ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (302)
  • Wiley  (254)
  • Public Library of Science  (27)
  • American Chemical Society
  • Cell Press
  • Institute of Physics
  • Wiley-Blackwell
  • 2015-2019  (302)
  • 1970-1974
  • 1945-1949
  • 1930-1934
  • 2017  (139)
  • 2016  (163)
  • 1972
  • 1952
Collection
Years
  • 2015-2019  (302)
  • 1970-1974
  • 1945-1949
  • 1930-1934
Year
  • 1
    Publication Date: 2019-09-23
    Description: The Denmark Strait Overflow (DSO) contributes roughly half to the total volume transport of the Nordic overflows. The overflow increases its volume by entraining ambient water as it descends into the subpolar North Atlantic, feeding into the deep branch of the Atlantic Meridional Overturning Circulation. In June 2012, a multiplatform experiment was carried out in the DSO plume on the continental slope off Greenland (180 km downstream of the sill in Denmark Strait), to observe the variability associated with the entrainment of ambient waters into the DSO plume. In this study, we report on two high-dissipation events captured by an autonomous underwater vehicle (AUV) by horizontal profiling in the interfacial layer between the DSO plume and the ambient water. Strong dissipation of turbulent kinetic energy of O( math formula) W kg−1 was associated with enhanced small-scale temperature variance at wavelengths between 0.05 and 500 m as deduced from a fast-response thermistor. Isotherm displacement slope spectra reveal a wave number-dependence characteristic of turbulence in the inertial-convective subrange ( math formula) at wavelengths between 0.14 and 100 m. The first event captured by the AUV was transient, and occurred near the edge of a bottom-intensified energetic eddy. Our observations imply that both horizontal advection of warm water and vertical mixing of it into the plume are eddy-driven and go hand in hand in entraining ambient water into the DSO plume. The second event was found to be a stationary feature on the upstream side of a topographic elevation located in the plume pathway. Flow-topography interaction is suggested to drive the intense mixing at this site.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-26
    Description: Male secondary sexual traits are targets of inter- and/or intrasexual selection, but can vary due to a correlation with life-history traits or as by-product of adaptation to distinct environments. Trade-offs contributing to this variation may comprise conspicuousness towards conspecifics versus inconspicuousness towards predators, or between allocating resources into coloration versus the immune system. Here, we examine variation in expression of a carotenoid-based visual signal, anal-fin egg-spots, along a replicate environmental gradient in the haplochromine cichlid fish Astatotilapia burtoni. We quantified egg-spot number, area, and coloration; applied visual models to estimate the trait's conspicuousness when perceived against the surrounding tissue under natural conditions; and used the lymphocyte ratio as a measure for immune activity. We find that (i) males possess larger and more conspicuous egg-spots than females, which is likely explained by their function in sexual selection; (ii) riverine fish generally feature fewer but larger and/or more intensively colored egg-spots, which is probably to maintain signal efficiency in intraspecific interactions in long-wavelength shifted riverine light conditions; and (iii) egg-spot number and relative area correlate with immune defense, suggesting a trade-off in the allocation of carotenoids. Taken together, haplochromine egg-spots feature the potential to adapt to the respective underwater light environment, and are traded-off with investment into the immune system
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The ocean's potential to export carbon to depth partly depends on the fraction of primary production (PP) sinking out of the euphotic zone (i.e., the e-ratio). Measurements of PP and export flux are often performed simultaneously in the field, although there is a temporal delay between those parameters. Thus, resulting e-ratio estimates often incorrectly assume an instantaneous downward export of PP to export flux. Evaluating results from four mesocosm studies, we find that peaks in organic matter sedimentation lag chlorophyll a peaks by 2 to 15 days. We discuss the implications of these time lags (TLs) for current e-ratio estimates and evaluate potential controls of TL. Our analysis reveals a strong correlation between TL and the duration of chlorophyll a buildup, indicating a dependency of TL on plankton food web dynamics. This study is one step further toward time-corrected e-ratio estimates
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes–summarized by the term ocean acidification (OA)–can significantly affect the physiology of planktonic organisms. However, studies on the response of entire plankton communities to OA, which also include indirect effects via food-web interactions, are still relatively rare. Thus, it is presently unclear how OA could affect the functioning of entire ecosystems and biogeochemical element cycles. In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 μatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. The observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30–40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this CO2 effect to propagate up the food web. Such OA-induced shifts in plankton community structure could have far-reaching consequences for food-web interactions, biomass transfer to higher trophic levels and biogeochemical cycling of marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-23
    Description: Stable isotope compositions can potentially be used to trace atmospheric Cd inputs to the surface ocean and anthropogenic Cd emissions to the atmosphere. Both of these applications may provide valuable insights into the effects of anthropogenic activities on the cycling of Cd in the environment. However, a lack of constraints for the Cd isotope compositions of atmospheric aerosols is currently hindering such studies. Here, we present stable Cd isotope data for aerosols collected over the Tropical Atlantic Ocean. The samples feature variable proportions of mineral dust-derived and anthropogenic Cd, yet exhibit similar isotope compositions, thus negating the distinction of these Cd sources using isotopic signatures in this region. Isotopic variability between these two atmospheric Cd sources may be identified in other areas, and thus warrants further investigation. Regardless, these data provide important initial constraints on the isotope composition of atmospheric Cd inputs to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Aim: The lives of juvenile leatherback turtles are amongst the most enigmatic of all marine mega-vertebrates. For these cryptic organisms, ocean models provide important insights into their dispersion from natal sites. Here, corroborated by fisheries bycatch data, we simulate spatio-temporal variation in hatchling dispersion patterns over five decades from the World's largest leatherback turtle nesting region. Location: Equatorial Central West Africa (3.5°N to −6°S) spanning the Gulf of Guinea in the North, Gabon and the Republic/Democratic Republic of the Congo in the South. Results: Due to dynamic oceanic conditions at these equatorial latitudes, dispersion scenarios differed significantly: (1) along the north to south gradient of the study region, (2) seasonally and (3) between years. From rookeries to the north of the equator, simulated hatchling retention rates within the Gulf of Guinea were very high (〉99%) after 6 months of drift, whilst south of the equator, retention rates were as low as c. 6% with the majority of simulated hatchlings dispersing west into the South Atlantic Ocean with the South Equatorial Current. Seasonal dispersion variability was driven by wind changes arising from the yearly north/southward migration of the intertropical convergence zone resulting in the increasing westerly dispersion of hatchlings throughout the hatching season. Annual variability in wind stress drove a long-term trend for decreased retention within the Gulf of Guinea and increased westerly dispersion into habitats in the South Atlantic Ocean. Main conclusions: Shifts in dispersion habitats arising from spatio-temporal oceanic variability expose hatchlings to different environments and threats that will influence important life history attributes such as juvenile growth/survival rates; anticipated to impact the population dynamics and size/age structure of populations into adulthood. The impacts of local and dynamic oceanic conditions thus require careful considerations, such as subregional management, when managing marine populations of conservation concern.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: The waning stage(s) of the Tethyan ocean(s) in the Balkans are not well understood. Controversy centres on the origin and life-span of the Cretaceous Sava Zone, which is allegedly a remnant of the last oceanic domain in the Balkan Peninsula, defining the youngest suture between Eurasia- and Adria-derived plates. In order to investigate to what extent late-Cretaceous volcanism within the Sava zone is consistent with this model, we present new age data together with trace-element and Sr–Nd–Pb isotope data for the Klepa basaltic lavas from the central Balkan Peninsula. Our new geochemical data show marked differences between the Cretaceous Klepa basalts (Sava Zone) and the rocks of other volcanic sequences from the Jurassic ophiolites of the Balkans. The Klepa basalts mostly have Sr–Nd–Pb isotopic and trace-element signatures that resemble enriched within-plate basalts, substantially different from Jurassic ophiolite basalts with MORB, BAB and IAV affinities. Trace-element modelling of the Klepa rocks indicates 2–20% polybaric melting of a relatively homogeneously metasomatised mantle source that ranges in composition from garnet lherzolite to ilmenite+apatite bearing spinel–amphibole lherzolite. Thus, the residual mineralogy is characteristic of a continental rather than oceanic lithospheric mantle source, suggesting an intracontinental within-plate origin for the Klepa basalts. Two alternative geodynamic models are internally consistent with our new findings: i) if the Sava Zone represents remnants of the youngest Neotethyan Ocean, magmatism along this zone would be situated within the forearc region and triggered by ridge subduction; ii) if the Sava Zone delimits a diffuse tectonic boundary between Adria and Europe, which had already collided in the Late Jurassic, the Klepa basalts together with a number of other magmatic centres represent volcanism related to transtensional tectonics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). 2830-2846 .
    Publication Date: 2020-02-06
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: The North Atlantic Current (NAC) is subject to variability on multiannual to decadal time scales, influencing the transport of volume, heat, and freshwater from the subtropical to the eastern subpolar North Atlantic (NA). Current observational time series are either too short or too episodic to study the processes involved. Here we compare the observed continuous NAC transport time series at the western flank of the Mid-Atlantic Ridge (MAR) and repeat hydrographic measurements at the OVIDE line in the eastern Atlantic with the NAC transport and circulation in the high-resolution (1/20°) ocean model configuration VIKING20 (1960–2008). The modeled baroclinic NAC transport relative to 3400 m (24.5 ± 7.1 Sv) at the MAR is only slightly lower than the observed baroclinic mean of 27.4 ± 4.7 Sv from 1993 to 2008, and extends further north by about 0.5°. In the eastern Atlantic, the western NAC (WNAC) carries the bulk of the transport in the model, while transport estimates based on hydrographic measurements from five repeated sections point to a preference for the eastern NAC (ENAC). The model is able to simulate the main features of the subpolar NA, providing confidence to use the model output to analyze the influence of the North Atlantic Oscillation (NAO). Model based velocity composites reveal an enhanced NAC transport across the MAR of up to 6.7 Sv during positive NAO phases. Most of that signal (5.4 Sv) is added to the ENAC transport, while the transport of the WNAC was independent of the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (9). pp. 4246-4255.
    Publication Date: 2020-02-06
    Description: While the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds, the surface component of the Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally beyond the range of decadal trends simulated by climate models when forced by historical radiative forcing. There is still a debate on the origin of and the potential role that internal variability may have played in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global climate models and several observational data sets, we address the question as to whether the recent decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the long-term internal variability spanned by the models but represent an extreme realization of this variability. Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural origin. We note that the long-term trends in the selected PWC indices exhibit a large observational uncertainty, even hindering definitive statements about the sign of the trends.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). pp. 3481-3499.
