ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (559)
  • Meteorology and Climatology  (245)
  • Air Transportation and Safety  (182)
  • Solar Physics  (132)
  • 2015-2019  (559)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2017  (559)
  • 1926
Collection
  • Other Sources  (559)
Years
  • 2015-2019  (559)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-04-01
    Description: Introduction / Background; Current Landscape and Future Vision; UAS (Unmanned Aircraft System) Demand and Key Challenges; UAS Airspace Access Pillars and Enablers; Overarching UAS Community Strategy; Long Term Vision Considerations; Recommendations and Next Steps.
    Keywords: Air Transportation and Safety
    Type: DFRC-E-DAA-TN39927 , UAS in the NAS Group; 24 Mar. 2017; Edwards, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-15
    Description: We are discussing needs of current and future airspace users and identifying implications for architecture and services.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN43857 , The Way Forward for New and Current Airspace Users; 20 Jun. 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-18
    Description: Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN38460 , Aerophilia 2017; 27-28 Jan. 2017; Manglore; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-11-29
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN46065
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-08
    Description: The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, 1418 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200 K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50 ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wavedriven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.
    Keywords: Meteorology and Climatology
    Type: NF1676L-26528 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 11; 6094-6107
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-13
    Description: Since Chaneys report, the range of global warming projections in response to a doubling of CO2from 1.5 C to 4.5 C or greaterremains largely unscathed by the onslaught of new scientific insights. Conventional thinking regards inter-model differences in climate feedbacks as the sole cause of the warming projection spread (WPS). Our findings shed new light on this issue indicating that climate feedbacks inherit diversity from the model control climate, besides the models intrinsic climate feedback diversity that is independent of the control climate state. Regulated by the control climate ice coverage, models with greater (lesser) ice coverage generally possess a colder (warmer) and drier (moister) climate, exhibit a stronger (weaker) ice-albedo feedback, and experience greater (weaker) warming. The water vapor feedback also inherits diversity from the control climate but in an opposite way: a colder (warmer) climate generally possesses a weaker (stronger) water vapor feedback, yielding a weaker (stronger) warming. These inherited traits influence the warming response in opposing manners, resulting in a weaker correlation between the WPS and control climate diversity. Our study indicates that a better understanding of the diversity amongst climate model mean states may help to narrow down the range of global warming projections.
    Keywords: Meteorology and Climatology
    Type: NF1676L-26987 , Scientific Reports (e-ISSN 2045-2322); 7; 4300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-11
    Description: Detecting climate trends of atmospheric temperature, moisture, cloud, and surface temperature requires accurately calibrated satellite instruments such as the Climate Absolute Radiance and Reflectivity Observatory (CLARREO). Wielicki et al. have studied the CLARREO measurement requirements for achieving climate change accuracy goals in orbit. Our study further quantifies the spectrally dependent IR instrument calibration requirement for detecting trends of atmospheric temperature and moisture profiles. The temperature, water vapor, and surface skin temperature variability and the associated correlation time are derived using Modern Era Retrospective-Analysis for Research and Applications (MERRA) and European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. The results are further validated using climate model simulation results. With the derived natural variability as the reference, the calibration requirement is established by carrying out a simulation study for CLARREO observations of various atmospheric states under all-sky. We derive a 0.04 K (k=2, or 95% confidence) radiometric calibration requirement baseline using a spectral fingerprinting method. We also demonstrate that the requirement is spectrally dependent and some spectral regions can be relaxed due to the hyperspectral nature of the CLARREO instrument. We further discuss relaxing the requirement to 0.06 K (k=2) based on the uncertainties associated with the temperature and water vapor natural variability and relatively small delay in time-to-detect for trends relative to the baseline case. The methodology used in this study can be extended to other parameters (such as clouds and CO2) and other instrument configurations.
