ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Quorum sensing (QS) governs the production of virulence factors and the architecture and sodium dodecyl sulphate (SDS) resistance of biofilm-grown Pseudomonas aeruginosa. P. aeruginosa QS requires two transcriptional activator proteins known as LasR and RhlR and their cognate autoinducers PAI-1 (N-(3-oxododecanoyl)-l-homoserine lactone) and PAI-2 (N-butyryl-l-homoserine lactone) respectively. This study provides evidence of QS control of genes essential for relieving oxidative stress. Mutants devoid of one or both autoinducers were more sensitive to hydrogen peroxide and phenazine methosulphate, and some PAI mutant strains also demonstrated decreased expression of two superoxide dismutases (SODs), Mn-SOD and Fe-SOD, and the major catalase, KatA. The expression of sodA (encoding Mn-SOD) was particularly dependent on PAI-1, whereas the influence of autoinducers on Fe-SOD and KatA levels was also apparent but not to the degree observed with Mn-SOD. β-Galactosidase reporter fusion results were in agreement with these findings. Also, the addition of both PAIs to suspensions of the PAI-1/2-deficient double mutant partially restored KatA activity, while the addition of PAI-1 only was sufficient for full restoration of Mn-SOD activity. In biofilm studies, catalase activity in wild-type bacteria was significantly reduced relative to planktonic bacteria; catalase activity in the PAI mutants was reduced even further and consistent with relative differences observed between each strain grown planktonically. While wild-type and mutant biofilms contained less catalase activity, they were more resistant to hydrogen peroxide treatment than their respective planktonic counterparts. Also, while catalase was implicated as an important factor in biofilm resistance to hydrogen peroxide insult, other unknown factors seemed potentially important, as PAI mutant biofilm sensitivity appeared not to be incrementally correlated to catalase levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Bacteria growing in biofilms experience gradients of environmental conditions, including varying levels of nutrients and oxygen. Therefore, bacteria within biofilms may enter distinct physiological states, depending on the surrounding conditions. In this study, rpoS expression and RpoS levels were measured as indicators of stationary phase growth within thick continuously-fed Pseudomonas aeruginosa biofilms. The level of rpoS expression in a 3-day-old biofilm was found to be three-fold higher than the average expression in stationary phase planktonic culture. RpoS levels in biofilms, indicated by immunoblot analysis, were similar to levels in stationary phase planktonic cultures. In planktonic cultures, oxygen limitation did not lead to increased levels of RpoS, suggesting that oxygen limitation was not the environmental signal causing increased expression of rpoS. These results suggest that bacteria within P. aeruginosa biofilms may exhibit stationary phase characteristics even when cultured in flow conditions that continually replenish nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Biofilms are surface-attached microbial communities with characteristic architecture and phenotypic and biochemical properties distinct from their free-swimming, planktonic counterparts. One of the best-known of these biofilm-specific properties is the development of antibiotic resistance that ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature biotechnology 23 (2005), S. 1378-1379 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Excessive use of antibiotics has increased resistance of many microbes to these drugs. In a recent issue of Nature, Hoffman et al. show that too little antibiotic can also be detrimental. They demonstrate that subinhibitory levels of the aminoglycoside-class antibiotic tobramycin increase biofilm ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 30 (1989), S. 34-40 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Stresses exerted by a growing entrapped colony of Escherichia coli up to 3 atmospheres were measured by incorporating a pressure transducer into a specially designed immobilized cell reactor. This stress is comparable in magnitude to the turgor pressure generated by Gram negative bacteria. In complementary experiments, cell densities as high as 850 grams dry weight per liter were measured in aggregates of starved E. coli subjected to controlled applied stresses up to 9 atmospheres. Cell volume reduction was quantitatively described by a model which incorporated the fundamental osmotic properties of the cell. compression of entrapped cells was qualitatively corroborated by electron microscopic examination. These results suggest that entrapped growing bacteria can exert a substantial stress on their surroundings and that dewatering of the starved cell population in an entrapped system may occur. Both of these consequences of entrapped cell growth can be understood in terms of the osmotic behavior of the cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 93-100 
    ISSN: 0006-3592
    Keywords: disinfection ; chlorine ; transport ; gel bead ; biofilm ; reaction-diffusion ; Pseudomonas aeruginosa ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An artificial biofilm system consisting of Pseudomonas aeruginosa entrapped in alginate and agarose beads was used to demonstrate transport limitation of the rate of disinfection of entrapped bacteria by chlorine. Alginate gel beads with or without entrapped bacteria consumed chlorine. The specific rate of chlorine consumption increased with increasing cell loading in the gel beads and decreased with increasing bead radius. The value of an observable modulus comparing the rates of reaction and diffusion ranged from less than 0.1 to 8 depending on the bead radius and cell density. The observable modulus was largest for large (3-mm-diameter) beads with high cell loading (1.8 × 109 cfu/cm3) and smallest for small beads (0.5 mm diameter) with no cells added. A chlorine microelectrode was used to measure chlorine concentration profiles in agarose beads (3.0 mm diameter). Chlorine fully penetrated cell-free agarose beads rapidly; the concentration of chlorine at the bead center reached 50% of the bulk concentration within approximately 10 min after immersion in chlorine solution. When alginate and bacteria were incorporated into an agarose bead, pronounced chlorine concentration gradients persisted within the gel bead. Chlorine did gradually penetrate the bead, but at a greatly retarded rate; the time to reach 50% of the bulk concentration at the bead center was approximately 46 h. The overall rate of disinfection of entrapped bacteria was strongly dependent on cell density and bead radius. Small beads with low initial cell loading (0.5 mm diameter, 1.1 × 107 cfu/cm3) experienced rapid killing; viable cells could not be detected (〈1.6 × 105 cfu/cm3) after 15 min of treatment in 2.5 mg/L chlorine. In contrast, the number of viable cells in larger beads with a higher initial cell density (3.0 mm diameter, 2.2 × 109 cfu/cm3) decreased only about 20% after 6 h of treatment in the same solution. Spatially nonuniform killing of bacteria within the beads was demonstrated by measuring the transient release of viable cells during dissolution of the beads. Bacteria were killed preferentially near the bead surface. Experimental results were consistent with transport limitation of the penetration of chlorine into the artificial biofilm arising from a reaction-diffusion interaction. The methods reported here provide tools for diagnosing the mechanism of biofilm resistance to reactive antimicrobial agents in such applications as the treatment of drinking and cooling waters. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 111-117 