    Publication Date: 2020-02-06
    Description: We examine the mean pathways, transit timescales, and transformation of waters flowing from the Pacific and the marginal seas through the Indian Ocean (IO) on their way toward the South Atlantic within a high-resolution ocean/sea-ice model. The model fields are analyzed from a Lagrangian perspective where water volumes are tracked as they enter the IO. The IO contributes 12.6 Sv to Agulhas leakage, which within the model is 14.1 ± 2.2 Sv, the rest originates from the South Atlantic. The Indonesian Through-flow constitutes about half of the IO contribution, is surface bound, cools and salinificates as it leaves the basin within 10–30 years. Waters entering the IO south of Australia are at intermediate depths and maintain their temperature-salinity properties as they exit the basin within 15–35 years. Of these waters, the contribution from Tasman leakage is 1.4 Sv. The rest stem from recirculation from the frontal regions of the Southern Ocean. The marginal seas export 1.0 Sv into the Atlantic within 15–40 years, and the waters cool and freshen on-route. However, the model's simulation of waters from the Gulfs of Aden and Oman are too light and hence overly influenced by upper ocean circulations. In the Cape Basin, Agulhas leakage is well mixed. On-route, temperature-salinity transformations occur predominantly in the Arabian Sea and within the greater Agulhas Current region. Overall, the IO exports at least 7.9 Sv from the Pacific to the Atlantic, thereby quantifying the strength of the upper cell of the global conveyor belt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-06
    Description: The potential of mining seafloor massive sulfide deposits for metals such as Cu, Zn, and Au is currently debated. One key challenge is to predict where the largest deposits worth mining might form, which in turn requires understanding the pattern of subseafloor hydrothermal mass and energy transport. Numerical models of heat and fluid flow are applied to illustrate the important role of fault zone properties (permeability and width) in controlling mass accumulation at hydrothermal vents at slow spreading ridges. We combine modeled mass-flow rates, vent temperatures, and vent field dimensions with the known fluid chemistry at the fault-controlled Logatchev 1 hydrothermal field of the Mid-Atlantic Ridge. We predict that the 135 kilotons of SMS at this site (estimated by other studies) can have accumulated with a minimum depositional efficiency of 5% in the known duration of hydrothermal venting (58,200 year age of the deposit). In general, the most productive faults must provide an efficient fluid pathway while at the same time limit cooling due to mixing with entrained cold seawater. This balance is best met by faults that are just wide and permeable enough to control a hydrothermal plume rising through the oceanic crust. Model runs with increased basal heat input, mimicking a heat flow contribution from along-axis, lead to higher mass fluxes and vent temperatures, capable of significantly higher SMS accumulation rates. Nonsteady state conditions, such as the influence of a cooling magmatic intrusion beneath the fault zone, also can temporarily increase the mass flux while sustaining high vent temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-06
    Description: Diazotrophic dinitrogen (N2) fixation contributes ~76% to "new" nitrogen inputs to the sunlit open ocean, but environmental factors determining N2 fixation rates are not well constrained. Excess phosphate (phosphate-nitrate/16 〉 0) and iron availability control N2 fixation rates in the eastern tropical North Atlantic (ETNA), but it remains an open question how excess phosphate is generated within or supplied to the phosphate-depleted sunlit layer. Our observations in the ETNA region (8°N-15°N, 19°W-23°W) suggest that Prochlorococcus and Synechococcus, the two ubiquitous non-diazotrophic cyanobacteria with cellular N:P ratios higher than the Redfield ratio, create an environment of excess phosphate, which cannot be explained by diapycnal mixing, atmospheric, and riverine inputs. Thus, our results unveil a new biogeochemical niche construction mechanism by non-diazotrophic cyanobacteria for their diazotrophic phylum group members (N2 fixers). Our observations may help to understand the prevalence of diazotrophy in low-phosphate, oligotrophic regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-06
    Description: Oceanographic observations from the Eurasian Basin north of Svalbard collected between January and June 2015 from the N-ICE2015 drifting expedition are presented. The unique winter observations are a key contribution to existing climatologies of the Arctic Ocean, and show a ∼100 m deep winter mixed layer likely due to high sea ice growth rates in local leads. Current observations for the upper ∼200 m show mostly a barotropic flow, enhanced over the shallow Yermak Plateau. The two branches of inflowing Atlantic Water are partly captured, confirming that the outer Yermak Branch follows the perimeter of the plateau, and the inner Svalbard Branch the coast. Atlantic Water observed to be warmer and shallower than in the climatology, is found directly below the mixed layer down to 800 m depth, and is warmest along the slope, while its properties inside the basin are quite homogeneous. From late May onwards, the drift was continually close to the ice edge and a thinner surface mixed layer and shallower Atlantic Water coincided with significant sea ice melt being observed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-04-23
    Description: Our study followed the seasonal cycling of soluble (SFe), colloidal (CFe), dissolved (DFe), total dissolvable (TDFe), labile particulate (LPFe) and total particulate (TPFe) iron in the Celtic Sea (NE Atlantic Ocean). Preferential uptake of SFe occurred during the spring bloom, preceding the removal of CFe. Uptake and export of Fe during the spring bloom, coupled with a reduction in vertical exchange, led to Fe deplete surface waters (〈0.2 nM DFe; 0.11 nM LPFe, 0.45 nM TDFe, 1.84 nM TPFe) during summer stratification. Below the seasonal thermocline, DFe concentrations increased from spring to autumn, mirroring NO3- and consistent with supply from remineralised sinking organic material, and cycled independently of particulate Fe over seasonal timescales. These results demonstrate that summer Fe availability is comparable to the seasonally Fe limited Ross Sea shelf, and therefore is likely low enough to affect phytoplankton growth and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-12-17
    Description: Current climate models disagree on how much carbon dioxide land ecosystems take up for photosynthesis. Tracking the stronger carbonyl sulfide signal could help.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-06
    Description: Oceanic dimethyl sulfide (DMS) is of interest due to its critical influence on atmospheric sulfur compounds in the marine atmosphere and its hypothesized significant role in global climate. High-resolution shipboard underway measurements of surface seawater DMS and the partial pressure of carbon dioxide (pCO2) were conducted in the Atlantic Ocean and Indian Ocean sectors of the Southern Ocean (SO), the southeast Indian Ocean, and the northwest Pacific Ocean from February to April 2014 during the 30th Chinese Antarctic Research Expedition. The SO, particularly in the region south of 58°S, had the highest mean surface seawater DMS concentration of 4.1 ± 8.3 nM (ranged from 0.1 to 73.2 nM) and lowest mean seawater pCO2 level of 337 ± 50 μatm (ranged from 221 to 411 μatm) over the entire cruise. Significant variations of surface seawater DMS and pCO2 in the seasonal ice zone (SIZ) of SO were observed, which are mainly controlled by biological process and sea ice activity. We found a significant negative relationship between DMS and pCO2 in the SO SIZ using 0.1° resolution, [DMS] seawater = -0.160 [pCO2] seawater + 61.3 (r2 = 0.594, n = 924, p 〈 0.001). We anticipate that the relationship may possibly be utilized to reconstruct the surface seawater DMS climatology in the SO SIZ. Further studies are necessary to improve the universality of this approach. Key Points: • The characteristics of surface water DMS and pCO2 distributions from the Southern Ocean to northwest Pacific Ocean are investigated • The correlations between DMS, pCO2, and environmental parameters are analyzed • Anticorrelation between DMS and pCO2 is found in the seasonal ice zone of the Southern Ocean
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-06
    Description: Natural gas hydrates are considered a potential resource for gas production on industrial scales. Gas hydrates contribute to the strength and stiffness of the hydrate-bearing sediments. During gas production, the geomechanical stability of the sediment is compromised. Due to the potential geotechnical risks and process management issues, the mechanical behavior of the gas hydrate-bearing sediments needs to be carefully considered. In this study, we describe a coupling concept that simplifies the mathematical description of the complex interactions occurring during gas production by isolating the effects of sediment deformation and hydrate phase changes. Central to this coupling concept is the assumption that the soil grains form the load-bearing solid skeleton, while the gas hydrate enhances the mechanical properties of this skeleton. We focus on testing this coupling concept in capturing the overall impact of geomechanics on gas production behavior though numerical simulation of a high-pressure isotropic compression experiment combined with methane hydrate formation and dissociation. We consider a linear-elastic stress-strain relationship because it is uniquely defined and easy to calibrate. Since, in reality, the geomechanical response of the hydrate-bearing sediment is typically inelastic and is characterized by a significant shear-volumetric coupling, we control the experiment very carefully in order to keep the sample deformations small and well within the assumptions of poroelasticity. The closely coordinated experimental and numerical procedures enable us to validate the proposed simplified geomechanics-to-flow coupling, and set an important precursor toward enhancing our coupled hydro-geomechanical hydrate reservoir simulator with more suitable elastoplastic constitutive models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (21). 11,166-11,173.
    Publication Date: 2020-06-29
    Description: The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-10-17
    Description: Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-06
    Description: Two variants of sea-surface temperature (SST) dipole indices for the South Atlantic Ocean (SAO) has been previously described representing: (1) the South Atlantic subtropical dipole (SASD) supposedly peaking in austral summer and (2) the SAO dipole (SAOD) in winter. In this study, we present the analysis of observational data sets (1985–2014) showing the SASD and SAOD as largely constituting the same mode of ocean–atmosphere interaction reminiscent of the SAOD structure peaking in winter. Indeed, winter is the only season in which the inverse correlation between the northern and southern poles of both indices is statistically significant. The observed SASD and SAOD indices exhibit robust correlations (P ≤ 0.001) in all seasons and these are reproduced by 54 of the 63 different models of the Coupled Models Intercomparison Project analysed. Their robust correlations notwithstanding the SASD and SAOD indices appear to better capture different aspects of SAO climate variability and teleconnections
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-11-20
    Description: Marine methane hydrate in sands has huge potential as an unconventional gas resource; however, no field test of their production potential had been conducted. Here, we report the world’s first offshore methane hydrate production test conducted at the eastern Nankai Trough and show key findings toward future commercial production. Geological analysis indicates that hydrate saturation reaches 80% and permeability in the presence of hydrate ranges from 0.01 to 10 mdarcies. Permeable (1–10 mdarcies) highly hydrate-saturated layers enable depressurization-induced gas production of approximately 20,000 Sm3/D with water of 200 m3/D. Numerical analysis reveals that the dissociation zone expands laterally 25 m at the front after 6 days. Gas rate is expected to increase with time, owing to the expansion of the dissociation zone. It is found that permeable highly hydrate-saturated layers increase the gas–water ratio of the production fluid. The identification of such layers is critically important to increase the energy efficiency and the technical feasibility of depressurization-induced gas production from hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-06
    Description: Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-02-06
    Description: The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: image
    Format: other
    Format: other
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (12). pp. 9795-9813.
    Publication Date: 2020-02-06
    Description: The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N–45°N and 130°E–180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-02-01
    Description: Chlorophyll (Chl) is a distinctive component of autotrophic organisms, often used as an indicator of phytoplankton biomass in the ocean. However, assessment of phytoplankton biomass from Chl relies on the accurate estimation of the Chl:carbon(C) ratio. Here we present global patterns of Chl:C ratios in the surface ocean obtained from a phytoplankton growth model that accounts for the optimal acclimation of phytoplankton to ambient nutrient, light, and temperature conditions. The model agrees largely with observed/expected global patterns of Chl:C. Combining our Chl:C estimates with satellite Chl and particulate organic carbon (POC), we infer phytoplankton C concentration in the surface ocean and its contribution to the total POC pool. Our results suggest that the portion of POC corresponding to living phytoplankton is higher in subtropical latitudes and less productive regions (∼30–70%) and decreases to ∼10–30% toward high latitudes and productive regions. An important caveat of our model is the lack of iron limiting effects on phytoplankton physiology. Comparison of our predicted phytoplankton biomass with an independent estimate of total POC reveals a positive correlation between nitrate concentrations and nonphotosynthetic POC in the surface ocean. This correlation disappears when a constant Chl:C is applied. Our analysis is not constrained by assumptions of constant Chl:C or phytoplankton:POC ratio, providing a novel independent analysis of phytoplankton biomass in the surface ocean. These results highlight the importance of accounting for the variability in Chl:C and its application in distinguishing the autotrophic and heterotrophic components in the assemblage of the marine plankton ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 5 (1). pp. 128-134.
