ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (376)
  • Mice  (376)
  • American Association for the Advancement of Science (AAAS)  (376)
  • American Association for the Advancement of Science
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Elsevier
  • 2010-2014  (145)
  • 1995-1999  (152)
  • 1980-1984  (79)
  • 1955-1959
  • 1945-1949
  • 1935-1939
  • 1930-1934
  • 2014  (145)
  • 1995  (152)
  • 1981  (79)
  • 1957
  • 1932
  • Natural Sciences in General  (376)
  • Chemistry and Pharmacology  (376)
  • Geosciences
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Collection
  • Articles  (376)
Publisher
  • American Association for the Advancement of Science (AAAS)  (376)
  • American Association for the Advancement of Science
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • +
Years
  • 2010-2014  (145)
  • 1995-1999  (152)
  • 1980-1984  (79)
  • 1955-1959
  • 1945-1949
  • +
Year
Topic
  • Natural Sciences in General  (376)
  • Chemistry and Pharmacology  (376)
  • Geosciences
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
  • Computer Science  (376)
  • +
  • 1
    Publication Date: 2014-08-26
    Description: Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baruch, Kuti -- Deczkowska, Aleksandra -- David, Eyal -- Castellano, Joseph M -- Miller, Omer -- Kertser, Alexander -- Berkutzki, Tamara -- Barnett-Itzhaki, Zohar -- Bezalel, Dana -- Wyss-Coray, Tony -- Amit, Ido -- Schwartz, Michal -- AG045034/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):89-93. doi: 10.1126/science.1252945. Epub 2014 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel. michal.schwartz@weizmann.ac.il ido.amit@weizmann.ac.il. ; Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel. michal.schwartz@weizmann.ac.il ido.amit@weizmann.ac.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25147279" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*pathology ; Animals ; Brain/*physiology ; Choroid Plexus/*metabolism ; *Cognition ; *Gene Expression Regulation ; Hippocampus/cytology ; Interferon Regulatory Factors/*genetics ; Interferon Type I/*physiology ; Mice ; Mice, Transgenic ; Neurogenesis ; Receptors, Interferon/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-23
    Description: The neuromuscular junction (NMJ) is the synapse between a motor neuron and skeletal muscle. Defects in NMJ transmission cause muscle weakness, termed myasthenia. The muscle protein Dok-7 is essential for activation of the receptor kinase MuSK, which governs NMJ formation, and DOK7 mutations underlie familial limb-girdle myasthenia (DOK7 myasthenia), a neuromuscular disease characterized by small NMJs. Here, we show in a mouse model of DOK7 myasthenia that therapeutic administration of an adeno-associated virus (AAV) vector encoding the human DOK7 gene resulted in an enlargement of NMJs and substantial increases in muscle strength and life span. When applied to model mice of another neuromuscular disorder, autosomal dominant Emery-Dreifuss muscular dystrophy, DOK7 gene therapy likewise resulted in enlargement of NMJs as well as positive effects on motor activity and life span. These results suggest that therapies aimed at enlarging the NMJ may be useful for a range of neuromuscular disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arimura, Sumimasa -- Okada, Takashi -- Tezuka, Tohru -- Chiyo, Tomoko -- Kasahara, Yuko -- Yoshimura, Toshiro -- Motomura, Masakatsu -- Yoshida, Nobuaki -- Beeson, David -- Takeda, Shin'ichi -- Yamanashi, Yuji -- G0701521/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1505-8. doi: 10.1126/science.1250744.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. ; Department of Occupational Therapy, Nagasaki University School of Health Sciences, Nagasaki, Japan. ; Department of Electrical and Electronics Engineering, Faculty of Engineering, Nagasaki Institute of Applied Science, Nagasaki, Japan. ; Laboratory of Developmental Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. ; Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. yyamanas@ims.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237101" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dependovirus ; Disease Models, Animal ; Female ; Genetic Therapy/*methods ; Genetic Vectors/administration & dosage ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Muscle Proteins/*genetics ; Muscle, Skeletal/*innervation/physiopathology ; Muscular Dystrophies, Limb-Girdle/genetics/*pathology/*therapy ; Neuromuscular Junction/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-04
    Description: After an infection, pathogen-specific tissue-resident memory T cells (T(RM) cells) persist in nonlymphoid tissues to provide rapid control upon reinfection, and vaccination strategies that create T(RM) cell pools at sites of pathogen entry are therefore attractive. However, it is not well understood how T(RM) cells provide such pathogen protection. Here, we demonstrate that activated T(RM) cells in mouse skin profoundly alter the local tissue environment by inducing a number of broadly active antiviral and antibacterial genes. This "pathogen alert" allows skin T(RM) cells to protect against an antigenically unrelated virus. These data describe a mechanism by which tissue-resident memory CD8(+) T cells protect previously infected sites that is rapid, amplifies the activation of a small number of cells into an organ-wide response, and has the capacity to control escape variants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ariotti, Silvia -- Hogenbirk, Marc A -- Dijkgraaf, Feline E -- Visser, Lindy L -- Hoekstra, Mirjam E -- Song, Ji-Ying -- Jacobs, Heinz -- Haanen, John B -- Schumacher, Ton N -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):101-5. doi: 10.1126/science.1254803. Epub 2014 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Division of Biological Stress Response, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Experimental Animal Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. t.schumacher@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278612" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Female ; Immunologic Memory/genetics/*immunology ; Male ; Mice ; Skin/*immunology/microbiology/virology ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):477. doi: 10.1126/science.343.6170.477.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24482460" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/administration & dosage/*adverse effects ; Animals ; Antioxidants/administration & dosage/*adverse effects ; Carcinogens/toxicity ; DNA Damage ; Dietary Supplements/adverse effects ; Genes, Neoplasm/*drug effects ; Humans ; Lung Neoplasms/*chemically induced/prevention & control ; Mice ; Smoking/adverse effects ; Tumor Suppressor Protein p53/genetics/metabolism ; Vitamin E/administration & dosage/*adverse effects ; Vitamins/administration & dosage/*adverse effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-15