    Keywords: Meteorology and Climatology
    Type: NF1676L-26580 , Journal of Climate (ISSN 0894-8755) (e-ISSN 1520-0442 ); 30; 11; 3979-3998
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-03
    Description: This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2017-219482 , ARC-E-DAA-TN40243
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Natural cloud-to-ground (CG) lightning and the charge structure of the associated clouds behave differently over land and ocean. Existing literature has raised questions over the years on the behavior of thunderstorms and lightning over oceans, and there are still open scientific questions. We expand on the observational datasets by obtaining identical electric field observations over coastal land, near-shore, and deep ocean regions during both clear air and thunderstorm periods. Oceanic observations were obtained using two 3-meter NOAA buoys that were instrumented with Campbell Scientific electric field mills to measure the static electric fields. These data were compared to selected electric field records from the existing on-shore electric field mill suite of 31 sensors at Kennedy Space Center (KSC). CG lightning occurrence times, locations and peak current values for both on-shore and ocean were provided by the U.S. National Lightning Detection Network. The buoy instruments were first evaluated on-shore at the Florida coast, to calibrate field enhancements and to confirm proper behavior of the system in elevated-field environments. The buoys were then moored 20NM and 120NM off the coast of KSC in February (20NM) and August (120NM) 2014. Statistically larger CG peak currents were reported over the deep ocean for first strokes and for subsequent strokes with new contacts points. Storm-related static fields were significantly larger at both oceanic sites, likely due to decreased screening by nearby space charge. Time-evolution of the static field during storm development and propagation indicated weak or missing lower positive charge regions in most storms that initiated over the deep ocean, supporting one mechanism for the observed high peak currents in negative first strokes over the deep ocean. This project also demonstrated the practicality of off-shore electric field measurements for safety-related decision making at KSC.
    Keywords: Meteorology and Climatology
    Type: KSC-E-DAA-TN33718 , Annual Meeting of the American Meteorological Society; Jan 22, 2017 - Jan 26, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: A faithful representation of polar stratospheric chemistry in models and its connection with dynamical variability is essential for our understanding of the evolution of the ozone layer in a changing climate and during the projected continuing decline of ozone depleting substances in the atmosphere. We use a new configuration of the Goddard Earth Observing System Data Assimilation System with a stratospheric chemistry model to study ozone depletion in the Arctic polar stratosphere during the exceptionally cold (in the stratosphere) winters 2015/2016 and 2010/2011.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN42317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-12
    Description: Over the past 15 years, the northeastern United States has seen a statistically significant increase in the frequency of extreme precipitation events that is larger and more widespread than anywhere else in the country. This increase in events is more likely to be associated with frontal and low-pressure systems, rather than being caused by more tropical cyclones impacting the region.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN42316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The purpose of this flight test plan is to describe procedures for conducting FIM operations with the FIM Avionics Systems installed in two test aircraft.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-2017-219595 , NF1676L-26806
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: A comprehensive study of Emergency Locator Transmitter (ELT) performance was conducted over a three year period concluding in 2016 in support of the Search and Rescue (SAR) Mission Office at National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The study began with a review of reported performance cited in a collection of works published as early as 1980 as well as analysis of a focused set of contemporary aviation crash reports. Based on initial research findings, a series of subscale and fullscale system tests were performed at NASA Langley Research Center (LaRC) with the goals of investigating ELT system failure modes and developing recommended improvements to the Radio Technical Commission for Aeronautics (RTCA) Minimum Operational Performance Specification (MOPS) that will result in improved system performance. Enhanced performance of ELT systems in aviation accidents will reduce unnecessary loss of human life and make SAR operations safer and less costly by reducing the amount of time required to locate accident sites.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2017-219584 , L-20788 , NF1676L-26456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-12