    Publication Date: 2020-02-06
    Description: The historical developments are reviewed that have led from a bottom-up responsibility initiative of concerned scientists to the emergence of a nationwide interdisciplinary Priority Program on the assessment of Climate Engineering (CE), funded by the German Research Foundation (DFG). Given the perceived lack of comprehensive and comparative appraisals of different CE methods, the Priority Program was designed to encompass both solar radiation management (SRM) and carbon dioxide removal (CDR) ideas, and to cover the atmospheric, terrestrial and oceanic realm. First key findings obtained by the ongoing Priority Program are summarized and reveal that compared to earlier assessments, such as the 2009 Royal Society report, more detailed investigations tend to indicate less efficiency, lower effectiveness and often lower safety. Emerging research trends are discussed in the context of the recent Paris agreement to limit global warming to less than two degrees and the associated increasing reliance on negative emission technologies. Our results show then when deployed at scales large enough to have a significant impact on atmospheric CO2, even CDR methods such as afforestation – often perceived as ‘benign’ – can have substantial side effects and may raise severe ethical, legal and governance issues. We suppose that before being deployed at climatically relevant scales, any negative-emission or climate engineering method will require careful analysis of efficiency, effectiveness and undesired side effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-02-06
    Description: Selecting appropriate indicators is essential to aggregate the information provided by climate model outputs into a manageable set of relevant metrics on which assessments of climate engineering (CE) can be based. From all the variables potentially available from climate models, indicators need to be selected that are able to inform scientists and society on the development of the Earth system under CE, as well as on possible impacts and side effects of various ways of deploying CE or not. However, the indicators used so far have been largely identical to those used in climate change assessments and do not visibly reflect the fact that indicators for assessing CE (and thus the metrics composed of these indicators) may be different from those used to assess global warming. Until now, there has been little dedicated effort to identifying specific indicators and metrics for assessing CE. We here propose that such an effort should be facilitated by a more decision-oriented approach and an iterative procedure in close interaction between academia, decision makers, and stakeholders. Specifically, synergies and trade-offs between social objectives reflected by individual indicators, as well as decision-relevant uncertainties should be considered in the development of metrics, so that society can take informed decisions about climate policy measures under the impression of the options available, their likely effects and side effects, and the quality of the underlying knowledge base.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-02-06
    Description: The consequences of emerging marine diseases on the evolutionary trajectories of affected host populations in the marine realm are largely unexplored. Evolution in response to natural selection depends on the genetic variation of the traits under selection and the interaction of these traits with the environment (GxE). However, in the case of diseases, genotypes of pathogens add another dimension to this interaction. Therefore, the study of disease resistance needs to be extended to the interaction of host genotype, pathogen genotype and environment (GxGxE). In the present study we used a full-sib breeding design crossing two genetically differentiated populations of the Pacific oyster Crassostrea gigas (Thunberg, 1793), to determine the influence of host genotype, pathogen genotype and temperature on disease resistance. Based on a controlled infection experiment on two early life stages, i.e. D-larvae and Pediveliger larvae at elevated and ambient water temperatures we estimated disease resistance to allopatric and sympatric Vibrio sp. by measuring survival and growth within and between genetically differentiated oyster populations. In both populations survival was higher upon infection with sympatric Vibrio sp. indicating that disease resistance has a genetic basis and is dependent on host genotype. In addition we observed a significant GxGxE effect in D-larvae, where contrary to expectations, disease resistance was higher at warm than at cold temperatures. Using thermal reaction norms, we could further show, that disease resistance is an environment dependent trait with high plasticity, which indicates the potential for a fast acclimatization to changing environmental conditions. These population specific reaction norms disappeared in hybrid crosses between both populations which demonstrates that admixture between genetically differentiated populations can influence GxGxE interactions on larger scales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-02-06
    Description: The eastern tropical South Pacific (ETSP) upwelling region is one of the ocean’s largest sinks of fixed nitrogen, which is lost as N2 via the anaerobic processes of anammox and denitrification. One-third of nitrogen loss occurs in productive shelf waters stimulated by organic matter export as a result of eastern boundary upwelling. Offshore, nitrogen loss rates are lower, but due to its sheer size this area accounts for ~70% of ETSP nitrogen loss. How nitrogen loss and primary production are regulated in the offshore ETSP region where coastal upwelling is less influential remains unclear. Mesoscale eddies, ubiquitous in the ETSP region, have been suggested to enhance vertical nutrient transport and thereby regulate primary productivity and hence organic matter export. Here, we investigated the impact of mesoscale eddies on anammox and denitrification activity using 15N-labelled in situ incubation experiments. Anammox was shown to be the dominant nitrogen loss process, but varied across the eddy, whereas denitrification was below detection at all stations. Anammox rates at the eddy periphery were greater than at the center. Similarly, depth-integrated chlorophyll paralleled anammox activity, increasing at the periphery relative to the eddy center; suggestive of enhanced organic matter export along the periphery supporting nitrogen loss. This can be attributed to enhanced vertical nutrient transport caused by an eddy-driven submesoscale mechanism operating at the eddy periphery. In the ETSP region, the widespread distribution of eddies and the large heterogeneity observed in anammox rates from a compilation of stations suggests that eddy-driven vertical nutrient transport may regulate offshore primary production and thereby nitrogen loss.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-02-06
    Description: Commercial-scale mining for polymetallic nodules could have a major impact on the deepsea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (3). pp. 1724-1748.
    Publication Date: 2020-02-06
    Description: Over the past 17 years, the western boundary current system of the Labrador Sea has been closely observed by maintaining the 53°N observatory (moorings and shipboard station data) measuring the top-to-bottom flow field offshore from the Labrador shelf break. Volume transports for the North Atlantic Deep Water (NADW) components were calculated using different methods, including gap filling procedures for deployment periods with suboptimal instrument coverage. On average the Deep Western Boundary Current (DWBC) carries 30.2 ± 6.6 Sv of NADW southward, which are almost equally partitioned between Labrador Sea Water (LSW, 14.9 ± 3.9 Sv) and Lower North Atlantic Deep Water (LNADW, 15.3 ± 3.8 Sv). The transport variability ranges from days to decades, with the most prominent multiyear fluctuations at interannual to near decadal time scales (±5 Sv) in the LNADW overflow water mass. These long-term fluctuations appear to be in phase with the NAO-modulated wind fluctuations. The boundary current system off Labrador occurs as a conglomerate of nearly independent components, namely, the shallow Labrador Current, the weakly sheared LSW range, and the deep baroclinic, bottom-intensified current core of the LNADW, all of which are part of the cyclonic Labrador Sea circulation. This structure is relatively stable over time, and the 120 km wide boundary current is constrained seaward by a weak counterflow which reduces the deep water export by 10–15%.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-02-06
    Description: Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Wiley
    In:  Evolutionary Applications, 10 (5). pp. 514-528.
    Publication Date: 2020-02-06
    Description: Trans-generational plasticity is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent-offspring environments. In a global change scenario, several performance-related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of trans-generational plasticity. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans-generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat-killed bacterial epitope treatment. Differential gene expression (immune genes and DNA- and histone-modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans-generational effects are limited. Temperature is the master regulator of trans-generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of trans-generational plasticity as a short-term option to buffer environmental variation in the light of climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-04-23
    Description: Concentrations of heme b were determined in a mesocosm experiment situated in Gullmar Fjord off Sweden. The mesocosm experiment lasted for ca. one hundred days and was characterised by the growth of a primary nutrient replete and a secondary nutrient deplete phytoplankton bloom. Heme b varied between 40 ± 10 pmol L-1 in the prebloom period up to a maximum of 700 ± 400 pmol L-1 just prior to the time of the primary chlorophyll a maximum. Thereafter, heme b concentrations decreased again to an average of 120 ± 60 pmol L-1. When normalised to total particulate carbon, heme b was most abundant during the initiation of the nutrient replete spring bloom, when ratios reached 52 ± 24 μmol mol-1; ten times higher than values observed both pre and post the primary bloom. Concentrations of heme b correlated with those of chlorophyll a. Nevertheless, differences were observed in the relative concentrations of the two parameters, with heme b concentrations increasing relative to chlorophyll a during the growth of the primary bloom, decreasing over the period of the secondary bloom and increasing again through the latter period of the experiment. Heme b abundance was therefore influenced by nutrient concentrations and also likely by changing community composition. In half of the mesocosms, pCO2 was elevated and maintained at ca.1000 μatm, however we observed no significant differences between heme b in plus or ambient pCO2 mesocosms, either in absolute terms, or relative to total particulate carbon and chlorophyll a. The results obtained in this study contribute to our understanding of the distribution of this significant component of the biogenic iron pool, and provide an iron replete coastal water end member that aids the interpretation of the distributions of heme b in more iron deplete open ocean waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (5). pp. 836-849.
    Publication Date: 2020-02-06
    Description: Primary productivity is limited by the availability of nitrogen (N) in most of the coastal Arctic, as a large portion of N is released by the spring freshet and completely consumed during the following summer. Thus, understanding the fate of riverine nitrogen is critical to identify the link between dissolved nitrogen dynamic and coastal primary productivity to foresee upcoming changes in the Arctic seas, such as increase riverine discharge and permafrost thaw. Here, we provide a field-based study of nitrogen dynamic over the Laptev Sea shelf based on isotope geochemistry. We demonstrate that while most of the nitrate found under the surface fresh water layer is of remineralized origin, some of the nitrate originates from atmospheric input and was probably transported at depth by the mixing of brine-enriched denser water during sea-ice formation. Moreover, our results suggest that riverine dissolved organic nitrogen (DON) represents up to 6 times the total riverine release of nitrate and that about 62 to 76% of the DON is removed within the shelf waters. This is a crucial information regarding the near-future impact of climate change on primary productivity in the Eurasian coastal Arctic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-02-06
    Description: The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used. Here, we traced the introduction of the Asian seaweed Gracilaria vermiculophylla (Rhodophyta) into estuaries in coastal western North America, the eastern United States, Europe, and northwestern Africa by genotyping more than 2,500 thalli from 37 native and 53 non-native sites at mitochondrial cox1 and 10 nuclear microsatellite loci. Overall, greater than 90% of introduced thalli had a genetic signature similar to thalli sampled from the coastline of northeastern Japan, strongly indicating this region served as the principal source of the invasion. Notably, northeastern Japan exported the vast majority of the oyster Crassostrea gigas during the 20th century. The preponderance of evidence suggests G. vermiculophylla may have been inadvertently introduced with C. gigas shipments and that northeastern Japan is a common source region for estuarine invaders. Each invaded coastline reflected a complex mix of direct introductions from Japan and secondary introductions from other invaded coastlines. The spread of G. vermiculophylla along each coastline was likely facilitated by aquaculture, fishing, and boating activities. Our ability to document a source region was enabled by a robust sampling of locations and loci that previous studies lacked and strong phylogeographic structure along native coastlines.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-02-06
    Description: Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 122 (5). pp. 3334-3350.
