsorption. Hydrodynamic calculations indicated that the pore size of the protein layer remained relatively constant throughout the adsorption or filtration, but the thickness of this layer increased with increasing exposure time. These results provide important insights into the nature of protein fouling during ultrafiltration and its effects on membrane transport. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:451-460, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 461-470 
    ISSN: 0006-3592
    Keywords: aqueous two-phase separation ; protein partitioning ; T4 lysozyme ; electrochemical partitioning ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Protein partitioning in aqueous two-phase systems based on phase-forming polymers is strongly affected by the net charge of the protein, but a thermodynamic description of the charge effects has been hindered by conflicting results. Many of the difficulties could be because of problems in isolating electrochemical effects from other interactions of phase components.We explored charge effects on protein partitioning in poly(ethylene glycol)-dextran two-phase systems by using two series of genetically engineered charge modifications of bacteriophage T4 lysozyme produced in Escherichia coli. The two series, one in the form of charged-fusion tails and the other in the form of charge-change point mutations, provided matching net charges but very different polarity. Partition coefficients of both series were obtained and interfacial potential differences of the phase systems were measured. Multi-angle laser light scattering measurements were also performed to determine second virial coefficients. A semi-empirical model accounting for the roles of both charge and non-charge effects on protein partitioning behavior is proposed, and the results predicted from the model are compared to the results from the experiments. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:461-470, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 204-216 
    ISSN: 0006-3592
    Keywords: expanded bed adsorption ; bakers' yeast ; G6PDH ; STREAMLINE ion exchange adsorbents ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The use of expanded beds of STREAMLINE ion exchange adsorbents for the direct extraction of an intracellular enzyme glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast cell homogenates has been investigated. It has been demonstrated that such crude feedstocks can be applied to the bed without prior clarification steps. The purification of G6PDH from an unclarified yeast homogenate was chosen as a model system containing the typical features of a direct extraction technique. Optimal conditions for the purification were determined in small scale, packed bed experiments conducted with clarified homogenates. Results from these experiments were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 EBA apparatus. The use of an on-line rotameter for measuring and controlling the height of the expanded bed when operated in highly turbid feedstocks was demonstrated. STREAMLINE DEAE has been shown to be successful in achieving isolation of G6PDH from an unclarified homogenate with a purification factor of 12 and yield of 98% in a single step process. This ion exchange adsorbent is readily cleaned using simple cleaning-in-place procedures without affecting either adsorption or the bed expansion properties of the adsorbent after many cycles of operation. The ability of combining clarification, capture, and purification in a single step will greatly simplify downstream processing flowsheets and reduce the costs of protein purification. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 259-265 
    ISSN: 0006-3592
    Keywords: hepatocytes ; lactose-derivatized polystyrene ; polystyrene ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Hepatocytes isolated from male Fisher 344VF rats were cultured on two substrates, collagen I and a lactose-derivatized polystyrene (PS-lactose), to compare morphological and functional differences. Hepatocyte morphology changed dramatically depending upon the substrate, shown through actin cytoskeletal staining and scanning electron microscopy. Functional assays performed included albumin secretion, reduced glutathione content, UDP-glucuronosyl transferase, and cytochrome P4501A1 activity. The presence of dexamethasone and dimethylsulfoxide (DMSO) in the media was required for the maintenance of several differentiated functions for cells cultured on collagen. In general, cells cultured on the PS-lactose substrate showed a much slower loss of function over the same period of time. The maintenance of differentiated function of cells on PS-lactose was enhanced with the addition of dexamethasone and DMSO. This is the first report of a culture system in which hepatocytes, cultured on a polymer substrate without additional protein coatings or media additives, have been able to maintain differentiated functions for up to 1 week. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 290-299 
    ISSN: 0006-3592
    Keywords: proteins, modified ; partitioning in aqueous system ; thaumatin ; β-lactoglobulin ; BSA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Relatively conservative modifications of three proteins were carried out to alter their surface properties. The protein properties modified were hydrophobicity and charge. This was done by acylation of amino groups with anhydrides. For the hydrophobic modification experiments, two proteins (β-lactoglobulin and bovine serum albumin [BSA]) and four anhydrides (hexanoic, butyric, succinic, acetic) were used. For the modification of surface charge the protein thaumatin was selected and various proportions of the free amino groups were blocked with acetic anhydride to give a series of proteins with differing isoelectric points. Detailed characterization and purification of selected modified proteins was carried out including molecular weight measurements and conformational analysis. The criteria used for selecting the modified proteins for subsequent investigation of their partitioning in aqueous two-phase systems (ATPS) is described. With a judicious choice of starting material it was found that limited chemical modifications to proteins could effectively alter surface hydrophobicity or charge almost independently, with little effect on other molecular properties. It appears, however, that the method for chemical modification and the reaction conditions must also be carefully controlled. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 309-315 
    ISSN: 0006-3592
    Keywords: surface charge ; proteins, modified ; partitioning in aqueous system ; thaumatin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A series of charge-modified thaumatins with different values of surface charge were partitioned in aqueous two-phase systems (ATPS) to study the effect of surface charge as a single property on partitioning. Electrophoretic mobility of the proteins in titration curves was used as a measure of surface charge. Four modified proteins derived from thaumatin with the following values of isoelectric point: 8.70, 8.15, 5.60, and 4.50 were used for partitioning. The resolution of the systems in terms of protein surface charge was calculated. Partitioning of modified thaumatins in PEG 4000/dextran systems with phosphate buffer, Tris buffer, NaCl, KCl, and sulfate salts was carried out. Among the sulfate salts tested, the addition of 50 mM Li2SO4 to the system buffered with phosphate gave the highest value of resolution for differences in surface protein charge (RSPC). It shows a decrease in the value of K (partition coefficient) with an increase in the protein's charge. The addition of 100 mM KCl to the system promoted the opposite effect on the RSPC value. Charge-modified proteins were partitioned in PEG/salt systems to investigate the ability of these systems for resolving differences in surface charge. The PEG/citrate system seemed to have almost no ability for resolving proteins on the basis of surface charge differences; PEG/phosphate systems had some capability for resolving differently charged proteins. The more negative proteins tended to have higher values of K than the more positively charged fractions. The use of charge-modified proteins allowed the investigation of the effect of protein surface charge on partitioning in aqueous two-phase systems independently from other protein parameters as they were prepared from a common parent protein thaumatin. This technique provides an interesting novel tool to investigate the effect of protein surface charge on partitioning in ATPS taking protein charge as an independent parameter. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 348-354 