    Description: This study provides a better understanding of the relationships between the trends of mean and extreme precipitation in two observed precipitation data sets: the Climate Prediction Center Unified daily precipitation data set and the Global Precipitation Climatology Program (GPCP) pentad data set. The study employs three kinds of definitions of extreme precipitation: (1) percentile, (2) standard deviation and (3) generalize extreme value (GEV) distribution analysis for extreme events based on local statistics. Relationship between trends in the mean and extreme precipitation is identified with a novel metric, i.e. area aggregated matching ratio (AAMR) computed on regional and global scales. Generally, more (less) extreme events are likely to occur in regions with a positive (negative) mean trend. The match between the mean and extreme trends deteriorates for increasingly heavy precipitation events. The AAMR is higher in regions with negative mean trends than in regions with positive mean trends, suggesting a higher likelihood of severe dry events, compared with heavy rain events in a warming climate. AAMR is found to be higher in tropics and oceans than in the extratropics and land regions, reflecting a higher degree of randomness and more important dynamical rather than thermodynamical contributions of extreme events in the latter regions.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN39216 , International Journal of Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: This document describes Management by Trajectory (MBT), a concept for future air traffic management (ATM) in which flights are assigned four-dimensional trajectories (4DTs) through a negotiation process between the Federal Aviation Administration (FAA) and flight operators that respects the flight operator's goals while complying with National Airspace System (NAS) constraints.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-2017-219674 , NF1676L-28045
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: This document provides a summary of the avionics design, implementation, and evaluation activities conducted for the ATD-1 Avionics Phase 2. The flight test data collection and a subset of the analysis results are described. This report also documents lessons learned, conclusions, and recommendations to guide further development efforts.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-2017-219626 , NF1676L-27522
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-12
    Description: As the present solar cycle passes into its minimum phase, the Hinode mission marks its tenth year of investigating solar activity. Hinode's decade of successful observations have provided us with immeasurable insight into the solar processes that invoke space weather and thereby affect the interplanetary environment in which we reside. The mission's complementary suite of instruments allows us to probe transient, high energy events alongside long-term, cycle-dependent phenomena from magnetic fields at the Sun's surface out to highly thermalized coronal plasma enveloping active regions (ARs). These rich data sets have already changed the face of solar physics and will continue to provoke exciting research as new observational paradigms are pursued. Hinode was launched as part of the Science Mission Directorate's (SMD) Solar Terrestrial Probes Program in 2006. It is a sophisticated spacecraft equipped with a Solar Optical Telescope (SOT), an Extreme-ultraviolet Imaging Spectrometer (EIS), and an X-Ray Telescope (XRT) (see x 4). With high resolution and sensitivity, Hinode serves as a microscope for the Sun, providing us with unique capabilities for observing magnetic fields near the smallest scales achievable, while also rendering full-Sun coronal context in the highest thermal regimes. The 2014 NASA SMD strategic goals objective to "Understand the Sun and its interactions with the Earth and the solar system, including space weather" forms the basis of three underlying Heliophysics Science Goals. While Hinode relates to all three, the observatory primarily addresses: Explore the physical processes in the space environment from the Sun to the Earth and through the solar system. Within the NASA National Research Council (NRC) Decadal Survey Priorities, Hinode targets: (a) Determine the origins of the Sun's activity and predict the variations of the space environment and (d) Discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. In response to the 2012 NRC Decadal Survey Science Challenges and 2014 Heliophysics Roadmap Research Focus Areas, the Hinode mission has set forth four Prioritized Science Goals (PSGs): (a) Study the sources and evolution of highly energetic dynamic events; (b) Characterize cross-scale magnetic field topology and stability; (c) Trace mass and energy flow from the photosphere to the corona; and (d) Continue long term synoptic support to quantify cycle variability.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN40198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-12
    Description: The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is generic since it was designed without any assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Therefore, GRACE was adopted as a core component of the Java Architecture for Detect-And-Avoid (DAA) Extensibility and Modeling, developed by NASA as a research and modeling tool for Unmanned Aerial Systems Integration in the National Airspace System (NAS). GRACE has been used in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2017-219507 , ARC-E-DAA-TN42014
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-12