    Publication Date: 2020-02-06
    Description: Marine controlled source electromagnetic (CSEM) data have been collected to investigate methane seep sites and associated gas hydrate deposits at Opouawe Bank on the southern tip of the Hikurangi Margin, New Zealand. The bank is located in about 1000 m water depth within the gas hydrate stability field. The seep sites are characterized by active venting and typical methane seep fauna accompanied with patchy carbonate outcrops at the seafloor. Below the seeps, gas migration pathways reach from below the bottom-simulating reflector (at around 380 m sediment depth) toward the seafloor, indicating free gas transport into the shallow hydrate stability field. The CSEM data have been acquired with a seafloor-towed, electric multi-dipole system measuring the inline component of the electric field. CSEM data from three profiles have been analyzed by using 1-D and 2-D inversion techniques. High-resolution 2-D and 3-D multichannel seismic data have been collected in the same area. The electrical resistivity models show several zones of highly anomalous resistivities (〉50 Ωm) which correlate with high amplitude reflections located on top of narrow vertical gas conduits, indicating the coexistence of free gas and gas hydrates within the hydrate stability zone. Away from the seeps the CSEM models show normal background resistivities between ~1 and 2 Ωm. Archie's law has been applied to estimate gas/gas hydrate saturations below the seeps. At intermediate depths between 50 and 200 m below seafloor, saturations are between 40 and 80% and gas hydrate may be the dominating pore filling constituent. At shallow depths from 10 m to the seafloor, free gas dominates as seismic data and gas plumes suggest.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-02-06
    Description: Many species of Indo-Pacific holobenthic foraminifera have been introduced and successfully established sustainable populations in the Mediterranean Sea over the past few decades. However, known natural and anthropogenic vectors do not explain how these species were introduced long distances from their origin. We present evidence for a novel marine bioinvasion vector explaining this long-distance transport and introduction using both contemporary field and historical analyses. In 2015–2016, we found living specimens of 29 foraminiferal species in the fecal pellets of two Red Sea herbivorous rabbitfish—Siganus rivulatus and Siganus luridus in the Mediterranean. In our historical analysis, we found 34 foraminiferal species in preserved Red Sea rabbitfish specimens, dating between 1967 and 1975. In addition, we found congruent propagation patterns of the non-indigenous rabbitfish and foraminifera, lagging 4–11 yrs between discoveries, respectively. Predation of marine benthos by non-indigenous fish, followed by incomplete digestion and defecation of viable individuals, comprise the main introduction vector of these organisms into novel environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-02-06
    Description: Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally ‘fertilized’ by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from 〈1,000 m (pH = 7.99–8.08; CO2 = 373–485 p.p.m; 1.5–12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14–17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from 〉1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-02-06
    Description: Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non-native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine-scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA-COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders (Gammarus tigrinus, Pontogammarus maeoticus, and Obesogammarus crassus) and strictly restricted to their native regions (Gammarus locusta, Gammarus salinus, Gammarus zaddachi, and Gammarus oceanicus). Despite that genetic diversity did not differ between invasive and non-invasive species, we observed that populations of non-invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non-native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage divergence holds an important role in the distribution of neutral genetic diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 122 (10). pp. 7927-7950.
    Publication Date: 2020-02-06
    Description: Receiver functions (RF) have been used for several decades to study structures beneath seismic stations. Although most available stations are deployed on-shore, the number of ocean bottom station (OBS) experiments has increased in recent years. Almost all OBSs have to deal with higher noise levels and a limited deployment time (∼1 year), resulting in a small number of usable records of teleseismic earthquakes. Here, we use OBSs deployed as mid-aperture array in the deep ocean (4.5-5.5 km water depth) of the eastern mid-Atlantic. We use evaluation criteria for OBS data and beam forming to enhance the quality of the RFs. Although some stations show reverberations caused by sedimentary cover, we are able to identify the Moho signal, indicating a normal thickness (5-8 km) of oceanic crust. Observations at single stations with thin sediments (300-400 m) indicate that a probable sharp lithosphere-asthenosphere boundary (LAB) might exist at a depth of ∼70-80 km which is in line with LAB depth estimates for similar lithospheric ages in the Pacific. The mantle discontinuities at ∼410 km and ∼660 km are clearly identifiable. Their delay times are in agreement with PREM. Overall the usage of beam formed earthquake recordings for OBS RF analysis is an excellent way to increase the signal quality and the number of usable events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-02-06
    Description: Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C) on thermally induced phenotypic variability, from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout early larval development (in real time from 0 to 18 days post hatch) and at specific developmental stages (hatch, jaw/teeth formation, and first-feeding). Results showed that hatch success, yolk utilization efficiency, survival, deformities, yolk utilization, and growth rates were all significantly affected by temperature. In real time, increasing temperature from 16 to 22°C accelerated larval development, while larval gene expression patterns (hsp70, hsp90, gh and igf-1) were delayed at cold temperatures (16°C) or accelerated at warm temperatures (20–22°C). All targeted genes (hsp70, hsp90, gh, igf-1, igf-2a, igf-2b) were differentially expressed during larval development. Moreover, expression of gh was highest at 16°C during the jaw/teeth formation, and the first-feeding developmental stages, while expression of hsp90 was highest at 22°C, suggesting thermal stress. Furthermore, 24°C was shown to be deleterious (resulting in 100% mortality), while 16°C and 22°C (~50 and 90% deformities respectively) represent the lower and upper thermal tolerance limits. In conclusion, the high survival, lowest incidence of deformities at hatch, high yolk utilization efficiency, high gh and low hsp expression, suggest 18°C as the optimal temperature for offspring of European eel. Furthermore, our results suggest that the still enigmatic early life history stages of European eel may inhabit the deeper layer of the Sargasso Sea and indicate vulnerability of this critically endangered species to increasing ocean temperature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (8). pp. 1236-1255.
    Publication Date: 2020-02-06
    Description: There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (∼+5 Tg N y−1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (19). pp. 9957-9966.
    Publication Date: 2020-02-06
    Description: Proxy data suggest the onset of Northern Hemisphere glaciation during the Plio-Pleistocene transition from 3.2 to 2.5 Ma resulted in enhanced climate variability at the obliquity (41 kyr) frequency. Here, we investigate the influence of the expanding Greenland ice sheet (GrIS) on the mean climate and obliquity-related variability in a series of climate model simulations. These suggest that an expanding GrIS weakens the Atlantic Meridional Overturning Circulation (AMOC) by ~1 Sv, mainly due to reduced heat loss in the Greenland-Iceland-Norwegian Sea. Moreover, the growing GrIS amplifies the Hadley circulation response to obliquity forcing driving variations in freshwater export from the tropical Atlantic and in turn variations of the AMOC. The stronger AMOC response to obliquity forcing, by about a factor of two, results in a stronger global-mean near-surface temperature response. We conclude that the AMOC response to obliquity forcing is important to understand the enhanced climate variability at the obliquity frequency during the Plio-Pleistocene transition.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (11). pp. 1656-1673.
    Publication Date: 2020-02-06
    Description: In this pilot study we link the yield of industrial fisheries to changes in the zooplankton mortality in an idealized way accounting for different target species (planktivorous fish—decreased zooplankton mortality; large predators—increased zooplankton mortality). This indirect approach is used in a global coupled biogeochemistry circulation model to estimate the range of the potential impact of industrial fisheries on marine biogeochemistry. The simulated globally integrated response on phytoplankton and primary production is in line with expectations—a high (low) zooplankton mortality results in a decrease (increase) of zooplankton and an increase (decrease) of phytoplankton. In contrast, the local response of zooplankton and phytoplankton depends on the region under consideration: In nutrient-limited regions, an increase (decrease) in zooplankton mortality leads to a decrease (increase) in both zooplankton and phytoplankton biomass. In contrast, in nutrient-replete regions, such as upwelling regions, we find an opposing response: an increase (decrease) of the zooplankton mortality leads to an increase (decrease) in both zooplankton and phytoplankton biomass. The results are further evaluated by relating the potential fisheries-induced changes in zooplankton mortality to those driven by CO2 emissions in a business-as-usual 21st century emission scenario. In our idealized case, the potential fisheries-induced impact can be of similar size as warming-induced changes in marine biogeochemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-02-06
    Description: Back-arc spreading centers (BASCs) form a distinct class of ocean spreading ridges distinguished by steep along-axis gradients in spreading rate and by additional magma supplied through subduction. These characteristics can affect the population and distribution of hydrothermal activity on BASCs compared to mid-ocean ridges (MORs). To investigate this hypothesis, we comprehensively explored 600 km of the southern half of the Mariana BASC. We used water column mapping and seafloor imaging to identify 19 active vent sites, an increase of 13 over the current listing in the InterRidge Database (IRDB), on the bathymetric highs of 7 of the 11 segments. We identified both high and low (i.e., characterized by a weak or negligible particle plume) temperature discharge occurring on segment types spanning dominantly magmatic to dominantly tectonic. Active sites are concentrated on the two southernmost segments, where distance to the adjacent arc is shortest (〈40 km), spreading rate is highest (〉48 mm/yr), and tectonic extension is pervasive. Re-examination of hydrothermal data from other BASCs supports the generalization that hydrothermal site density increases on segments 〈90 km from an adjacent arc. Although exploration quality varies greatly among BASCs, present data suggest that, for a given spreading rate, the mean spatial density of hydrothermal activity varies little between MORs and BASCs. The present global database, however, may be misleading. On both BASCs and MORs, the spatial density of hydrothermal sites mapped by high-quality water-column surveys is 2–7 times greater than predicted by the existing IRDB trend of site density versus spreading rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-11-09
    Description: The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (β), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, β, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, β, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-05-19
    Description: In the eastern tropical Atlantic, the orangeback flying squid Sthenoteuthis pteropus (Steenstrup 1855) (Cephalopoda, Ommastrephidae) is a dominant species of the epipelagic nekton community. This carnivore squid has a short lifespan and is one of the fastest-growing squids. In this study, we characterise the role of S. pteropus in the pelagic food web of the eastern tropical Atlantic by investigating its diet and the dynamics of its feeding habits throughout its ontogeny and migration. During three expeditions in the eastern tropical Atlantic in 2015, 129 specimens were caught by hand jigging. Stomach content analyses (via visual identification and DNA barcoding) were combined with stable isotope data (∂15N and ∂13C) of muscle tissue to describe diet, feeding habits and trophic ecology of S. pteropus. Additionally, stable isotope analyses of incremental samples along the squid’s gladius—the chitinous spiniform structure supporting the muscles and organs—were carried out to explore possible diet shifts through ontogeny and migration. Our results show that S. pteropus preys mainly on myctophid fishes (e.g. Myctophum asperum, Myctophum nitidulum, Vinciguerria spp.), but also on other teleost species, cephalopods (e.g. Enoploteuthidae, Bolitinidae, Ommastrephidae), crustaceans and possibly on gelatinous zooplankton as well. The squid shows a highly opportunistic feeding behaviour that includes cannibalism. Our study indicates that the trophic position of S. pteropus may increase by approximately one trophic level from a mantle length of 15 cm to 47 cm. The reconstructed isotope-based feeding chronologies of the gladii revealed high intra- and inter-individual variability in the squid’s trophic position and foraging area. These findings are not revealed by diet or muscle tissue stable isotope analysis. This suggests a variable and complex life history involving individual variation and migration. The role of S. pteropus in transferring energy and nutrients from lower to higher trophic levels may be underestimated and important for understanding how a changing ocean impacts food webs in the eastern Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-07-27
    Description: In the colloidal synthesis of iron sulfides, a series of dialkyl disulfides, alkyl thiols, and dialkyl disulfides (allyl, benzyl, tert-butyl, and phenyl) were employed as sulfur sources. Their reactivity was found to tune the phase between pyrite (FeS2), greigite (Fe3S4), and pyrrhotite (Fe7S8). DFT was used to show that sulfur-rich phases were favored when the C–S bond strength was low in the organosulfurs, yet temperature dependent studies and other observations indicated the reasons for phase selectivity were more nuanced; the different precursors decomposed through different reaction mechanisms, some involving the oleylamine solvent. The formation of pyrite from diallyl disulfide was carefully studied as it was the only precursor to yield FeS2. Raman spectroscopy indicated that FeS2 forms directly without an FeS intermediate, unlike most synthetic procedures to pyrite. Diallyl disulfide releases persulfide (S–S)2– due to the lower C–S bond strength relative to the S–S bond strength, as well as facile decomposition in the presence of amines through SN2′ mechanisms at elevated temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Fish and Fisheries, 18 (4). pp. 656-667.