    ISSN: 0006-3592
    Keywords: oxygenator ; NMR spectroscopy ; organ perfusion ; mammalian cell culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A compact, reusable membrane oxygenator has been constructed for the perfusion of cultured cells and isolated organs. While the oxygenator was designed to be compatible with nuclear magnetic resonance (NMR) spectroscopy studies, it can also be used for any experiment which requires warming and oxygenation of perfusates. For the NMR studies, the oxygenator can be positioned at the opening of the magnet bore which allows oxygenation and warming of the perfusate immediately prior to delivery to the tissue, therefore eliminating problems with heat or oxygen loss which may occur with the long perfusion lines. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 0006-3592
    Keywords: c-fos protein ; endothelium ; hemodynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The c-fos protein belongs to a family of transcriptional cofactors that can complex with proteins of the Jun family and activate mRNA transcription from gene promoters containing an activator protein 1 (AP-1) binding element. The shear stress inducibility of the c-fos protein was studied in human and animal cell lines of vastly different origins. Primary human umbilical vein endothelial cells (HUVEC), bovine aortic endothelial cells (BAEC, passage 2-14), HeLa cells, and Chinese hamster ovary (CHO) cells were subjected to steady laminar shear stress using a parallel plate flow apparatus. After 1 h of flow exposure at 25 dyn/cm2, the c-fos levels in nuclei of shear stress HUVEC, BAEC, HeLa, and CHO were 5.4 ± 2.0 (n = 3), 2.25 ± 1.38 (n = 6), 2.14 ± 0.07 (n = 8), 1.92 ± 0.58 (n = 2) times higher, respectively, than in matched stationary controls. Flow exposure at 4 dyn/cm2 caused no enhancement of c-fos levels in any of the cell lines tested, but caused significant reduction in c-fos expression in the HeLa cells. The c-fos induction by shear stress could be blocked by pharmacological agents. For example, the flow induction of the c-fos protein levels was blocked by 50% with the preincubation of HUVEC with a protein kinase C inhibitor, H7 (10 μM) and blocked completely in HeLa cells preincubated with the phospholipase C inhibitor, neomycin (5 mM). The minimum time of shear stress exposure required to induce the c-fos protein expression in HeLa cells was found to be as low as 1 min. By Northern analysis, the c-fos mRNA levels were found to be elevated in BAEC, CHO, and HeLa cells exposed to 25 dyn/cm2 for 30 min. These studies indicate that c-fos induction is a consistent genetic response in a variety of mammalian cells that may alter cellular phenotype in mechanical environments. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 412-420 
    ISSN: 0006-3592
    Keywords: Amycolatopsis orientalis ; vancomycin production ; chemostat culture ; phosphate inhibition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Production of the glycopeptide antibiotic vancomycin by two Amycolatopsis orientalis strains was examined in batch shake flask culture in a semidefined medium with peptone as the nitrogen source. Different growth and production profiles were observed with the two strains; specific production (Yp/x) was threefold higher with strain ATCC 19795 than with strain NCIMB 12945. A defined medium with amino acids as the nitrogen source was developed by use of the Plackett-Burman statistical screening method. This technique identified certain amino acids (glycine, phenylalanine, tyrosine, and arginine) that gave significant increased specific production, whereas phosphate was identified as inhibitory for high specific vancomycin production. Experiments made with the improved medium and strain ATCC 19795 showed that vancomycin production kinetics were either growth dissociated or growth associated, depending on the amino acid concentration. In chemostat culture at a constant dilution rate (0.087 h-1), specific vancomycin production rate (qvancomycin) decreased linearly as the medium phosphate concentration was increased from 2 to 8 mM. In both phosphate and glucose limited chemostats, qvancomycin was a function of specific growth rate; the maximum value was observed at D = 0.087 h-1 (52% of the maximum specific growth rate). Under phosphate limited growth conditions, qvancomycin was threefold higher (0.37 mg/g dry weight/h) than under glucose limitation (0.12 mg/g dry weight/h). © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 36-48 
    ISSN: 0006-3592
    Keywords: insect cell culture ; Sf-9 cells ; respiration ; bioreactor ; on-line monitoring ; baculovirus expression vector system ; recombinant proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O2 uptake rate (OUR) was determined using gas phase pO2 values imposed by a dissolved oxygen controller and the CO2 evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant β-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant β-galactosidase. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 169-183 
    ISSN: 0006-3592
    Keywords: liposomes ; biotin ; aggregation kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The aggregation of biotinylated phospholipid vesicles (liposomes) cross-linked by antibiotin IgG was studied experimentally and theoretically. The liposomes were either low density liposomes that contained 0.4 mol% biotinylated phospholipid (≈100 exposed biotin molecules per liposome), or high density liposomes that contained 2.7 mol% biotinylated phospholipid (≈1000 exposed biotin molecules per liposome). The solution turbidity and mean particle size measured by quasi-elastic light scattering (QLS) were monitored throughout the aggregation. Three different lots of antibiotin antibodies, each with different association constants and binding heterogeneities, were used. The antibody binding characteristics affected the aggregation rates. The aggregation kinetics were analyzed using a model based on the Smoluchowski theory of aggregation, fractal concepts of aggregate microstructure, and Rayleigh and Mie light scattering theory. The experimental conditions of liposome concentration, protein concentration, and ligand density under which aggregation occurred correlated well with calculated sticking probabilities based on isotherms describing the adsorption of antibiotin antibody to the liposomes. These results are compared with prior observations made when avidin was used as the cross-linking protein. © 1996 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 211-216 
    ISSN: 0006-3592
    Keywords: microgravity ; bioprocessing ; sedimentation ; turbulence ; collagenase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of a quiescent microgravity fluid environment on the activity of collagenase directed at demineralized bone fragments was investigated over a period of 10 days. Enzyme treatment resulted in greater mass loss in microgravity, with nearly three times the loss of mass during Space Shuttle mission STS-62 compared to the stationary ground control. Clinorotation enhanced the loss of mass relative to a stationary control, but this increase was still significantly less than the increase with exposure to microgravity. This suggests the detrimental influence of turbulence on the enzyme function and the benefit of using microgravity to provide both low turbulence and uniformity of unequally dense materials within the reaction chamber. The results are considered for their general applicability to a variety of bioprocessing applications that may be enhanced in microgravity. © 1996 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 430-437 
    ISSN: 0006-3592
    Keywords: cartilage ; tissue regeneration ; chondrocytes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the last 5 to 10 years, tissue engineering has revolutionized the way in which medical researchers and clinicians are thinking of and, in some cases, actually treating diseases involving tissue damage and destruction. One such disease, osteoarthritis, results from progressive degeneration of articular cartilage, which has a limited ability to repair itself. With tissue engineering, scientists are now able to regenerate cartilage in vitro from isolated mature chondrocytes. While the regeneration process is still not fully understood, enough has been learned that physicians are already implanting cultured chondrocytes into humans and other animals in the hopes of effecting joint repair. One aspect which has not been fully explored is the effect of mechanical stress on developing and implanted cartilage, especially over the long term. This article will review in brief what is now known about the mechanical factors affecting cartilage regeneration in vitro and what still remains to be determined for optimum tissue engineering of cartilage constructs. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 443-451 