    Description: This chapter provides an overview of the role of stationary Rossby waves in the sub-seasonal development of warm season drought over North America and subsequent downstream development of climate anomalies over northern Eurasia. The results are based on a case study of a stationary Rossby wave event that developed during 20 May 15 June 1988. Simulations with the NASA Goddard Earth Observing System (GEOS-5) atmospheric general circulation model highlight the importance of the mean jet streams in guiding and constraining the path and speed of wave energy propagation. In particular, convective anomalies that developed over the western Pacific in late May (in the presence of the strong North Pacific jet) produce a predilection for persistent upper-level high anomalies over central North America about ten days later, leading to the rapid development of severe dry conditions there. There are indications of continued downstream wave energy propagation that reaches northern Eurasia about two weeks later, leading to the development of dry conditions over eastern Europe and western Russia, and cool and wet conditions over western Europe and central northern Eurasia. The results suggest that stationary Rossby waves can serve as a source of predictability for sub-seasonal development of droughts over North America and northern Eurasia.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN44773
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN45018-SUPPL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN51857
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: Weather is a primary contributor to the air traffic delays within the National Airspace System (NAS). At present, it is the individual decision makers who use weather information and assess its operational impact in creating effective air traffic management solutions. As a result, the estimation of the impact of forecast weather and the quality of ATM response relies on the skill and experience level of the decision maker. FAA Weather-ATM working groups have developed a Weather-ATM integration framework that consists of weather collection, weather translation, ATM impact conversion and ATM decision support. Some weather translation measures have been developed for hypothetical operations such as decentralized free flight, whereas others are meant to be relevant in current operations. This paper does comparative study of two different weather translation products relevant in current operations and finds that these products have strong correlation with each other. Given inaccuracies in prediction of weather, these differences would not be expected to be of significance in statistical study of a large number of decisions made with a look-ahead time of two hours or more.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2017-219711 , ARC-E-DAA-TN47662
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at 〉80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN42225 , Proceedings of the National Academy of Sciences of the United States of America
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: This article describes new features in the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni), a user-friendly online tool that enables visualization, analysis, and assessment of NASA Earth science data sets without downloading data and software. Since the satellite era began, data collected from Earth-observing satellites have been widely used in research and applications; however, using satellite-based data sets can still be a challenge to many. To facilitate data access and evaluation, as well as scientific exploration and discovery, the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) has developed Giovanni for a wide range of users around the world. This article describes the latest capabilities of Giovanni with examples, and discusses future plans for this innovative system.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN43547
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-12
    Description: Electrochemical concentration cell ozonesonde measurements are an important source of highly resolved vertical profiles of ozone with long-term data records for deriving ozone trends, model development, satellite validation, and air quality studies. Ozonesonde stations employ a range of operational and data processing procedures, metadata reporting, and instrument changes that have resulted in inhomogeneities within individual station data records. A major milestone is the first reprocessing of seven Southern Hemisphere ADditional OZonesondes (SHADOZ) station ozonesonde records to account for errors and biases in operating/processing procedures. Ascension Island, Hanoi, Irene, Kuala Lumpur, La Reunion, Natal, and Watukosek station records all show an overall increase in ozone after reprocessing. Watukosek shows the largest increase of 9.0 plus or minus 2.1 Dobson Units (DU) in total column ozone; Irene and Hanoi show a 5.5 plus or minus 2.5 DU increase, while remaining sites show statistically insignificant enhancements. Negligible to modest ozone enhancements are observed after reprocessing in the troposphere (up to 8%) and stratosphere (up to 6%), except at La Reunion for which the application of background currents reduces tropospheric ozone (2.1 plus or minus1.3 DU). Inhomogeneities due to ozonesonde/solution-type changes at Ascension, Natal, and La Reunion are resolved with the application of transfer functions. Comparisons with EP-TOMS, Aura's Ozone Monitoring Instrument and Microwave Limb Sounder (MLS) satellite ozone overpasses show an overall improvement in agreement after reprocessing. Most reprocessed data sets show a significant reduction in biases with MLS at the ozone maximum region (50-10 hPa). Changes in radiosonde/ozonesonde system and nonstandard solution types can account for remaining discrepancies observed at several sites when compared to satellites.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN51608 , Journal of Geophysical Research Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 12; 6611-6636
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-12