    Publication Date: 2019-02-01
    Description: Fisheries advice is based on demographic calculations, which assume that density-dependent processes regulating recruitment occur only in early life. This assumption is challenged by laboratory and lake studies and some recent indications from marine systems that demonstrate density-dependent regulation late in life. By accounting for spatial dynamics of a population, something that has previously been ignored in models of fish, we show that density-dependent regulation is determined by the size of the habitat: in small habitats, for example small lakes, regulation occurs late in life, while it can occur early in large habitats. When regulation happens late in life, fisheries yield is maximized by exploitation of mainly juvenile fish, while exploiting mature fish maximizes yield if regulation happens early. We review and interpret observations of density dependence in the light of the theory. Our results challenge the current assumption that density dependence always occurs early in life and highlights the need for an increased understanding of density-dependent processes. This can only come about by a change of focus from determining stock-recruitment relationships towards understanding when and how density-dependent regulation occurs in nature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-02-01
    Description: We present an improved neotectonic numerical model of the complex NW Africa-SW Eurasia plate boundary segment that runs from west to east along the Gloria Fault up to the northern Algerian margin. We model the surface velocity field and the ongoing lithospheric deformation using the most recent version of the thin-shell code SHELLS and updated lithospheric model and fault map of the region. To check the presence versus the absence of an independently driven Alboran domain, we develop two alternative plate models: one does not include an Alboran plate; another includes it and determines the basal shear tractions necessary to drive it with known velocities. We also compare two alternative sets of Africa-Eurasia velocity boundary conditions, corresponding to geodetic and geological-scale averages of plate motion. Finally, we perform an extensive parametric study of fault friction coefficient, trench resistance, and velocities imposed in Alboran nodes. The final run comprises 5240 experiments, each scored to geodetic velocities (estimated for 250 stations and here provided), stress direction data, and seismic strain rates. The model with the least discrepancy to the data includes the Alboran plate driven by a basal WSW directed shear traction, slightly oblique to the westward direction of Alboran motion. We provide estimates of long-term strain rates and slip rates for the modeled faults, which can be useful for further hazard studies. Our results support that a mechanism additional to the Africa-Eurasia convergence is required to drive the Alboran domain, which can be related to subduction processes occurring within the mantle.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-02-06
    Description: The oceanic crustal and uppermost lithospheric mantle structure across the Gloria Fault (GF) transcurrent plate boundary between Africa and Eurasia in the Northeast Atlantic is investigated based on seismic reflection, seismic refraction and wide-angle reflection data. This experiment used 18 ocean bottom stations along an N–S 150 km long traverse together with acquisition of a multichannel seismic reflection profile. Modeling of P and S seismic waves and gravimetric anomalies allowed estimation of P- and S-wave velocities, density, Poisson's ratio and discussion of a compositional model. A five-layer model is proposed in which layers 1–3 correspond to normal sediments through typical oceanic crust layers 2 and 3. Layer 5 yielded mantle velocities above 7.9 km s−1. Layer 4 with 4 km of thickness has Vp velocities between 7.1 and 7.4 km s−1 and is clearly separated from typical oceanic crust and mantle layers. Comparison with natural analogues and published lab measurements suggest that layer 4 can be a mix of lithologies that comply with the estimated P and S velocities and computed Poisson's ratio and densities, such as, olivine cumulates, peridotite, gabbro and hydrated mantle. We favour the tectonic process that produces secondary porosity from which results serpentinization due to sea water circulation in fractures. Structural and seismic stratigraphic interpretation of the reflection profile shows that Neogene to recent tectonic deformation on this segment of the plate boundary concentrated on the southern side of the GF, that is, the Africa plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (19). pp. 9632-9643.
    Publication Date: 2020-02-06
    Description: Overriding plate topography provides constraints on subduction zone geodynamics. We investigate its evolution using fully dynamic laboratory models of subduction with techniques of stereoscopic photogrammetry and particle image velocimetry. Model results show that the topography is characterized by an area of forearc dynamic subsidence, with a magnitude scaling to 1.44–3.97 km in nature, and a local topographic high between the forearc subsided region and the trench. These topographic features rapidly develop during the slab free‐sinking phase and gradually decrease during the steady state slab rollback phase. We propose that they result from the variation of the vertical component of the trench suction force along the subduction zone interface, which gradually increases with depth and results from the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in driving forearc subsidence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-02-01
    Description: The spatial structure of species is important for their dynamics and evolution, but also for management and conservation. There are numerous ways of inferring spatial structures, and information from multiple methods is becoming more common to examine how different processes shape the spatial structures of species to improve fish management. Here, we investigate the spatial structure of a suite of Baltic Sea fish species based on the following: (i) spatial (presumably neutral) genetic differentiation, reviewed from the literature, and (ii) spatial synchrony in abundance changes from time series of fishery‐independent surveys, which we currently find to be underused given the amount of data available. For each of these two methods, species were classified as having a distinct, continuous or no/weak spatial structure. In addition, based on each source of information, we estimated the spatial scale of management units for species. The results show that only among species confined to the coastal zone the two sources of information yielded a congruence of the spatial structure (displaying a continuous spatial structure). In contrast, offshore species show weak spatial genetic structure but stronger spatial structure of synchrony in abundance. Based on this, we suggest that population genetic structure and synchrony in abundance should be used as complementary information as they reflect different spatial processes and suggest that management actions should differ with respect to scale depending on the management targets applied. We propose similar analysis should be applied to areas outside the Baltic Sea, and other stock identification methods, to improve management of fish resources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 17 (12). pp. 5009-5023.
    Publication Date: 2019-02-01
    Description: Pre-stack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure and seismic velocities resolved to ∼14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration and short-term geodetically determined slow-slip events. The subduction interface is a shallow dipping thrust at 〈 7 km depth near the trench and steps down to 14 km depth along an ∼18 km long ramp, beneath Porangahau Ridge. This apparent bend in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, up-dip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-02-01
    Description: Biologists are increasingly interested in decomposing trait dynamics into underlying processes, such as evolution, plasticity and demography. Four important frameworks that allow for such a decomposition are the quantitative genetic animal model (AM), the ‘Geber’ method (GM), the age-structured Price equation (APE) and the integral projection model (IPM). However, as these frameworks have largely been developed independently, they differ in the assumptions they make, the data they require, as well as their outcomes and interpretation. Here, we evaluate how each framework decomposes trait dynamics into underlying processes. To do so, we apply them to simulated data for a hypothetical animal population. Individual body size was affected by, among others, genes, maternal effects and food intake. We simulated scenarios with and without selection on body size and with high and low heritability. The APE and IPM provided similar results, as did the AM and GM, with important differences between the former and the latter. All frameworks detected positive contributions of selection in the high but not in the low selection scenarios. However, only the AM and GM distinguished between the high and low heritability scenarios. Furthermore, the AM and GM revealed a high contribution of plasticity. The APE and IPM attributed most of the change in body size to ontogenetic growth and inheritance, where the latter captures the combined effects of plasticity, maternal effects and heritability. We show how these apparent discrepancies are mostly due to differences in aims and definitions. For example, the APE and IPM capture selection, whereas the AM and GM focus on the response to selection. Furthermore, the frameworks differ in the processes that are ascribed to plasticity and in how they take into account demography. We conclude that no single framework provides the ‘true’ contributions of evolution, plasticity and demography. Instead, different research questions require different frameworks. A thorough understanding of the different definitions of their components is necessary for selecting the most appropriate framework for the question at hand and for making biologically meaningful inferences. This work thus supports both future analysis and the careful interpretation of existing work.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-02-06
    Description: We provide high-resolution foraminiferal stable carbon isotope (δ13C) records from the subarctic Pacific and Eastern Equatorial Pacific (EEP) to investigate circulation dynamics between the extra-tropical and tropical North Pacific during the past 60 kyr. We measured the δ13C composition of the epibenthic foraminiferal species Cibicides lobatulus from a shallow sediment core recovered from the western Bering Sea (SO201-2-101KL; 58°52.52’N, 170°41.45’E; 630 m water depth) to reconstruct past ventilation changes close to the source region of Glacial North Pacific Intermediate Water (GNPIW). Information regarding glacial changes in the δ13C of sub-thermocline water masses in the EEP is derived from the deep-dwelling planktonic foraminifera Globorotaloides hexagonus at ODP Site 1240 (00°01.31’N, 82°27.76’W; 2921 m water depth). Apparent similarities in the long-term evolution of δ13C between GNPIW, intermediate waters in the eastern tropical North Pacific and sub-thermocline water masses in the EEP suggest the expansion of relatively 13C-depleted, nutrient-enriched, and northern-sourced intermediate waters to the equatorial Pacific under glacial conditions. Further, it appears that additional influence of GNPIW to the tropical Pacific is consistent with changes in nutrient distribution and biological productivity in surface-waters of the glacial EEP. Our findings highlight potential links between North Pacific mid-depth circulation changes, nutrient cycling, and biological productivity in the equatorial Pacific under glacial boundary conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-02-01
    Description: Perennial macroalgae within the genus Fucus are known to exude metabolites through their outer thallus surface. Some of these metabolites have pro- and/or antifouling properties. Seasonal fluctuations of natural fouling pressure and chemical fouling control strength against micro- and macrofoulers have previously been observed in Fucus, suggesting that control strength varies with threat. To date, a study on the seasonal composition of surface associated metabolites, responsible for much of the fouling control, has not been done. We sampled individuals of the two co-occurring species F. vesiculosus and F. serratus at monthly intervals (six per species and month) during a one-year field study. We analysed the chemical composition of surface associated metabolites of both Fucus species by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Additionally, we correlated abiotic and biotic parameters recorded monthly within the sampled habitat with the variation in the chemical surface landscape of Fucus. Our study revealed that the chemical surface composition of both Fucus species exhibits substantial seasonal differences between spring/summer and autumn/winter months. Light and temperature explained most of the seasonal variability in surface metabolite composition of both Fucus species. A strong summerly up-regulation of eighteen saccharides and two hydroxy acids in F. vesiculosus as well as of four fatty acids and two saccharides in F. serratus was observed. We discuss how these up-regulated molecules may have a complex effect on associated microfoulers, both promoting or decreasing fouling depending on metabolite and bacterial identity. These seasonal shifts in the surface metabolome seem to exert a compound control of density and composition of the Fucus associated biofilm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (1). pp. 602-616.