    ISSN: 0006-3592
    Keywords: biofilm ; particle ; Pseudomonas aeruginosa ; transport ; roughness ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fluorescent latex microbeads added to a Pseudomonas aeruginosa biofilm as tracers of particle movement penetrated the biofilm and remained in it much longer than predicted by a model of advective displacement due to cell growth. Beads with a nominal diameter of 1 μm that were added in the bulk fluid became distributed throughout the biofilm depth. Some microbeads penetrated to the substratum within the 24-h bead addition period. The biofilms had a mean thickness of approximately 34 μm but have been previously shown to be quite rough. Measured rates of bead release from the biofilm corresponded to first order time coefficients of 0.01-0.03 h-1. These bead release rates were approximately an order of magnitude less than the predicted time scale of advective transport, which is just the experimentally measured specific cellular growth rate of 0.15 h-1. Computer simulations of bead transport using the biofilm model BIOSIM were compared with bead release rate data and with bead position distributions within the biofilm as determined by microscopic examination of thin cross sections of embedded biofilm. The model predicted much faster release of beads from the biofilm than actually occurred. It is hypothesized that both the ability of beads to penetrate the biofilm and the unexpectedly low advective displacement velocity of particles in the biofilm were due to the rough nature of the biofilm. © 1993 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 445-455 
    ISSN: 0006-3592
    Keywords: biofilm ; biocide ; disinfection ; reaction-diffusion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A phenomenological model of biocide action against microbial biofilms was derived. Processes incorporated in the model include bulk flow in and out of a well-mixed reactor, transport of dissolved species into the biofilm, substrate consumption by bacterial metabolism, bacterial growth, advection of cell mass within the biofilm, cell detachment from the biofilm, cell death, and biocide concentration-dependent disinfection. Simulations were performed to analyze the general behavior of the model and to perform preliminary sensitivity analysis to identify key input parameters. The model captured several general features of antimicrobial agent action against biofilms that have been observed widely by experimenters and practitioners. These included (1) rapid disinfection followed by biofilm regrowth, (2) slower detachment than disinfection, and (3) reduced susceptibility of microorganisms in biofilms. The results support the plausibility of a mechanism of biofilm resistance in which the biocide is neutralized by reaction with biofilm constituents, leading to a reduction in the bulk biocide concentration and, more significantly, biocide concentration gradients within the biofilm. Sensitivity experiments and analyses identified which input parameters influence key response variables. Each of three response variables was sensitive to each of the five input parameters, but they were most sensitive to the initial biofilm thickness and next most sensitive to the biocide disinfection rate coefficient. Statistical regression modeling produced simple equations for approximating the response variables for situations within the range of conditions covered by the sensitivity experiment. The model should be useful as a tool for studying alternative biocide control strategies. For example, the simulations suggested that a good interval between pulses of biocide is the time to minimum thickness. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 201-209 
    ISSN: 0006-3592
    Keywords: adaptation ; biofilm ; biocide ; disinfection ; model ; monochloramine ; Pseudomonas ; stress response ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model of biocide action against microbial biofilm was tested experimentally by measuring the response of Pseudomonas aeruginosa biofilm to various doses of monochloramine. Pure culture biofilm was developed in continuous flow annular reactors for 7 days, then treated with a 2-, 4-, or 8-h dose of 2 or 4 mg L-1 monochloramine. Some experiments investigated repeated treatment. Disinfection and regrowth of the biofilm were observed by sampling the biofilm for viable and total cell areal densities for up to 100 h following the biocide treatment. A phenomenological mathematical model was fitted to experimental data sets and captured overall trends, but it could not simulate certain experimentally observed features. The model did simulate rapid disinfection followed by steady regrowth. It correctly predicted a much greater decrease in viable than in total cell densities and also correctly captured the shapes of these trajectories. Discrepancies between the model and data included the following: the model predicted faster regrowth than was experimentally observed, the model predicted that a second dose would be more effective than the first dose but the opposite was observed in the experiments, and parameters estimated by fitting one dose concentration could not be used to predict the results of a different dose concentration or a second dose. Discrepancies between model and the experiment were hypothesized to be due to an adaptive stress response by the bacteria, a process not included in the model. A practical implication of this work is that it is more effective to deliver monochloramine in a short concentrated dose as opposed to a longer dose of lower concentration. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 201-209, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 111-117 
    ISSN: 0006-3592
    Keywords: biofilm ; detachment ; model ; physiology ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A general mathematical framework for modeling biofilm detachment is presented. The approach is founded on a material balance on biomass that equates the detachment rate to the product of a detachment frequency and a detaching particle mass. The model provides a theoretical basis for deriving many of the empirical detachment rate expressions in common use and can thus lend some insight into their physical and biological significance. By allowing for variation in the detachment frequency with depth in the biofilm, the model permits derivation of detachment expressions that reflect a dependence on chemical or physiological gradients in the biofilm. Analysis of literature data sets from two different biofilm systems suggests, in both cases, that detachment is a growth-associated phenomenon. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...