    Description: The North Atlantic oceanic airspace (NAT) is crossed daily by more than a thousand flights, which are greatly affected by strong jet stream air currents. Several studies devoted to generating wind-optimal (WO) aircraft trajectories in the NAT demonstrated great efficiency of such an approach for individual flights. However, because of the large separation norms imposed in the NAT, previously proposed WO trajectories induce a large number of potential conflicts. Much work has been done on strategic conflict detection and resolution (CDR) in the NAT. The work presented here extends previous methods and attempts to take advantage of the NAT traffic structure to simplify the problem and improve the results of CDR. Four approaches are studied in this work: 1) subdividing the existing CDR problem into sub-problems of smaller sizes, which are easier to handle; 2) more efficient data reorganization within the considered time period; 3) problem localization, i.e. concentrating the resolution effort in the most conflicted regions; 4) applying CDR to the pre-tactical decision horizon (a couple of hours in advance). Obtained results show that these methods efficiently resolve potential conflicts at the strategic and pre-tactical levels by keeping the resulting trajectories close to the initial WO ones.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2017-219727 , ARC-E-DAA-TN48091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: The atmospheric general circulation model that is used in NASA's Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) is evaluated with respect to the relationship between large-scale teleconnection patterns and daily temperature and precipitation over the United States (US) using a ten-member ensemble of simulations, referred to as M2AMIP. A focus is placed on four teleconnection patterns that are known to influence weather and climate in the US: El Nino Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation, and the Pacific-North American Pattern. The monthly and seasonal indices associated with the patterns are correlated with daily temperature and precipitation statistics including: (i) monthly mean 2 m temperature and precipitation, (ii) the frequency of extreme temperature events at the 90th, 95th, and 99th percentiles, and (iii) the frequency and intensity of extreme precipitation events classified at the 90th, 95th, and 99th percentiles.Correlations obtained with M2AMIP data and thus the strength of teleconnections in the free-running model are evaluated through comparison against corresponding correlations computed from observations and from MERRA-2. Overall, the strongest teleconnections in all datasets occur during the winter and coincide with the largest agreement between the observations, MERRA-2, and M2AMIP. When M2AMIP does capture the correlation seen in observations, there is a tendency for the spatial extent to be exaggerated. The weakest agreement between the data sources, for all teleconnection patterns, is in the correlation with extreme precipitation; however there are discrepancies between the datasets in the number of days with at least 1 mm of precipitation: M2AMIP has too few days with precipitation in the Northwest and the Northern Great Plains and too many days in the Northeast. In JJA, M2AMIP has too few days with precipitation in the western two-thirds of the country and too many days with precipitation along the east coast.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-2017-104606/VOL47 , GSFC-E-DAA-TN43904
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-12
    Description: This summary document and accompanying technology artifacts satisfy the second of three Research Transition Products (RTPs) defined in the ATD-3 Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's Multi-Flight Common Route (MFCR) research for efficient route corrections for en-route weather avoidance. The MFCR concept builds on the experience of the legacy Dynamic Weather Routes (DWR) and focuses on a better balance of potential savings with ATC acceptability, common route corrections options for multiple flights on similar routings, and better use of existing and/or modern automation for communication and coordination of route change options. All of these capabilities are expected to improve system performance significantly in terms of actual delay-reducing clearances issued to flights compared to that of the DWR tool and operating concept.
    Keywords: Air Transportation and Safety
    Type: ATD3-2017-TN45628 , ARC-E-DAA-TN50239
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: Humans are increasing the amount of carbon dioxide (CO2) in the air through CO2 emissions. This is changing the climate, making life harder for many plants in areas that suffer from heat and drought. However, plants need CO2 to grow, and more CO2 can make them grow better. So will plants overall benefit from increased CO2 level or suffer from it? We wanted to test if the positive effect would offset the negative ones. To do so, we used scientific models to calculate future crop production and water use of four important crops all over the world under different scenarios of CO2 emissions and climate change. Our calculations show that although there will be large reductions in crop yield due to climate change over the next century, some crops will still be able to grow well. This is also because crops can grow with less water when CO2 levels are raised.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50636 , Science Journal for Kids