    ISSN: 0006-3592
    Keywords: osteoblast ; migration ; poly(αhydroxy esters) ; poly(DL-lactic-co-glycolic acid) ; PLGA ; biodegradable polymers ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We investigated the migration of rat calvaria osteoblast populations on poly(α-hydroxy ester) films for up to 14 days to determine effects of substrate composition and culture conditions on the migratory characteristics of osteoblasts. Initial osteoblast culture conditions included cell colonies formed by seeding a high (84,000 cells/cm2) or low (42,000 cells/cm2) density of isolated osteoblasts on the polymer films, and bone tissue cultures formed by plating bone chips directly on the substrates. High density osteoblast colonies cultured and allowed to migrate and proliferate radially on 85:15 poly(DL-lactic-co-glycolic acid) (PLGA) films, 75:25 PLGA films, and tissue culture polystyrene controls demonstrated that the copolymer ratio in the polymer films did not affect the rate of increase in substrate surface area (or culture area) covered by the growing cell colony. However, the rate of increase in culture area was dependent on the initial osteoblast seeding density. Initial cell colonies formed with a lower osteoblast seeding density on 75:25 PLGA resulted in a lower rate of increase in culture area, specifically 4.9 ± 0.3 mm2/day, versus 14.1 ± 0.7 mm2/day for colonies seeded with a higher density of cells on the same polymer films. The proliferation rate for osteoblasts in the high and low density seeded osteoblast colonies did not differ, whereas the proliferation rate for the osteoblasts arising from the bone chips was lower than either of these isolated cell colonies. Confocal and light microscopy revealed that the osteoblast migration occurred as a monolayer of individual osteoblasts and not a calcified tissue front. These results demonstrated that cell seeding conditions strongly affect the rates of osteoblast migration and proliferation on biodegradable poly(α-hydroxy esters). © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 0006-3592
    Keywords: bone marrow ; hematopoiesis ; perfusion ; culture optimization ; stroma ; stem cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Hematopoiesis, the formation of mature blood cells from stem (LTC-IC) and progenitor (CFU-GM) cells in the bone marrow, is a complex tissue-forming process that leads to many important physiological functionalities. Consequently, a functioning ex vivo hematopoietic system has a variety of basic scientific and clinical uses. The design and operation of such a system presents the tissue engineer with challenges and choices. In this study, three culture variables were used to control ex vivo human hematopoiesis. Systematic variation of inoculum density (ID), medium exchange interval (MEI), and the use of preformed stroma (PFS) showed that (1) all three variables significantly influenced culture performance, (2) the three variables interacted strongly, and (3) the variables could be manipulated to achieve the optimization of different performance criteria. Donor-to-donor variability in culture performance was great at low ID but was minimized at higher ID. PFS had a large positive effect on cell and CFU-GM output at low ID, but had minimal effect at higher ID. In fact, PFS caused a decrease in LTC-IC output at high ID. The effects of PFS indicated that stromal cell elements became more limiting than proliferative cell elements as ID was reduced.In cultures without PFS, maximum cell output was obtained with high ID using a short MEI, whereas the greatest cell expansion ratio was obtained at low ID with an intermediate MEI. Maximum CFU-GM output was obtained from cultures with high ID using a short to intermediate MEI, whereas the greatest CFU-GM expansion ratio was obtained at intermediate ID with an intermediate MEI. The addition of PFS altered the locations of these maxima. In general, PFS moved the maxima to lower ID, and culture output became more sensitive to MEI. Therefore, the optimization of one performance criterion always resulted in a decline of the others. This study demonstrates that ex vivo tissue function is sensitive to many culture variables in an interactive fashion and that systematic multivariable studies are required to characterize tissue function. Once the effects of individual variables and their interactions are known, this knowledge can be used to optimize tissue performance with respect to desired criteria. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 518-528 
    ISSN: 0006-3592
    Keywords: ammonium ; UDP-GlcNAc ; N -glycosylation ; BHK-21 cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of different ammonium concentrations and glucosamine on baby hamster kidney (BHK)-21 cell cultures grown in continuously perfused double membrane bioreactors was investigated with respect to the final carbohydrate structures of a secretory recombinant glycoprotein. The human interleukin-2 (IL-2) mutant glycoprotein variant IL-Mu6, which bears a novel N-glycosylation site (created by a single amino acid exchange of Gln100 to Asn), was produced under different defined protein-free culture conditions in the presence or absence of either glutamine, NH4Cl, or glucosamine. Recombinant glycoprotein products were purified and characterized by amino acid sequencing and carbohydrate structural analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry, high-pH anion-exchange chromatography with pulsed amperometric detection, and methylation analysis. In the absence of glutamine, cells secreted glycoprotein forms with preponderantly biantennary, proximal fucosylated carbohydrate chains (85%) with a higher NeuAc content (58%). Under standard conditions in the presence of 7.5 mM glutamine, complex-type N-glycans were found to be mainly biantennary (68%) and triantennary structures (33%) with about 50% containing proximal α1-6-linked fucose; 37% of the antenna were found to be substituted with terminal α2-3-linked N-acetylneuraminic acid. In the presence of 15 mM exogenously added NH4Cl, a significant and reproducible increase in tri- and tetraantennary oligosaccharides (45% of total) was detected in the secretion product. In glutamin-free cultures supplemented with glucosamine, an intermediate amount of high antennary glycans was detected. The increase in complexity of N-linked oligosaccharides is considered to be brought about by the increased levels of intracellular uridine diphosphate-GlcNAc/GalNAc. These nucleotide sugar pools were found to be significantly elevated in the presence of high NH3/NH4+ and glucosamine concentrations. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 518-528, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 557-570 
    ISSN: 0006-3592
    Keywords: Alcaligenes eutrophus ; polyhydroxyalkanoates ; metabolic engineering ; mathematical modeling ; enzyme kinetics ; regulation of metabolism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model describing intracellular polyhydroxybutyrate (PHB) synthesis in Alcaligenes eutrophus has been constructed. The model allows investigation of issues such as the existence of rate-limiting enzymatic steps, possible regulatory mechanisms in PHB synthesis, and the effects different types of rate expressions have on model behavior. Simulations with the model indicate that activities of all PHB pathway enzymes influence overall PHB flux and that no single enzymatic step can easily be identified as rate limiting. Simulations also support regulatory roles for both thiolase and reductase, mediated through AcCoA/CoASH and NADPH/NADP+ ratios, respectively. To make the model more realistic, complex rate expressions for enzyme-catalyzed reactions were used which reflect both the reversibility of the reactions and the reaction mechanisms. Use of the complex kinetic expressions dramatically changed the behavior of the system compared to a simple model containing only Michaelis-Menten kinetic expressions; the more complicated model displayed different responses to changes in enzyme activities as well as inhibition of flux by the reaction products CoASH and NADP+. These effects can be attributed to reversible rate expressions, which allow prediction of reaction rates under conditions both near and far from equilibrium. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 557-570, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 0006-3592