    Publication Date: 2020-02-06
    Description: A multi-mode, linear reduced-gravity model, driven by ERA-Interim monthly mean wind stress anomalies, is used to investigate interannual variability in tropical Pacific sea level as seen in satellite altimeter data. The model output is fitted to the altimeter data along the equator, in order to derive the vertical profile for the model forcing, showing that a signature from modes higher than mode six cannot be extracted from the altimeter data. It is shown that the model has considerable skill at capturing interannual sea level variability both on and off the equator. The correlation between modelled and satellite-derived sea level data exceeds 0.8 over a wide range of longitudes along the equator and readily captures the observed ENSO events. Overall, the combination of the first, second, third and fifth modes can provide a robust estimate of the interannual sea level variability, the second mode being dominant. A remarkable feature of both the model and the altimeter data is the presence of a pivot point in the western Pacific on the equator. We show that the westward displacement of the pivot point from the centre of the basin is strongly influenced by the fact that most of the wind stress variance is found in the western part of the basin. We also show that the Sverdrup transport is not fundamental to the dynamics of the recharge/discharge mechanism in our model, although the spatial structure of the wind forcing does play a role in setting the amplitude of the “warm water volume”.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (2). pp. 965-973.
    Publication Date: 2020-02-06
    Description: El Niño-Southern Oscillation (ENSO) in the Pacific is asymmetric for warm and cold events with respect to amplitude, spatial patterns and temporal evolution. Here the symmetry of the Atlantic Niño mode, which many previous studies have argued is governed by atmosphere–ocean dynamics similar to those of ENSO, is investigated using two different ocean reanalysis products. Calculation of Bjerknes feedback terms for the Pacific reveals a pronounced asymmetry between warm and cold events, though unlike most previous studies, the largest asymmetry is found in the relationship between eastern Pacific thermocline depth and SST anomalies. For the Atlantic, cold events are effectively mirror images of warm events with Bjerknes feedbacks of similar strength. The analysis supports not only the conclusion that Atlantic Niños are more symmetric than ENSO, but the hypothesis itself that the Bjerknes feedback is operative in the Atlantic given the strength of the relationship between the key variables involved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-02-06
    Description: At the eastern end of the Azores-Gloria transform fault system to the southwest of Portugal, the plate boundary between Africa and Iberia is a region where deformation is accommodated over a wide tectonically-active area. The region has unleashed large earthquakes and tsunamis, including the Mw ~ 8.5 Great Lisbon earthquake of 1755. Although the source region of the 1755 earthquake is still disputed, most proposals include a source location in the vicinity of the Horseshoe Abyssal Plain (HAP), which is bounded by the 5000 m high Gorringe Bank (GB). In this study we characterise seismic activity in the region using data recorded by two local networks of ocean-bottom seismometers (OBS). The networks were deployed in the eastern HAP and at the GB. The dataset allowed the detection of 160 local earthquakes. These earthquakes cluster around the GB, to the SW of Cabo Sao Vicente, and in the HAP. Focal depths indicate deep-seated earthquakes, with depths increasing from 20-35 km (mean of 26.1 ± 7.2 km) at the GB to 15-45 km (mean 31.5 km ± 10.5 km) under the HAP. Seismic activity thus extends down to levels that are deeper than those mapped by active seismic profiling, with the majority of events occurring within the mantle. Thermal modelling suggests that temperatures of approximately 600 °C characterise the base of the seismogenic brittle lithosphere at ~45 km depth. The large source depth and thermal structure supports previous suggestions that catastrophic seismic rupture through the lithospheric mantle may indeed occur in the area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-02-06
    Description: Despite a growing literature on the climate response to solar geoengineering – proposals to cool the planet by increasing the planetary albedo – there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar geoengineered climate and identify major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can build upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges and risks presented by solar geoengineering.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-04-23
    Description: The supply and bioavailability of iron (Fe) controls primary productivity and N2-fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe) and dissolved Fe (dFe) from the (sub)-tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles ‘buffer’ dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall ‘available’ (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its’ inclusion in Fe budgets and biogeochemical models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Metamorphic Geology .
    Publication Date: 2020-07-23
    Description: We report U–Pb zircon ages of c. 700–550 Ma, 262–220 Ma, 47–38 Ma and 15–14 Ma from amphibolites on Naxos Island in the Aegean extensional province of Greece. The zircon has complex internal structures. Based on cathodoluminescence response, zoning and crosscutting relationships a minimum of four zircon growth stages are identified: inherited core, magmatic core, inner metamorphic (?) rim and an outer metamorphic rim. Trace element compositions of the amphibolites suggest igneous differentiation and crustal assimilation. Zircon solubility as a function of saturation temperatures, Zr content and melt composition indicates that the zircon did not originally crystallize in the mafic bodies but was inherited from felsic precursor rocks, and subsequently assimilated into the mafic intrusives during emplacement. Zircon inheritance is corroborated by the complex, xenocrystic nature of the zircon in one sample. Ages of c. 700–550 Ma and 262–220 Ma are assigned to inherited zircon. Available geochemical data suggest that the 15–14 Ma metamorphic rims grew in situ in the amphibolites, corresponding to a high-grade metamorphic event at this time. However, the geochemical data cannot conclusively establish if the c. 40 Ma zircon rims also grew in situ, or whether they were inherited along with the xenocrystic cores. Two scenarios for emplacement of the mafic intrusives are discussed: (i) Intrusion during late-Triassic to Jurassic ocean basin development of the Aegean realm, in which case the 40 Ma zircon rims would have grown in situ, and (ii) emplacement in the Miocene as a result mafic underplating during large-scale extension. In this case, only the 15–14 Ma metamorphic outer rims would have formed in situ in the amphibolitic host rocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-02-06
    Description: Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2) using multifactorial long-term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-02-06
    Description: Combined seawater radiogenic hafnium (Hf) and neodymium (Nd) isotope compositions were extracted from bulk sediment leachates and foraminifera of Site 1088, ODP Leg 177, 2082 m water depth on the Agulhas Ridge. The new data provide a continuous reconstruction of long and short-term changes in ocean circulation and continental weathering inputs since the Mid-Miocene. Due to its intermediate water depth the sediments of this core sensitively recorded changes in admixture of North Atlantic Deep Water (NADW) to the Antarctic Circumpolar Current (ACC) as a function of the strength of the Atlantic Meridional Overturning Circulation (AMOC). Nd isotope compositions (εNd) range from -7 to -11 with glacial values generally 1 to 3 units more radiogenic than during the interglacials of the Quaternary. The data reveal episodes of significantly increased AMOC strength during late Miocene and Pliocene warm periods whereas peak radiogenic εNd values mark a strongly diminished AMOC during the major intensification of Northern Hemisphere Glaciation near 2.8 Ma and in the Pleistocene after 1.5 Ma. In contrast, the Hf isotope compositions (εHf) show an essentially continuous evolution from highly radiogenic values of up to +11 during the Miocene to less radiogenic present day values (+2 to +4) during the late Quaternary. The data document a long-term transition in dominant weathering inputs, where inputs from the South America are replaced by those from Southern Africa. Moreover, radiogenic peaks provide evidence for the supply of radiogenic Hf originating from Patagonian rocks to the Atlantic sector of the Southern Ocean via dust inputs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-02-06
    Description: While secondary contact between Mytilus edulis and Mytilus trossulus in North America results in mosaic hybrid zone formation, both species form a hybrid swarm in the Baltic. Despite pervasive gene flow, Baltic Mytilus species maintain substantial genetic and phenotypic differentiation. Exploring mechanisms underlying the contrasting genetic composition in Baltic Mytilus species will allow insights into processes such as speciation or adaptation to extremely low salinity. Previous studies in the Baltic indicated that only weak interspecific reproductive barriers exist and discussed the putative role of adaptation to environmental conditions. Using a combination of hydrodynamic modelling and multilocus genotyping, we investigate how oceanographic conditions influence passive larval dispersal and hybrid swarm formation in the Baltic. By combining our analyses with previous knowledge, we show a genetic transition of Baltic Mytilus species along longitude 12°-13°E, that is a virtual line between Malmö (Sweden) and Stralsund (Germany). Although larval transport only occurs over short distances (10–30 km), limited larval dispersal could not explain the position of this genetic transition zone. Instead, the genetic transition zone is located at the area of maximum salinity change (15–10 psu). Thus, we argue that selection results in weak reproductive barriers and local adaptation. This scenario could maintain genetic and phenotypic differences between Baltic Mytilus species despite pervasive introgressive hybridization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-02-06
    Description: Habitat stratification by abiotic and biotic factors initiates divergence of populations and leads to ecological speciation. In contrast to fully marine waters, the Baltic Sea is stratified by a salinity gradient that strongly affects fish physiology, distribution, diversity and virulence of important marine pathogens. Animals thus face the challenge to simultaneously adapt to the concurrent salinity and cope with the selection imposed by the changing pathogenic virulence. Western Baltic spring-spawning herring (Clupea harengus) migrate to spawning grounds characterized by different salinities to which herring are supposedly adapted. We hypothesized that herring populations do not only have to cope with different salinity levels but that they are simultaneously exposed to higher-order effects that accompany the shifts in salinity, that is induced pathogenicity of Vibrio bacteria in lower saline waters. To experimentally evaluate this, adults of two populations were caught in their spawning grounds and fully reciprocally crossed within and between populations. Larvae were reared at three salinity levels, representing the spawning ground salinity of each of the two populations, or Atlantic salinity conditions resembling the phylogenetic origin of Clupea harengus. In addition, larvae were exposed to a Vibrio spp. infection. Life-history traits and gene expression analysis served as response variables. Herring seem adapted to Baltic Sea conditions and cope better with low saline waters. However, upon a bacterial infection, herring larvae suffer more when kept at lower salinities implying reduced resistance against Vibrio or higher Vibrio virulence. In the context of recent climate change with less saline marine waters in the Baltic Sea, such interactions may constitute key future stressors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-02-06
    Description: Reconstructed sea surface temperatures (SSTs) derived from Mg/Ca measurements in nine encrusting coralline algal skeletons from the Aleutian archipelago in the northernmost Pacific Ocean reveal an overall increase in SST from 1665 to 2007. In the Aleutian SST reconstruction, decadal-scale variability is a transient feature present during the 1700s and early 1800s and then fully emerging post-1950. SSTs vary coherently with available instrument records of cyclone variance and vacillate in and out of coherence with multicentennial Pacific Northwest drought reconstructions as a response to SST-driven alterations of storm tracks reaching North America. These results indicate that an influence of decadal-scale variability on the North Pacific storm tracks only became apparent during the midtwentieth century. Furthermore, what has been assumed as natural variability in the North Pacific, based on twentieth century instrumental data, is not consistent with the long-term natural variability evident in reconstructed SSTs predating the anthropogenic influence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-02-06
    Description: Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-02-06
    Description: We present the first subprecessional record of seawater 87Sr/86Sr isotope ratios for a marginal Mediterranean subbasin. The sediments contained in this interval (three precessional cycles between 6.60 and 6.55 Ma) are important because they record conditions during the transition to the Messinian Salinity Crisis (MSC; 5.97 to 5.33 Ma), an event for which many details are still poorly understood. The record, derived from planktic foraminifera of the late Miocene Sorbas Basin (SE Spain), shows brief excursions with precessional cyclicity to 87Sr/86Sr ratios higher than coeval ocean 87Sr/86Sr. The hydrologic conditions required to generate the observed record are investigated using box modeling, constrained using a new paleodepth estimate (150 to 250 m) based on benthic foraminiferal assemblages. The box model results highlight the role of climate-driven interbasin density contrast as a significant driver of, or impediment to, exchange. The results are particularly significant in the context of the MSC, where 87Sr/86Sr excursions have been interpreted purely as a consequence of physical restriction. To replicate the observed temporal patterns of lithological variations and 87Sr/86Sr isotope excursions, the Sorbas Basin “box” must have a mainly positive hydrologic budget, in contrast with the Mediterranean's negative budget during the late Miocene. This result has implications for the assumption of synchronous deposition of specific sedimentary layers (sapropels) between marginal and open Mediterranean settings at subprecessional resolution. A net positive hydrologic budget in marginal Mediterranean subbasins may reconcile observations of freshwater inclusions in gypsum deposits.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Biogeosciences, 121 (8). pp. 2082-2095.