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: The purpose of this report is to document the results of a high-level qualitative study that was conducted to identify future aviation safety risks and to assess the potential impacts to the National Airspace System (NAS) of NASA Aviation Safety research on these risks. Multiple external sources (for example, the National Transportation Safety Board, the Flight Safety Foundation, the National Research Council, and the Joint Planning and Development Office) were used to develop a compilation of future safety issues risks, also referred to as future tall poles. The primary criterion used to identify the most critical future safety risk issues was that the issue must be cited in several of these sources as a safety area of concern. The tall poles in future safety risk, in no particular order of importance, are as follows: Runway Safety, Loss of Control In Flight, Icing Ice Detection, Loss of Separation, Near Midair Collision Human Fatigue, Increasing Complexity and Reliance on Automation, Vulnerability Discovery, Data Sharing and Dissemination, and Enhanced Survivability in the Event of an Accident.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-2017-219491 , E-19359 , GRC-E-DAA-TN38560
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: Without a pilot onboard an aircraft, a Detect-and-Avoid (DAA) system, in conjunction with surveillance sensors, must be used to provide the remotely-located Pilot-in-Command sufficient situational awareness in order to keep the Unmanned Aircraft (UA) safely separated from other aircraft. To facilitate safe operations of UA within the U.S.' National Airspace System, the uncertainty associated with surveillance sensors must be accounted for. An approach to mitigating the impact of sensor uncertainty on achievable separation has been developed to support technical requirements for DAA systems.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-2017-219630 , NF1676L-26296
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: Presentation highlighting how weather affected UAS operations during the UTM field tests. Research to develop UAS weather translation models with a description of current and future work for UTM weather.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN39662 , NextGen Executive Weather Panel presentation; Mar 08, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-20
    Description: As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of eyes in the sky due to having no human on-board the aircraft. The technique, results, and lessons learned from a detailed End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA Special Committee(SC)-228s proposed Phase I DAA Minimum Operational Performance Standards (MOPS), based on specific test vectors and encounter cases, will be presented in this paper.
    Keywords: Air Transportation and Safety
    Type: NF1676L-27397 , AIAA Science and Technology Forum and Exposition; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; Afghanistan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: Prediction of solar magnetic activity on various temporal scales is a fundamental element of space weather, which requires a wide range of theoretical and observational expertise in solar phenomena from the deep interior to the corona. Historical observations have revealed many features of cyclic variations of the solar activity; but these data are dramatically insufficient to draw a physical picture of global magnetic field evolution. New observational data, currently available from space missions and ground-based observatories, provide us with detailed information about solar dynamics and magnetism. However, because of the relatively short duration of data series and the great variety of data types and quality, it is challenging to assimilate these data in theoretical models and make reliable forecasts. The recent unexpectedly weak solar activity cycles, as well as observations of rotational and magnetic topology transitions in solar-type stars, suggest that the Sun and its magnetic dynamo are currently in a very interesting evolutionary stage. This could relate to the difficulty in getting a model of the Sun to produce solar-like rather than anti-solar-like differential rotation, to reproduce the rotation profile obtained from helioseismology, and to predict solar activity cycles.
    Keywords: Solar Physics
    Type: ARC-E-DAA-TN44458 , SHINE Conference 2017; Jul 24, 2017 - Jul 28, 2017; Saint-Sauveur; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-20
    Description: NASA's UAS Traffic Management (UTM) project concluded its second flight demonstration activity in late October 2016. This activity demonstrated the capabilities and functionality incorporated into its Technical Capability Level 2 (TCL2) concept, which envisions future operations that are low density, capable of being performed over sparsely populated areas, and allow for a concurrent mix of longer duration, beyond visual-line-of-sight flights and shorter flights within visual-line-of-sight (VLOS). To incorporate these features into a flight demonstration, a scenario-based approach was taken to address different aspects of the TCL2 environment and to meet defined objectives. This paper will describe elements of how the flight activity was conducted and present analyses regarding UTM operations, system messages, and alerting as they pertained to meeting the demonstration objectives and shedding light on research questions and lessons learned.NASA was able to successfully demonstrate complex UTMoperations in a TCL 2 environment in collaboration withindustry partners and the Reno-Stead Airport UAS test range.A scenario-based approach to the demonstration provided arelevant means through which the key elements and objectivesof the test could be captured. Although issues were identifiedthrough the testing and feedback of test participants, theoverall results were in line with the overall UTM objective ofsafely enabling large-scale UAS operations in low altitudeairspace.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN56558 , Digital Avionics Systems Conference (DASC2017); Sep 17, 2017 - Sep 21, 2017; St. Petersburg, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-20