    Keywords: rhG-CSF ; fusion protein ; secretion efficiency ; glycosylation ; multimer ; conformation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The synthesis and secretion of recombinant human granulocyte colony-stimulating factor (rhG-CSF) are investigated in fed-batch cultures at high cell concentration of recombinant Saccharomyces cerevisiae, and some important characteristics of the secreted rhG-CSF are demonstrated. Transcription of the recombinant gene is regulated by a GAL1-10 upstream activating sequence (UASG), and the rhG-CSF is expressed in a hybrid fusion protein consisting of signal sequence of Kluyveromyces lactis killer toxin and N-terminal 24 amino acids of human interleukin 1β. The intracellular KEX2 cleavage leads to excretion of mature rhG-CSF into extracellular culture broth, and the cleavage process seems to be highly efficient. In spite of relatively low copy number the plasmid propagation is stably maintained even at nonselective culture conditions. The rhG-CSF synthesis does not depend on galactose level, whereas the production of extracellular rhG-CSF was significantly enhanced by increasing the inducer concentration above a certain level and also by supplementing the nonionic surfactant to the culture medium, which is notably due to the enhanced secretion efficiency. Various immunoblotting analyses demonstrate that none of the rhG-CSF is accumulated in the cell wall fraction and that a significant amount of intracellular rhG-CSF antibody-specific immunoreactive proteins is located in the ER. A core N-glycosylation at fused IL-1β fragment is likely to play a critical role in directing the high-level secretion of rhG-CSF, and the O-glycosylation of secreted rhG-CSF seems nearly negligible. Also the extracellular rhG-CSF is observed to exist as various multimers, and the nature of molecular interaction is evidently not the covalent disulfide bridges. The CD spectra of purified rhG-CSF and Escherichia coli-derived standard show that the conformations of both are similar and are almost identical to that reported for natural hG-CSF. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 600-609, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 620-623 
    ISSN: 0006-3592
    Keywords: protein refolding ; reversed micelles ; solid-liquid extraction ; RNase A ; DNA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article reports that a reversed micellar solution is useful for refolding proteins directly from a solid source. The solubilization of denatured RNase A, which had been prepared by reprecipitation from the denaturant protein solution, into reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) has been investigated by a solid-liquid extraction system. This method is an alternative to the ordinary protein extraction in reversed micelles based on the liquid-liquid extraction. The solid-liquid extraction method was found to facilitate the solubilization of denatured proteins more efficiently in the reversed micellar media than the ordinary phase transfer method of liquid extraction. The refolding of denatured RNase A entrapped in reversed micelles was attained by adding a redox reagent (reduced and oxidized glutathion). Enzymatic activity of RNase A was gradually recovered with time in the reversed micelles. The denatured RNase A was completely refolded within 30 h. In addition, the efficiency of protein refolding was enhanced when reversed micelles were applied to denatured RNase A containing a higher protein concentration that, in the case of aqueous media, would lead to protein aggregation. The solid-liquid extraction technique using reversed micelles affords better scale-up advantages in the direct refolding process of insoluble protein aggregates. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 620-623, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 610-619 
    ISSN: 0006-3592
    Keywords: dynamic model ; Saccharomyces cerevisiae ; oxidative capacity ; feedback control ; calorimetry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of this study was to characterize the dynamic adaptation of the oxidative capacity of Saccharomyces cerevisiae to an increase in the glucose supply rate and its implications for the control of a continuous culture designed to produce biomass without allowing glucose to be diverted into the reductive metabolism. Continuous cultures subjected to a sudden shift-up in the dilution rate showed that the glucose uptake rate increased immediately to the new feeding rate but that the oxygen consumption could not follow fast enough to ensure a completely oxidative metabolism. Thus, part of the glucose assimilated was degraded by the reductive metabolism, resulting in a temporary decrease of biomass concentration, even if the final dilution rate was below Dcrit. The dynamic increase of the specific oxygen consumption rate, qO2, was characterized by an initial immediate jump followed by a first-order increase to the maximum value. It could be modeled using three parameters denoted qjumpO2, qmaxO2, and a time constant τ. The values for the first two of the parameters varied considerably from one shift to another, even when they were performed under identical conditions. On the basis of this model, a time-dependent feed flow rate function was derived that should permit an increase in the dilution rate from one value to another without provoking the appearance of reductive metabolism. The idea was to increase the glucose supply in parallel with the dynamic increase of the oxidative capacity of the culture, so that all of the assimilated glucose could always be oxidized. Nevertheless, corresponding feed-profile experiments showed that deviations in the reductive metabolism could not be completely suppressed due to variability in the model parameters. Therefore, a proportional feedback controller using heat evolution rate measurements was implemented. Calorimetry provides an excellent and rapid estimate of the metabolic activity. Satisfactory control was achieved and led to constant biomass yields. Ethanol accumulated only up to 0.49 g L-1 as compared to an accumulation of 1.82 g L-1 without on-line control in the shift-up experiment to the same final dilution rate. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 610-619, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 410-421 
    ISSN: 0006-3592
    Keywords: lysozyme ; thermal stability ; 1H NMR ; conformational flexibility ; melting temperature ; PEG ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The reversible folding destabilization of hen lysozyme has been confirmed by a melting temperature (Tm) decrease in aqueous poly(ethylene glycol) (PEG). The percent denatured, extracted from the histidine 15 C2H (H15 C2H) native and denatured peak areas from 500-MHz one-dimensional proton nuclear magnetic resonance (1D 1H NMR) spectra in D2O, was analyzed through denaturation temperatures at 0% and 20% (w/w) PEG 1000. The lysozyme (3.5 mM) Tm decreased by 4.2°C and 7.1°C in 20% (w/w) PEG 1000 at pH 3.8 and 3.0, respectively. The Tm decreased with increasing lysozyme concentration. Additionally, the temperature-induced resonance migrations of 17 protons from 8 residues indicate that the native lysozyme structure undergoes temperature-induced conformational changes. The changes were essentially identical in both 0% and 20% (w/w) PEG 1000 at both pH 3.0 and 3.8. This small, local restructuring of the hydrophobic box region may be a manifestation of temperature-dependent solution hydrophobicity, whereas active-site cleft fluctuations may be due to the inherent active-site flexibility. The lysozyme structure in PEG at 35°C was determined to be essentially native from the 1H nuclear Overhauser effect spectroscopy (NOESY) fingerprint regions. Additionally, lysozyme chemical shifts, from 1D spectra, in PEG 200, 300, and 1000 at 35°C and various concentrations were essentially identical, further confirming that the conformation remains native in various PEG solutions. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 375-383 
    ISSN: 0006-3592