    Description: Vertebrate limbs first emerge as small buds at specific locations along the trunk. Although a fair amount is known about the molecular regulation of limb initiation and outgrowth, the cellular events underlying these processes have remained less clear. We show that the mesenchymal limb progenitors arise through localized epithelial-to-mesenchymal transition (EMT) of the coelomic epithelium specifically within the presumptive limb fields. This EMT is regulated at least in part by Tbx5 and Fgf10, two genes known to control limb initiation. This work shows that limb buds initiate earlier than previously thought, as a result of localized EMT rather than differential proliferation rates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097009/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097009/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gros, Jerome -- Tabin, Clifford J -- R01 HD045499/HD/NICHD NIH HHS/ -- R01-HD045499/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1253-6. doi: 10.1126/science.1248228.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cadherins/metabolism ; Chick Embryo ; *Epithelial-Mesenchymal Transition ; Extremities/*embryology ; Fibroblast Growth Factor 10/genetics/metabolism ; Limb Buds/*cytology/metabolism ; Mice ; Mice, Mutant Strains ; Protein Kinase C/metabolism ; T-Box Domain Proteins/genetics/metabolism ; Vimentin/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- New York, N.Y. -- Science. 2014 May 16;344(6185):679. doi: 10.1126/science.344.6185.679.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833367" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Experimentation/*standards ; Animals ; Biomedical Research/*standards ; Cells ; Female ; Male ; Mice ; National Institutes of Health (U.S.) ; Sex Factors ; United States ; X Chromosome ; Y Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clery, Daniel -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):290-1. doi: 10.1126/science.346.6207.290.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324365" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chemistry ; Mice ; Microscopy, Fluorescence/*methods ; *Nobel Prize ; Organelles/ultrastructure ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-15
    Description: Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity-regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096908/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096908/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Erin M -- Purger, David -- Mount, Christopher W -- Goldstein, Andrea K -- Lin, Grant L -- Wood, Lauren S -- Inema, Ingrid -- Miller, Sarah E -- Bieri, Gregor -- Zuchero, J Bradley -- Barres, Ben A -- Woo, Pamelyn J -- Vogel, Hannes -- Monje, Michelle -- 1S10RR02678001/RR/NCRR NIH HHS/ -- K08 NS070926/NS/NINDS NIH HHS/ -- K08NS070926/NS/NINDS NIH HHS/ -- R01 EY10257/EY/NEI NIH HHS/ -- T32 MH020016/MH/NIMH NIH HHS/ -- UL1 RR025744/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 2;344(6183):1252304. doi: 10.1126/science.1252304. Epub 2014 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Neurology, Neurosurgery, and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24727982" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Thy-1/genetics ; Behavior, Animal/physiology ; *Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Corpus Callosum/cytology/physiology ; Mice ; Mice, Mutant Strains ; Motor Activity/physiology ; Motor Cortex/cytology/*physiology ; Myelin Sheath/*metabolism ; Nerve Fibers, Myelinated/*metabolism ; Neural Stem Cells/*physiology ; Neurons/*physiology ; Oligodendroglia/*cytology ; Rhodopsin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-25
    Description: Episodic memory requires associations of temporally discontiguous events. In the entorhinal-hippocampal network, temporal associations are driven by a direct pathway from layer III of the medial entorhinal cortex (MECIII) to the hippocampal CA1 region. However, the identification of neural circuits that regulate this association has remained unknown. In layer II of entorhinal cortex (ECII), we report clusters of excitatory neurons called island cells, which appear in a curvilinear matrix of bulblike structures, directly project to CA1, and activate interneurons that target the distal dendrites of CA1 pyramidal neurons. Island cells suppress the excitatory MECIII input through the feed-forward inhibition to control the strength and duration of temporal association in trace fear memory. Together, the two EC inputs compose a control circuit for temporal association memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitamura, Takashi -- Pignatelli, Michele -- Suh, Junghyup -- Kohara, Keigo -- Yoshiki, Atsushi -- Abe, Kuniya -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):896-901. doi: 10.1126/science.1244634. Epub 2014 Jan 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24457215" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Association ; CA1 Region, Hippocampal/cytology/*physiology ; Entorhinal Cortex/cytology/*physiology ; GABAergic Neurons/physiology ; Interneurons/physiology ; Membrane Proteins/genetics ; *Memory, Episodic ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net ; Neurons/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...