    Description: This paper presents a parametric analysis of the most recent tactical scheduler design for NASAs Airspace Technology Demonstration 2 (ATD-2) sub-project, committed to demonstrating time-based surface metering at Charlotte Douglas International Airport (CLT). The tactical scheduler design is implemented in a fast-time simulation model of CLT using NASAs Surface Operations Simulator and Scheduler. The tactical scheduler is supported by three basic functions: trajectory prediction, runway scheduling, and advisory generation. A key parameter of the advisory generation function is the taxi time delay buffer used when calculating target gate pushback times from runway schedule. Multiple simulations that varied the amount of taxi time delay buffer were analyzed to determine the effect on tactical scheduler performance. The results show an improvement in tactical scheduler performance when the buffer is made sufficiently large to release departures from their gates early enough to maintain scheduler predicted runway throughput.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN45124 , Digital Avionics Systems Conference (DASC); Sep 17, 2017 - Sep 21, 2017; St. Petersburg, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-20
    Description: This document serves as a user manual for the Observer Mode Ramp Traffic Console (RTC) in Charlotte Douglas International Airport Ramp Control Tower. It describes the elements of the full RTC interface and provides explanations for how to interact with the RTC while managing ramp traffic using one of the four RTC sector displays. The RTC provides digitally updated data for all flights including Earliest Off Block Times (EOBT) and Traffic Management Initiatives. Use of the RTC in observer mode allows only for observer and reading of data provided on RTC. In Observer Mode, the RTC may not be used to make data entries. This includes pushback, holds, and proceed inputs as well as updates to a flights data using the flight menu. However, using the RTC in Observer Mode allows for real time observation of ramp operations including pushback and hold entries made by the ramp sector controllers. The pushback advisories and Traffic Management Initiative information is also provided in Observer Mode. The RTC also provides notifications, runway departure counts and lists and near arrival flight lists as additional sources of information for management of ramp traffic. There are also detailed instructions for how to manage traffic with Surface Time Based Metering (STBM) advisories provided on RTC if in STBM mode. This document also provides instructions for use of the Ramp Manager Traffic Console (RMTC) while performing ramp manager functions such as managing the priority flight list, setting ramp status, and setting the metering mode. The RTC and RMTC ramp tool are one component of a suite of ATD-2 Tools.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN60611
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: Earths Arctic is particularly sensitive to global warming. The climate record shows that Arctic changes in surface temperatures far exceed that of the global mean, a phenomenon referred to as Arctic amplification. Here, we show that warming of the Arctic atmosphere causes mixed-phase clouds in the region to contain less ice and more supercooled liquid, which in turn tends to increase their amount and thick- ness, thereby inducing a positive feedback mainly by increasing downward longwave (LW) radiation at the surface. The increased downward LW radiation decreases the positive lapse rate feedback in the Arctic, thus resulting in reduced Arctic amplification. The strength of this feedback depends on the initial mean-state supercooled liquid fraction (SLF) and the ice crystal effective radii. We also show that reduced precipitation rates can result from large mean-state ice effective radii being replaced by relatively more smaller liquid droplets in the cloud phase feedback, despite having high mean-state SLFs, demonstrating the importance of the representation of cloud microphysics in the Arctic.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN47967 , CFMIP 2017 Conference; Sep 25, 2017 - Sep 28, 2017; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-23
    Description: How clouds will respond to Earths warming climate is the greatest contributor to intermodel spread of Equilibrium Climate Sensitivity (ECS). Although global climate models (GCMs) generally agree that the total cloud feedback is positive, GCMs disagree on the magnitude of cloud feedback. Satellite instruments with sufficient accuracy to detect climate change-scale trends in cloud properties will provide improved confidence in our understanding of the relationship between observed climate change and cloud property trends, thus providing essential information to the effort to better constrain ECS. However, a robust framework is needed to determine what constitutes sufficient or necessary accuracy for such an achievement. Our study presents and applies such an accuracy framework to quantify the impact of absolute calibration accuracy requirements on climate change-scale trend detection times for cloud amount, height, optical thickness, and effective radius. The accuracy framework used here was previously applied to SW cloud radiative effect and global mean surface temperature in a study that demonstrated the importance of high instrument accuracy to constrain trend detection times for essential climate variables (ECVs). This paper expands upon these previous studies by investigating cloud properties, demonstrating the versatility of applying this framework to other ECVs and the implications of the results within climate science studies.