    Keywords: cellulase ; enzyme recycling ; enzyme adsorption ; lignocellulosic hydrolysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Past technoeconomic modeling work has identified the relatively large contribution that enzymatic hydrolysis adds to the total cost of producing ethanol from lignocellulosic substrates. This cost was primarily due to the high concentration of enzyme and long incubation time that was required to obtain complete hydrolysis. Although enzyme and substrate concentration and end-product inhibition influenced the rate of hydrolysis, the effect was less pronounced during the initial stages of hydrolysis. During this time most of the cellulases were adsorbed onto the unhydrolyzed residue. By recycling the cellulases adsorbed to the residual substrate remaining after an initial 24 h, a high rate of hydrolysis, with low overall residence time and minimal cellulase input, could be achieved for several rounds of enzyme recycle. A comparison of the front end (pretreatment, fractionation, and hydrolysis) of a softwood/hardwood to ethanol process indicated that the lignin associated with the softwood-derived cellulose stream limited the number of times the cellulose containing residue could be recycled. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 399-409 
    ISSN: 0006-3592
    Keywords: cell damage ; cell culture ; bubble aeration ; agitation ; bubble coalescence and breakup ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 434-438 
    ISSN: 0006-3592
    Keywords: polyphosphate ; Escherichia coli ; phosphate starvation ; gene expression ; heterologous ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of intracellular polyphosphate on the phosphate-starvation response in Escherichia coli was studied by genetically manipulating the intracellular polyphosphate levels and by performing phosphate shifts on the genetically engineered strains. Strains that produced large quantities of polyphosphate and were able to degrade it induced the phosphate-starvation response to a lesser extent than wild-type strains, whereas strains that were unable to degrade a large intracellular polyphosphate pool induced the phosphate-starvation response to a greater extent than wild-type strains. These results have important implications for expression of heterologous genes under control of the phoA promoter. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 458-465 
    ISSN: 0006-3592
    Keywords: concentric-cylinder shear device ; rotor/stator homogenization ; shear ; shear rate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Shear is present in almost all bioprocesses and high shear is associated with processes involving agitation and emulsification. The purpose of this study is to investigate the effect of high shear and high shear rate on proteins. Two concentric cylinder-based shear systems were used. One was a closed concentric-cylinder shear device (CCSD) and the other was a homogenizer with a rotor/stator assembly. Mathematical modeling of these systems allowed calculation of the shear rate and shear. The CCSD generated low shear rates (a few hundred s-1), whereas the homogenizer could generate very high shear rates (〉 105 s-1). High shear could be achieved in both systems by increasing the processing time. Recombinant human growth hormone (rhGH) and recombinant human deoxyribonuclease (rhDNase) were used as the model proteins in this study. It was found that neither high shear nor high shear rate had a significant effect on protein aggregation. However, a lower melting temperature and enthalpy were detected for highly sheared rhGH by using scanning microcalorimetry, presumably due to some changes in protein's conformation. Also, SDS-PAGE indicated the presence of low molecular-weight fragments, suggesting that peptide bond breakage occurred due to high shear. rhDNase was relatively more stable than rhGH under high shear. No conformational changes and protein fragments were observed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 494-499 
    ISSN: 0006-3592
    Keywords: cell metabolism ; baculovirus ; insect cells ; recombinant protein OSF-2 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The properties of Sf9 and Tn5 insect cells were analyzed comparatively under serum-free culture conditions. Sf9 cells in SF900II medium apparently utilized sucrose as a primary nutrient both before and after virus infection, yielding small amounts of lactate and ammonia. Tn5 cells in Excell 401 medium consumed all the nutrients examined, including sucrose. The productivity of a recombinant glycoprotein, OSF-2, by Tn5 cells, was moderate in both monolayer and spinner cultures, but the ability to secrete it was compromised in the former case. Relative to the Tn5 cultures, Sf9 produced 30-fold more OSF-2 in either culture mode. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 538-543 
    ISSN: 0006-3592
    Keywords: NMR imaging ; biosorption ; alginate ; shrinking core model ; Laminaria ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this contribution, an NMR imaging study of heavy metal absorption in alginate, immobilized-cell biosorbents, and kombu (Laminaria japonica) algal biomass is presented. This method provides the good possibility of directly monitoring the time evolution of the spatial distribution of the ions in the materials. From these results, we demonstrate that rare earth ions are absorbed with a steep reaction front that can be described very well with a modified shrinking core model, while copper ions are absorbed with a more diffuse front.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 0006-3592
    Keywords: oxidoreductase ; chiral alcohol ; racemic resolution ; membrane reactor ; continuous extraction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Oxidations of alcohols by alcohol dehydrogenases often suffer from low conversions and slow reaction rates due to severe product inhibition. This can be overcome by continuous product extraction, because only the concentrations, but not the kinetic parameters, can be changed. As a consequence, it is favorable to apply a differential circulation reactor with continuous product extraction, where only a small amount of product is formed per cycle. The product is then directly extracted using a microporous hydrophobic hollow fiber membrane. This results in an increase of the relative activity of the dehydrogenase at a given conversion. The reaction investigated is the kinetic resolution of racemic 1-phenyl-1,2-ethanediol by glycerol dehydrogenase (GDH). The resulting oxidation product, 2-hydroxyacetophenone, causes a strong product inhibition. Additionally, it reacts in a chemical reaction with the cofactor lowering its active concentration. Because the GDH needs β-nicotinamide adenine dinucleotide (NAD+) as a cofactor, lactate dehydrogenase is used to regenerate NAD+ from NADH by reducing pyruvate to (L)-lactate. A conversion of 50% with respect to the racemate and an enantiomeric excess 〉99% of the (S)-enantiomer was reached.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 581-590 
    ISSN: 0006-3592
    Keywords: microfiber ; graft polymerization ; DNA immobilization ; immunoadsorbent ; DNA ; anti-DNA antibody ; systemic lupus erythematosus ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Immobilization of DNA to the surface of poly(ethylene terephthalate) (PET) microfibers with a high specific surface area of 0.83 m2/g was carried out to give the fiber surface an affinity for anti-DNA antibody. Following ozone oxidation, the microfibers were subjected to graft polymerization of monomers including acrylic acid, methacryloyloxyethyl phosphate, N,N-dimethylaminoethyl methacrylate, N-vinylformamide, and glycidyl methacrylate. Calf thymus DNA was immobilized to the grafted fiber surface through either covalent binding or polyion complexation with the grafted polymer chains. The highest surface density of DNA immobilized (0.6 μg/cm2) was obtained when DNA was immobilized through formation of phosphodiester linkage between the hydroxyl group of DNA and the phosphate group in grafted poly(methacryloyloxyethyl phosphate) using 1,1-carbonyldiimidazole, or through polyion complexation between the anionic DNA and the cationic grafted poly(N,N-dimethylaminoethyl methacrylate) chains. Batch adsorption of anti-DNA antibody to the grafted PET fibers with and without DNA immobilized on their surface was conducted with serum obtained from systemic lupus erythematosus model mice. The DNA-immobilized PET fibers exhibited a higher adsorption capacity and specificity than the others. In addition, the DNA-immobilized fibers effectively adsorbed human anti-DNA antibody.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 0006-3592