    Publication Date: 2019-02-01
    Description: Salt marshes provide numerous valuable ecological services. In particular, nitrogen (N) removal in salt marsh sediments alleviates N loading to the coastal ocean. N removal reduces the threat of eutrophication caused by increased N inputs from anthropogenic sources. It is unclear, however, whether chronic nutrient over-enrichment alters the capacity of salt marshes to remove anthropogenic N. To assess the effect of nutrient enrichment on N cycling in salt marsh sediments, we examined important N cycle pathways in experimental fertilization plots in a New England salt marsh. We determined rates of nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) using sediment slurry incubations with 15 N labeled ammonium or nitrate tracers under oxic headspace (20% oxygen / 80% helium). Nitrification and denitrification rates were more than ten-fold higher in fertilized plots compared to control plots. By contrast, DNRA, which retains N in the system, was high in control plots but not detected in fertilized plots. The relative contribution of DNRA to total nitrate reduction largely depends on the carbon/nitrate ratio in the sediment. These results suggest that long-term fertilization shifts N cycling in salt marsh sediments from predominantly retention to removal. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments: NO 3 - reduction in salt marsh sediments (PDF Download Available). Available from: https://www.researchgate.net/publication/305480944_Long-term_fertilization_alters_the_relative_importance_of_nitrate_reduction_pathways_in_salt_marsh_sediments_NO_3_-_reduction_in_salt_marsh_sediments [accessed Jun 6, 2017].
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-02-06
    Description: Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 18 (6). pp. 2149-2161.
    Publication Date: 2020-02-06
    Description: We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5–2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-02-01
    Description: In this investigation, the effect of dietary administration of curcumin on the healing of skin wound in fish, Labeo rohita, has been reported. Fish were divided into three groups: control group (fish without skin wound), sham group (fish with skin wound without curcumin treatment) and curcumin-treated group (fish with skin wound and subjected to dietary administration of 1% curcumin). Experiments were conducted for 30 days to assess the healing of skin wounds at different time intervals using scanning electron microscopy, histology, and mucopolysaccharide and enzyme histochemistry. In the curcumin-treated group, healing of skin wounds was found to be enhanced than in the sham group as indicated by early restoration of morphology of the surface layer of epithelial cells; the density of the mucous goblet cells; the density of club cells in epidermal layer; and early granular tissue formation, collagen deposition and tissue remodelling in dermal layer. Furthermore, peroxidase and catalase enzyme activity showed increased endogenous defence system in the curcumin-treated group compared with the sham group. It could be concluded that dietary administration of curcumin is beneficial in rapid healing of skin wounds in fish. Early healing of wounds could be considered to prevent the invasion of pathogens and to maintain the integrity of the surrounding tissue.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (7). pp. 1155-1172.
    Publication Date: 2020-02-06
    Description: Numerical Earth System Models are generic tools used to extrapolate present climate conditions into a warming future and to explore geoengineering options. Most of the current-generation models feature a simple pelagic biogeochemical model component that is embedded into a three-dimensional ocean general circulation model. The dynamics of these biogeochemical model components is essentially controlled by so-called model parameters most of which are poorly known. Here we explore the feasibility to estimate these parameters in a full-fledged three-dimensional Earth System Model by minimizing the misfit to noisy observations. The focus is on parameter identifiability. Based on earlier studies, we illustrate problems in determining a unique estimate of those parameters that prescribe the limiting effect of nutrient- and light-depleted conditions on carbon assimilation by autotrophic phytoplankton. Our results showcase that for typical models and evaluation metrics no meaningful “best” unique parameter set exists. We find very different parameter sets which are, on the one hand, equally consistent with our (synthetic) historical observations while, on the other hand, they propose strikingly differing projections into a warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-02-06
    Description: We present a comprehensive study showing new results from a shallow gas seep area in approximate to 40 m water depth located in the North Sea, Netherlands sector B13 that we call Dutch Dogger Bank seep area. It has been postulated that methane presumably originating from a gas reservoir in approximate to 600 m depth below the seafloor is naturally leaking to the seafloor. Our ship-based subbottom echosounder data indicate that the migrating gas is trapped in numerous gas pockets in the shallow sediments. The gas pockets are located at the boundary between the top of the Late Pliocene section and overlying fine-grained sediments, which were deposited during the early Holocene marine transgression after the last glaciation. We mapped gas emissions during three R/V Heincke cruises in 2014, 2015, and 2016 and repeatedly observed up to 850 flares in the study area. Most of them (approximate to 80%) were concentrated at five flare clusters. Our repeated analysis revealed spatial similarities of seep clusters, but also heterogeneities in emission intensities. A first calculation of the methane released from these clusters into the water column revealed a flow rate of 277 L/min (SD=140), with two clusters emitting 132 and 142 L/min representing the most significant seepage sites. Above these two flare clusters, elevated methane concentrations were recorded in atmospheric measurements. Our results illustrate the effective transport of methane via gas bubbles through a approximate to 40 m water column, and furthermore provide an estimate of the emission rate needed to allow for a contribution to the atmospheric methane concentration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Wiley
    In:  In: Encyclopedia of Maritime and Offshore Engineering. , ed. by Carlton, J., Choo, Y. S. and Jukes, P. Wiley, Hoboken, pp. 1-10.
    Publication Date: 2017-12-01
    Description: Seafloor massive sulfide (SMS) deposits form on and just below the seafloor along submarine tectonic plate boundaries. The deposits form from seawater that circulates through the underlying crust, is heated, leaches metals and sulfur from the surrounding rock, and then ascends and vents at the seafloor, forming sulfide mineral accumulations rich in Cu, Zn, Pb, Au, and Ag. Hydrothermal circulation through the crust is driven by shallow magmatic heat sources along the plate boundaries. Although high temperature “black smoker” chimneys and the unique ecosystems that they support are the most recognizable features of these vent sites, the mineral deposits can take on a variety of forms, from individual chimneys of less than a meter tall to large mounds with diameters of several hundred meters. The description of the deposits as “massive” refers to the high proportion (typically over 60%) of sulfide minerals that make up the deposits. Other minerals that commonly occur in SMS deposits are sulfates (barite and anhydrite), amorphous silica, and clay minerals. At the time of writing, more than 500 sites of high temperature seafloor hydrothermal systems and related mineral deposits have been found of the seafloor.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-02-06
    Description: Artificial reefs, in the Eastern Mediterranean (Cyprus,) became a popular and frequently used tool, in fisheries and biodiversity conservation management. Even though evaluation studies about the efficacy of artificial reefs are plentiful in the rest of the Mediterranean (Central and Western), in the Eastern Basin they are largely absent. As the Eastern part of the Mediterranean Sea is characterised by unique physical parameters, the necessity to study artificial reefs under these contrasting regimes increases. The epibenthic communities of two unintentional artificial reefs (modern shipwrecks) in Cyprus (Zenobia) and Lebanon (Alice-B) were evaluated in 2010. Both shipwrecks are at similar depth, type of sea bottom, made of the same material (steel) and were sunk approximately the same period of time. However, Alice-B shipwreck off the coast of Lebanon is constantly exposed to higher levels of nutrients than Zenobia in Cyprus. Significant dissimilarities were observed in the composition, percentage of benthic cover of predominant taxonomic groups and development of the epibenthic communities. Differences in physical and chemical parameters between sides lay mainly in the nutrient and thermal regimes affecting the shipwrecks and most likely bring about the differences in the observed community structure. The results of this study suggest that epibenthic communities could be highly impacted by eutrophication caused by anthropogenic activities, leading to less biodiverse
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-06-29
    Description: We use seismic oceanography to document and analyze oceanic thermohaline finestructure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in-situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline finestructure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface meso-scale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse towards the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double-diffusion prevail. Synopsis We studied the internal temperature and salinity structure of the Tyrrhenian Sea (Mediterranean) using the multichannel seismic reflection method (the same used in the hydrocarbon industry). Low frequency sound (seismic) waves are produced at the surface with an explosive air source and recorded by a towed cable containing hydrophones (underwater microphones). The data are processed to reveal 'stratigraphy' that result from contrasts in density that are themselves caused by changes in temperature and salinity. In this way we can map ocean circulation in two-dimensions. We also deployed in situ oceanographic probes to measure temperature and salinity in order to corroborate and optimize the processing of the seismic data. We then quantified the internal gravity wave field by tracking the peaks of seismic trace wavelets. Our results show that the interior of the Tyrrhenian Sea is largely isolated from internal waves that are generated by a large cyclonic boundary current that contains waters from the Atlantic ocean and other parts of the Mediterranean. This isolation allows the thermohaline finestructure to form, where small scale vertical mixing processes are at play. Understanding these mixing processes will aid researchers study global ocean circulation and to add constraints that can help improve climate models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (8). pp. 1256-1270.