    Keywords: c-jun ; cell cycle ; apoptosis ; antisense ; growth deprivation ; F-MEL ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: F-MEL cells were transfected with the c-jun antisense gene located downstream of a glucocorticoid-inducible MMTV promoter, and the obtained cells were named c-jun AS cells. When the c-jun AS cells were treated with dexamethasone (DEX) in DMEM supplemented with 10% serum, the growth of the cells was completely suppressed for a duration of 16 days with a high cell viability exceeding 86%. The c-jun expression in the c-jun AS cells was suppressed moderately in the absence of DEX and strongly in the presence of DEX. The c-jun AS cells grew well and reached a density of 106 cells/mL without supplementation of any serum components. Viability was greater than 80% after the cells had been cultured for 8 days in the absence of DEX. The c-jun AS cells stayed at a constant cell density and high viability above 80% for 8 days when they were cultured in the presence of DEX under serum deprivation. In contrast, the wild type F-MEL cells were unable to grow and died by apoptosis in 3 days under serum deprivation. Internucleosomal cleavage of DNA, a landmark of apoptosis, was clearly detectable. Thus the c-jun AS cell line that is resistant to apoptosis induced by serum deprivation and can reversibly and viably be growth-arrested was established. A dual-signal model was proposed to explain the experimental result, the interlinked regulation of apoptosis, and growth by c-jun.© 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:65-72, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 380-386 
    ISSN: 0006-3592
    Keywords: reverse micelles ; cutinase ; deactivation ; conformational changes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Deactivation data and fluorescence intensity changes were used to probe functional and structural stability of cutinase in reverse micelles. A fast deactivation of cutinase in anionic (AOT) reverse micelles occurs due to a reversible denaturation process. The deactivation and denaturation of cutinase is slower in small cationic (CTAB/1-hexanol) reverse micelles and does not occur when the size of the cationic reverse micellar water-pool is larger than cutinase. In both systems, activity loss and denaturation are coupled processes showing the same trend with time. Denaturation is probably caused by the interaction between the enzyme and the surfactant interface of the reversed micelle. When the size of the empty reversed micelle water-pool is smaller than cutinase (at W0 5, with W0 being the water:surfactant concentration ratio) a three-state model describes denaturation and deactivation with an intermediate conformational state existing on the path from native to denaturated cutinase. This intermediate was clearly detected by an increase in activity and shows only minor conformational changes relative to the native state. At W0 20, the size of the empty water-pool was larger than cutinase and the data was well described by a two-state model for both anionic and cationic reverse micelles. For AOT reverse micelles at W0 20, the intermediate state became a transient state and the deactivation and denaturation were described by a two-state model in which only native and denaturated cutinase were present. For CTAB/1-hexanol reverse micelles at W0 20, the native cutinase was in equilibrium with an intermediate state, which did not suffer denaturation. 1-Hexanol showed a stabilizing effect on cutinase in reverse micelles, contributing to the higher stabilities observed in the cationic CTAB/1-hexanol reverse micelles. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:380-386, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 87-94 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lysozyme has been immobilized on chitosan, a polyaminosaccharide, without using any intermediate reagent. The best pH conditions for operating the chitosan columns have been determined and the best eluting agent was found to be a 2% solution of propylamine. The lysozyme activity was determined after reacting lysozyme with the product of glycolchitin and Remazol Brilliant Blue R. The recovery of lysozyme from chicken egg white yields lysozyme with 55% activity.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 135-140 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 151-156 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 119-125 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 159-182 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A 1000 liter fermentor has been used to produce a continuous feed of Escherichia coli containing a high level of β-galactosidase. We have investigated the individual unit operations for the isolation of the enzyme: cell disruption, nucleic acid removal, protein precipitation, and solid-liquid separation after each stage. Using the information obtained we have been able to operate a semicontinuous process which when fully continuous would yield 100 g protein/hr, comprising 23% β-galactosidase.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 231-242 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Seven of 30 yeast stock cultures, covering nine genera, and 13 of 39 yeasts isolated from grapes gave positive reactions when screened for pectinolytic activity on pectin gel plates. The seven stock cultures covered six species and four genera. Only one of the yeasts, Saccharomyces fragilis Y49, excreted discernible pectinolytic activity into the fluid of shake flask cultures; the activity was partially constitutive and was repressed by high oxygen tensions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1-15 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: High activity alkaline protease was obtained when the enzyme was immobilized on Dowex MWA-1 (mesh 20-50) with 10% glutaraldehyde in chilled phosphate buffer (M/15, pH 6.5). Activity yields of the protease and rennet were 27 and 29, respectively. The highest activities appeared at 60°C, pH 10 for alkaline protease and 50°C, pH 4.0 for rennet. The properties of both proteases were not essentially changed by the immobilization except that the Km values of both enzymes were increased about tenfold as a result of immobilization. Both proteases in the immobilized state were more stable than those in the free state at 60°C. Other peptide hydrolases, β-galactosidase, invertase, and glucoamylase, were successfully immobilized with high activities, but lipase, hexokinase, glucose-6-phosphate dehydrogenase, and xanthine oxidase became inactive.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 73-85 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Various aspects of process water recycle in a continuous flow fermentation process are analyzed. Simple mass balance equations in terms of product and feed components for a single-stage reactor producing biomass are developed. Constraints on the recycle ratio, imposed by the efficiency of the dewatering stage, are examined. The recycle analysis is extended using a kinetic growth model incorporating water soluble product formation and growth inhibition. The potential effect of recycle on substrate conversion and product accumulation is also examined and the concept of a critical recycle ratio in fermentation processes is developed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 95-106 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Poly(methoxygalacturonide) lyase (PMGL) (E.C. 4.2.2.10) was purified from a commercial preparation and immobilized by the metal link method. The properties of DEAE-cellulose-Ti-PMGL and of porous glass-Ti-PMGL were compared with those of the native enzyme; despite the presence of the metal and the heterogeneity of the substrate, pectin, typical substrate-enzyme-support interactions were demonstrated by shifts in pH optima and KM values. The possible industrial application of DEAE-cellulose-Ti-PMGL is discussed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 127-134 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 141-144 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 301-303 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 455-459 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 487-501 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The degree of emulsification, measured as surface area of oil generated, was studied. The effect of interfacial tension, volume fraction of oil, and power per unit volume on the Sauter mean diameter of the oil drops was determined in an airlift system with motionless mixers. A mathematical expression to predict the Sauter mean diameter was developed using regression techniques. From this equation another equation, which will predict the surface area of oil in terms of the same variables, was derived. The effects of water air surface tension and power per unit volume on the gas hold-up were obtained using similar techniques. The results show that the interfacial tension and the surface tension are important variables when hydrocarbon fermentations are carried out in airlift systems.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 577-587 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The exocellular DD-carboxypeptidase-transpeptidase that Streptomyces R61 excretes during growth has been produced in large fermentation units of 15 m3 total capacity. The yield from 15,000 liter culture filtrate was 1.080 g purified enzyme (92% purity) with a total recovery of 29% and at least a 2000-fold increased specific activity.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 605-610 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 625-636 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This paper is concerned with optimization of the operating mode of a fermentor. Combining the various modes of operation - batch, semibatch, and continuous - the operating pattern which maximizes the desired metabolic product in a single fermentor is determined by using Kelley's transformation method with Pontryagin's maximum principle. Kelley's transformation method is a device which avoids the singular situation which occurs when the usual procedure of selecting the optimal control function by the maximum principle breaks down. This is the case in the problem considered in this paper. For lysine fermentation, the best operating mode depends on the fermentor capacity and operating time. The results of this study are summarized thus: (i) when the operating time is “long enough,” optimal conditions require that continuous operation follows either semibatch and/or batch operation, and (ii) when the fermentor capacity becomes “large enough,” semibatch operation becomes important.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 305-308 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 349-381 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This paper describes a mathematical model of the lag phases of Saccharomyces cerevisiae that incorporates the basic concepts previously presented in a two-stage deterministic model for the growth of this organism under conditions of oxygen excess with a sugar as the growth-limiting substrate. The model structure was suggested by an extensive investigation of the causes of the lag phases of S. cerevisiae which found that, in contrast to the traditionally accepted trends, the length of the lag phase was not inoculum-size dependent. This was consistent with other previously published work which suggested that a major factor in the length of the lag phases in S. cerevisiae was the need to synthesize adequate levels of glycolytic and respiratory enzymes. These suggestions were confirmed experimentally with lag-age data. Based on this conclusion a mathematical model was developed incorporating a description of the levels of glycolytic and respiratory enzymes and their effect on the growth rate and metabolism. This model was tested experimentally and the initial results indicate indicate that many aspects of the lag phase of this organism may be described mathematically. The experimental findings further support the concept of primary regulatory control proposed by Bijkerk and Hall.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 447-450 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 503-525 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In order to compare the process economics of making glucose from cellulose, a plant design is presented using acid hydrolysis which can be compared with a published design using enzyme hydrolysis. A common design basis is used; namely, an input capacity of 885 ton/day newsprint with a common technique of cost estimation. The cost of making glucose is in the range of 1.75 to 2.45 cents/lb, depending on the slurry concentration fed to the reactor for the acid hydrolysis. This cost range is less than the published estimate of 5.2 cents/lb for enzymatic hydrolysis.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 555-565 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Culture broths of cellulolytic fungi were used together with commercial amylases to enhance the saccharification of cassava starch slurry. It was found that the addition of appropriate concentration of the cellulases Trichoderma viride and a soil isolated Basidiomycete, increased both the rate of sugar formation and the degree of solubilization, and decreased the viscosity of the hydrolyzates. Owing to the improvement of the rheological properties of the must, and the additional sugar produced, an increased ethanol yield would be expected from the alcoholic fermentation of this hydrolyzate.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 567-575 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effects of two grinding methods, hammer milling and defibrizing by disk refining, on the fermentability of ryegrass straw were investigated. Disk refined or defibrized straw produced more sugar than hammer milled straw. Release of sugar was especially pronounced when H2SO4 was added to the straw during the defibrizing process. In vitro rumen digestibility was significantly higher (P 〈 0.1) for defibrized than for hammer milled straw. With semisolid culture the level of yeast growth was about three times as high on the defibrized as on hammer milled straw. A scanning electron micrograph revealed that defibrizing removed the waxy surface of the straw as well as separating fiber bundles, so that the surface area of the exposed fiber structure was increased.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The feed value of annual ryegrass straw was improved by treatment with various concentrations of NaOH or NH3 followed by fermentation of the treated straw with a mixed culture of Cellulomonas sp. and Alcaligenes faecalis. Laboratory feeding trials with voles showed that NaOH or NH3 treatment considerably increased the feed efficiency of straw, but apparently gave a poorly palatable product. Fermentation tended to decrease the in vitro rumen digestibility (IVRD) of alkali-treated straw. The fermentations were carried out aerobically on a semisolid straw matrix having 11-86% moisture. Treatment by both NaOH and NH3 increased the IVRD of straw. NH3 also increased the nitrogen content in straw. The optimum condition for alkaline treatment of the straw was 4-6% NaOH for 1 hr or with 3% NH3 for four weeks at room temperature. A minimum of 63% moisture was needed for significant fermentation of the straw. The combined effects of NaOH treatment and fermentation more than doubled crude protein, doubled crude fat, and increased IVRD by 75%. The NH3 plus fermentation treatment tripled crude protein, doubled crude fat, and increased IVRD by 60%. Acetic acid was the main volatile fatty acid in the fermented straw.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1097-1100 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1045-1061 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Trichoderma reesei QM 9123 has been grown in batch culture in a 10 liter stirred fermentor, at a temperature of 30°C and pH 4.0. The fermentor was operated at a single stirrer speed of 400 rpm and air rate of 1 v/v/m. The effect of four inoculum sizes (0.5, 1.0, 3.0 and 5.0%) on the growth pattern and the aeration profiles was examined. Logarithmic growth of the fungus was observed. The aeration profile changed with inoculum size and at 5.0%, it was found that the oxygen uptake rate was controlled by the oxygen supply rate, during which the oxygen tension was zero.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1101-1104 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1125-1128 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Studies to examine the microbial fermentation of coal gasification products (CO2, H2 and CO) to methane have been done with a mixed culture of anaerobic bacteria selected from an anaerobic sewage digestor. The specific rate of methane production at 37°C reached 25 mmol/g cell hr. The stoichiometry for methane production was 4 mmol H2/mol CO2. Cell recycle was used to increase the cell concentration from 2.5 to 8.3 g/liter; the volumetric rate of methane production ran from 1.3 to 4 liter/liter hr. The biogasification was also examined at elevated pressure (450 psi) and temperature to facilitate interfacing with a coal gasifier. At 60°C, the specific rate of methane production reached 50 mmol/g cell hr. Carbon monoxide utilization by the mixed culture of anaerobes and by a Rhodopseudomonas species was examined. Both cultures are able to carry out the shift conversion of CO and water to CO2 and hydrogen.