    Publication Date: 2021-04-21
    Description: Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m−2 d−1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from −0.07 to −1.28 μmol m−2 d−1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m−2 d−1) and organic carbon (13 to 29 mmol C m−2 d−1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-02-06
    Description: We investigated the onset and development of Cretaceous Oceanic Anoxic Event 2 (OAE2) in a newly drilled core (SN degrees 4) from the Tarfaya Basin (southern Morocco), where this interval is unusually expanded. High-resolution (centimeter-scale equivalent to centennial) analysis of bulk organic and carbonate stable isotopes and of carbonate and organic carbon content in combination with XRF scanner derived elemental distribution reveal that the ocean-climate system behaved in a highly dynamic manner prior to and during the onset of OAE2. Correlation with the latest orbital solution indicates that the main carbon isotope shift occurred during an extended minimum in orbital eccentricity (similar to 400 kyr cycle). Shorter-term fluctuations in carbonate and organic carbon accumulation and in sea level related terrigenous discharge were predominantly driven by variations in orbital obliquity. Negative excursions in organic and carbonate delta C-13 preceded the global positive delta C-13 shift marking the onset of OAE2, suggesting injection of isotopically depleted carbon into the atmosphere. The main delta C-13 increase during the early phase of OAE2 in the late Cenomanian was punctuated by a transient plateau. Maximum organic carbon accumulation occurred during the later part of the main delta C-13 increase and was associated with climate cooling events, expressed as three consecutive maxima in bulk carbonate delta O-18. The extinctions of the thermocline dwelling keeled planktonic foraminifers Rotalipora greenhornensis and Rotalipora cushmani occurred during the first and last of these cooling events and were likely associated with obliquity paced, ocean-wide expansions, and intensifications of the oxygen minimum zone, affecting their habitat space on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-02-01
    Description: Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-02-01
    Description: Bioassay incubation experiments conducted with nutrients and local atmospheric aerosol amendments indicate that phosphorus (P) availability limited phytoplankton growth in the low-nutrient low-chlorophyll (LNLC) ocean off Barbados. Atmospheric deposition provides a relatively large influx of new nutrients and trace metals to the surface ocean in this region in comparison to other nutrient sources. However, the impact on native phytoplankton is muted due to the high ratio of nitrogen (N) to P (NO3:SRP 〉 40) and the low P solubility of these aerosols. Atmospheric deposition induces P limitation in this LNLC region by adding more N and iron (Fe) relative to P. This favors the growth of Prochlorococcus, a genus characterized by low P requirements and highly efficient P acquisition mechanisms. A global three-dimensional marine ecosystem model that includes species-specific phytoplankton elemental quotas/stoichiometry and the atmospheric deposition of N, P, and Fe supports this conclusion. Future increases in aerosol N loading may therefore influence phytoplankton community structure in other LNLC areas, thereby affecting the biological pump and associated carbon sequestration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Wiley
    In:  Angewandte Chemie International Edition, 55 (31). pp. 8944-8947.
    Publication Date: 2019-02-01
    Description: Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A–D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 5 (12). pp. 1252-1266.
    Publication Date: 2020-11-23
    Description: The potential of Coastal Ocean Alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 μm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 μm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim=3.4) to 790 GtC (Ωlim=9) and increase ocean carbon storage by 290 Gt (Ωlim=3.4) to 913 Gt (Ωlim=9) by year 2100.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    The Fisheries Society of the British Isles | Wiley
    In:  Journal of Fish Biology, 91 (5). pp. 1475-1490.
    Publication Date: 2020-02-06
    Description: Transect surveys of hamlet communities (Hypoplectrus spp., Serranidae) covering 14 000 m2 across 16 reefs off La Parguera, Puerto Rico, are presented and compared with a previous survey conducted in the year 2000. The hamlet community has noticeably changed over 17 years, with a 〉 30% increase in relative abundance of the yellowtail hamlet Hypoplectrus chlorurus on the inner reefs at the expense of the other hamlet species. The data also suggest that the density of H. chlorurus has declined and that its distribution has shifted towards shallower depths. Considering that H. chlorurus has been previously identified as one of the few fish showing a positive association with seawater turbidity on the inner reefs of La Parguera and that sedimentation of terrestrial origin has increased over recent decades on these reefs, it is proposed that turbidity may constitute an important but so far overlooked ecological driver of hamlet communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Wiley
    In:  International Journal for Numerical and Analytical Methods in Geomechanics, 41 (14). pp. 1523-1538.
    Publication Date: 2020-07-28
    Description: Methane hydrate-bearing sediments exist throughout the world in continental margins and in Arctic permafrost. Hydrates are ice-like compounds when dissociate due to temperature rise or reduction in fluid pressure, release gas. Because of the mechanical property changes caused by dissociation in which the loads supported by the hydrates are transferred to soil grains, these sediments may become unstable. To quantify the risk of ground instability triggered by dissociation, which may happen during operation to extract methane gas or from climate changes, a reliable predictive model is indispensable. Even though many models have been proposed, a detailed validation of the ability to model dissociation impact is still needed. This study investigated the adequacy of an spatially mobilized plane constitutive model and a modeling framework using laboratory-induced dissociation tests under shear from literature. Using laboratoryimposed temperature and pressure changes and the resulting hydrate saturation changes as input, this study was able to capture the geomechanical responses and determine the stability state of methane hydrate-bearing sediments as observed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-02-06
    Description: This paper investigates new observations from the poorly understood region between the Kara and Laptev Seas in the Eastern Arctic Ocean. We discuss relevant circulation features including riverine freshwater, Atlantic-derived water, and polynya-formed dense water, emphasize Vilkitsky Strait (VS) as an important Kara Sea gateway, and analyze the role of the adjacent ∼250 km-long submarine Vilkitsky Trough (VT) for the Arctic boundary current. Expeditions in 2013 and 2014 operated closely spaced hydrographic transects and 1 year-long oceanographic mooring near VT's southern slope, and found persistent annually averaged flow of 0.2 m s−1 toward the Nansen Basin. The flow is nearly barotropic from winter through early summer and becomes surface intensified with maximum velocities of 0.35 m s−1 from August to October. Thermal wind shear is maximal above the southern flank at ∼30 m depth, in agreement with basinward flow above VT's southern slope. The subsurface features a steep front separating warm (–0.5°C) Atlantic-derived waters in central VT from cold (〈–1.5°C) shelf waters, which episodically migrates across the trough indicated by current reversals and temperature fluctuations. Shelf-transformed waters dominate above VT's slope, measuring near-freezing temperatures throughout the water column at salinities of 34–35. These dense waters are vigorously advected toward the Eurasian Basin and characterize VT as a conduit for near-freezing waters that could potentially supply the Arctic Ocean's lower halocline, cool Atlantic water, and ventilate the deeper Arctic Ocean. Our observations from the northwest Laptev Sea highlight a topographically complex region with swift currents, several water masses, narrow fronts, polynyas, and topographically channeled storms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-12-17
    Description: Aim Following the biogeographical approach implemented by Longhurst for the epipelagic layer, we propose here to identify a biogeochemical 3-D partition for the mesopelagic layer. The resulting partition characterizes the main deep environmental biotopes and their vertical boundaries on a global scale, which can be used as a geographical and ecological framework for conservation biology, ecosystem-based management and for the design of oceanographic investigations. Location The global ocean. Methods Based on the most comprehensive environmental climatology available to date, which is both spatially and vertically resolved (seven environmental parameters), we applied a combination of clustering algorithms (c-means, k-means, partition around medoids and agglomerative with Ward's linkage) associated with a nonparametric environmental model to identify the vertical and spatial delineation of the mesopelagic layer. Results First, we show via numerical interpretation that the vertical division of the pelagic zone varies and, hence, is not constant throughout the global ocean. Indeed, a latitudinal gradient is found between the epipelagic–mesopelagic and mesopelagic–bathypelagic vertical limits. Second, the mesopelagic layer is shown here to be composed of 13 distinguishable Biogeochemical Provinces. Each province shows a distinct range of environmental conditions and characteristic 3-D distributions. Main conclusions The historical definition of the mesopelagic zone is here revisited to define a 3-D geographical framework and characterize all the deep environmental biotopes of the deep global ocean. According to the numerical interpretation of mesopelagic boundaries, we reveal that the vertical division of the zone is not constant over the global ocean (200–1,000 m) but varies between ocean basin and with latitude. We also provide evidence of biogeochemical division of the mesopelagic zone that is spatially structured in a similar way than the epipelagic in the shallow waters but varies in the deep owing to a change of the environmental driving factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-02-01
    Description: The spectacular eruption of Lusi began in NE Java, Indonesia, on 29 May 2006 and is still ongoing. Since its birth, Lusi has presented a pulsating activity marked by frequent eruptions of gas, water, mud and clasts. The aim of this study was to bridge subsurface and surface observations to describe Lusi's behaviour. Based on visual observations from 2014 to 2015, Lusi's erupting activity is characterised by four recurrent phases: (1) regular bubbling activity; (2) clastic geysering; (3) clastic geysering with mud bursts and intense vapour discharge; (4) quiescent phase. With a temporary network of five seismic stations deployed around the crater, we could identify tremor events related to phases 2 and 3. One of the tremor types shows periodic overtones that we associate with mud wagging in the feeder conduit. On the basis of our observations, we would describe Lusi as a sedimentary‐hosted hydrothermal system with clastic‐dominated geysering activity.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-05-11
    Description: Subduction of a narrow slab of oceanic lithosphere beneath a tightly curved orogenic arc requires the presence of at least one lithospheric scale tear fault. While the Calabrian subduction beneath southern Italy is considered to be the type example of this geodynamic setting, the geometry, kinematics and surface expression of the associated lateral, slab tear fault offshore eastern Sicily remain controversial. Results from a new marine geophysical survey conducted in the Ionian Sea, using high‐resolution bathymetry and seismic profiling reveal active faulting at the seafloor within a 140 km long, two‐branched fault system near Alfeo Seamount. The previously unidentified 60 km long NW trending North Alfeo Fault system shows primarily strike‐slip kinematics as indicated by the morphology and steep‐dipping transpressional and transtensional faults. Available earthquake focal mechanisms indicate dextral strike‐slip motion along this fault segment. The 80 km long SSE trending South Alfeo fault system is expressed by one or two steeply dipping normal faults, bounding the western side of a 500+ m thick, 5 km wide, elongate, syntectonic Plio‐Quaternary sedimentary basin. Both branches of the fault system are mechanically capable of generating magnitude 6–7 earthquakes like those that struck eastern Sicily in 1169, 1542, and 1693.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Wiley
    In:  Methods in Ecology and Evolution, 7 (6). pp. 636-645.
    Publication Date: 2020-07-01
    Description: Scientific investigation is of value only insofar as relevant results are obtained and communicated, a task that requires organizing, evaluating, analysing and unambiguously communicating the significance of data. In this context, working with ecological data, reflecting the complexities and interactions of the natural world, can be a challenge. Recent innovations for statistical analysis of multifaceted interrelated data make obtaining more accurate and meaningful results possible, but key decisions of the analyses to use, and which components to present in a scientific paper or report, may be overwhelming. We offer a 10-step protocol to streamline analysis of data that will enhance understanding of the data, the statistical models and the results, and optimize communication with the reader with respect to both the procedure and the outcomes. The protocol takes the investigator from study design and organization of data (formulating relevant questions, visualizing data collection, data exploration, identifying dependency), through conducting analysis (presenting, fitting and validating the model) and presenting output (numerically and visually), to extending the model via simulation. Each step includes procedures to clarify aspects of the data that affect statistical analysis, as well as guidelines for written presentation. Steps are illustrated with examples using data from the literature. Following this protocol will reduce the organization, analysis and presentation of what may be an overwhelming information avalanche into sequential and, more to the point, manageable, steps. It provides guidelines for selecting optimal statistical tools to assess data relevance and significance, for choosing aspects of the analysis to include in a published report and for clearly communicating information.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-09-23
    Description: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-02-06
    Description: The nature and origin of the J-magnetic anomaly along the Iberia–Newfoundland margins are controversial and its validity for plate kinematic reconstructions questioned. At present, it is interpreted as either an oceanic isochron or an edge effect of oceanic crust corresponding to lithosphere breakup. Both interpretations result in restorations that are in conflict with the current knowledge from Pyrenean and North Atlantic geology. We combine seismic interpretations and dating of magmatic additions with magnetic data to examine the nature and formation process of this anomaly and discuss its value for plate restorations. We show that the J-anomaly is the result of polygenic and multiple magmatic events occurring during and after the formation of the first oceanic crust. Therefore, we conclude that the J-anomaly cannot be used for plate kinematic studies and, more generally, we question the validity of using ill-defined magnetic anomalies outside unequivocal oceanic domains for plate reconstructions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...