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1235-1247 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: As shown in a previous paper, threshold concentrations of lower and intermediate fatty acids inhibit the uptake of inorganic phosphate, growth, and cell division in yeast cells, This paper demonstrates that, apart from these effects, the acids cause an increase in the respiration quotient (RQ), inhibition of CO2 fixation, production of ethanol at the expense of anabolic processes, and inhibition of active amino acid transport in the yeast Candida utilis. On the other hand, the threshold concentrations have no effect on intracellular pH. The inhibition of the inorganic phosphate uptake cannot be the sole primary mode of action of fatty acids since the omission of inorganic phosphate in the incubation medium brings about an inhibition of anabolic processes that is lower than that brought about by fatty acids at concentrations still permitting some phosphate uptake, Although 2,4-dinitrophenol and caproic acid at low concentrations cause an analogous decrease in biomass yield, their combination does not bring about any marked increase in the effect. Considering the physicochemical properties of fatty acids and their preferential action on energy-requiring processes, one of the key sitesof action can be assumed to be the mitochondrial membrane. Fatty acids might inhibit the transport of anions, especially phosphate, across the membrane, and disturb the membrane potential by affecting the transport protons. The physicochemical properties of fatty acids may also give rise to their binding to other intracellular membranes and to a subsequent interference with the function of the corresponding organelles.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1303-1307 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1377-1391 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Glucose isomerase (D-xylose ketol-isomerase EC 5.3.1.5) from Bacillus Coagulans was partially purified and immobilized by adsorption to anion exchangers. The highest activities were obtained when the enzyme was adsorbed to DEAE-cellulose. On immobilization to DEAE-cellulose the measured optimum pH value for enzyme activity shifted from 7.2 to 6.8. There was no appreciable difference between the heat stabilities of soluble and immobilized enzyme. The Km app values for the immobilized enzyme were found to be 0.25M in the presence of 0.01M Mg2+ and 0.19M with 0.005M Mg2+, while those enzyme were 0.11 and 0.17M, re spectively. Under conditions of contimuous of D-glucose, a decrease of activity with time was observed, but this decrease was less at a low Mg2+ concentration and was affected by column geometry. There were no appreciable diffusional limitation effects in packed-bed columns.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1117-1123 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1471-1477 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1501-1505 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1507-1522 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Milk xanthine oxidase was immobilized by covalent attachment to CNBr-activated Sepharose 4B and by adsorption to n-octylamine-substituted Sepharose 4B. The amounts of activity immobilized for the two preparations were 30 and 90%, respectively. The pH optima for free and adsorbed xanthine oxidase were at 8.6 and 8.2, respectively. Both free and immobilized xanthine oxidase show substrate inhibition. The apparent inhibition constant (Ki′) found for adsorbed xanthine oxidase with xanthine as substrate was higher than the Ki for the free enzyme, which was shown to be due to substrate diffusion limitation in the pores of the carrier beads (internal diffusion limitation). Higher substrate concentrations, as desirable for practical application in organic synthesis, can therefore be used with the immobilized enzyme without decreasing the rate. As a result of the internal diffusion limitation the apparent Michaelis constant (Km′) for adsorbed xanthine oxidase was also higher than the Km for the free enzyme. Immobilized xanthine oxidase was more stable than the free enzyme during storage at 4 and 30°C. Both forms rapidly lost activity during catalysis. The loss was proportional to the amount of substrate converted. Coimmobilization of xanthine oxidase with superoxide dismutase and catalase improved the operational stability, suggesting that O2- and H2O2 side-products of the enzymatic reaction were involved in the inactivation. Coimmobilization with albumin also had some stabilizing effect. Complete surrounding of xanthine oxidase by protein, however, by means of etrapment in a glutaraldehyde-crosslinked gelatin matrix, considerably enhanced the operational half-life. This system was less efficient than the Sepharose preparations either because much activity was lost during the immobilization procedure and/or because it had poor flow properties. Xanthine (15 mg)was converted by an adsorbed xanthine oxidase preparation and product (uric acid) was isolated in high yield (84%).
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1595-1621 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Material and energy balances for fermentation processes are developed based on the facts that the heat of reaction per electron transferred to oxygen for a wide variety of organic molecules, the number of available electrons per carbon atom in biomass, and the weight fraction carbon in biomass are relatively constant. Mass-energy balance equations are developed which relate the biomass energetic yield coefficient to sets of variables which may be determined experimentally. Organic substrate consumption, biomass production, oxygen consumption, carbon dioxide production, heat evolution, and nitrogen consumption are considered as measured variables. Application of the balances using direct and indirect methods of yield coefficient estimation is illustrated using experimental results from the literature. Product formation is included in the balance equations and the effect of product formation on biomass yield estimates is examined. Application of mass-energy balances in the optimal operation of continuous single-cell protein production facilities is examined, and the variation of optimal operating conditions with changes in yield are illustrated for methanol as organic substrate.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978) 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1345-1375 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The design, Construction, and operation of a 400 liter all-glass fermentor, made from industrial glass Components, is described in detail. Outline details are also given for 100 and liter vessels of similar construction. The performance of the 400 liter fermentor with a variety of organisms is discussed. Harvesting performance. Using a disk-stak centrifuge, is also described.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1407-1419 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: By enzymatically establishing a rapid (essentially equilibrium) coupling of a redox coenzyme such as NAD with the components of the ferrocyanide-ferricyanide half-cell (e.g., using excess diaphorase) the half-cell potential can be used to monitor another enzymatic reaction involving the same coenzyme. This approach provides a general, rapid potentiometric method of assaying coenzyme-dependent oxidoreductase enzymes. We show that these assay systems can be designed for multiple turnover of coenzyme (in our case NAD) during a single assay thereby amplifying the rate of electromotive force (emf) change with a concomitant increase in sensitivity of enzyme assay. This allows the use of small concentrations of coenzyme and extension of the range of enzyme concentrations that may be assayed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1459-1463 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Sorbitol dehydrogenase was bound to the surface of acyl-azide-activated collagen membranes and its kinetics was investigated as a model of two-substrate or cofactor-requiring enzyme reactions. The study was performed with the “rotating membrane reactor” especially designed to obtain a precise variation of the external mass-transfer coefficient, and thus the direct visualization of diffusional effects on the bound enzyme behavior. Diffusional limitations for NADH were found to decrease the apparent affinity for NADH, but to increase the apparent affinity for fructose. Such opposite effects of diffusional limitations on apparent affinities are generally applicable to reactions involving two substrates or a substrate and a cofactor of widely different affinities.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 20 (1978), S. 1849-1850 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...