    Keywords: Meteorology and Climatology
    Type: NF1676L-24511 , Journal of Climate (ISSN 0894-8755) (e-ISSN 1520-0442); 30; 17; 6959-6976
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: Dust influences the Indian summer monsoon on seasonal timescales by perturbing atmospheric radiation. On weekly time scales, aerosol optical depth retrieved by satellite over the Arabian Seais correlated with Indian monsoon precipitation. This has been interpreted to show the effect of dust radiative heating on Indian rainfall on synoptic (few-day) time scales. However, this correlation is reproduced by Earth System Model simulations, where dust is present but its radiative effect is omitted. Analysis of daily variability suggests that the correlation results from the effect of precipitation on dust through the associated cyclonic circulation. Boundary layer winds that deliver moisture to India are responsible for dust outbreaks in source regions far upwind, including the Arabian Peninsula. This suggests that synoptic variations in monsoon precipitation over India enhance dust emission and transport to the Arabian Sea. The effect of dust radiative heating upon synoptic monsoon variations remains to be determined.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN45979 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 44; 19; 10,006-10,016
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: Constraining how much and how fast the West Antarctic Ice Sheet (WAIS) will change in the coming decades has recently been identified as the highest priority in Antarctic research (National Academies, 2015). Here we review recent research on WAIS and outline further scientific objectives for the area now identified as the most likely to undergo near-term significant change: Thwaites Glacier and the adjacent Amundsen Sea. Multiple lines of evidence point to an ongoing rapid loss of ice in this region in response to changing atmospheric and oceanic conditions. Models of the ice sheets dynamic behavior indicate a potential for greatly accelerated ice loss as ocean-driven melting at the Thwaites Glacier grounding zone and nearby areas leads to thinning, faster flow, and retreat. A complete retreat of the Thwaites Glacier basin would raise global sea level by more than three meters by entraining ice from adjacent catchments. This scenario could occur over the next few centuries, and faster ice loss could occur through processes omitted from most ice flow models such as hydrofracture and ice cliff failure, which have been observed in recent rapid ice retreats elsewhere. Increased basal melt at the grounding zone and increased potential for hydrofracture due to enhanced surface melt could initiate a more rapid collapse of Thwaites Glacier within the next few decades.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN43567 , Global and Planetary Change (ISSN 0921-8181) (e-ISSN 1872-6364); 153; 16-34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: This presentation includes: basic considerations, emerging best common practices for multi-frequency radar and radiometer precipitation retrievals, defining the retrieval parameter set, dimensionality and solver options, examples, and ARTS wish list.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46702 , Open ARTS Community Workshop 2017; Sep 06, 2017 - Sep 08, 2017; Kristineberg; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. In the Introduction to this Special Issue, we described a vision for accelerating the rate of agricultural innovation and meeting the growing global need for food and fiber. In this concluding article of the NextGen Special Issue we synthesize insights and formulate a strategy to advance data, models, and knowledge products that are consistent with this vision. This strategy is designed to facilitate a transition from the current, primarily supply-driven approach toward a more demand-driven approach that would address key Use Cases where better data, models and knowledge products are seen by end-users as essential to meet their needs.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN43733 , Agricultural Systems (ISSN 0308-521X); 155; 179-185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems and of the procedures for interacting with them appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it typically places a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. This can be problematic as too much information and/or ineffective provisions of information can potentially overwhelm and/or confuse pilots, and as a result, increase the likelihood of loss of airplane state awareness (ASA). One way to gain more insight into this issue is through experimentation using more objective measures. This study summarizes an analysis of eye-tracking data obtained during a high-fidelity flight simulation study that included most of the complexities of current flight decks, as well as several planned for the next generation air transportation system. Multiple analyses were performed to understand how the 22 participating airline pilots were observing ASA-related information provided during different stages of flights and in response to specific events within these stages. Also, study findings are compared to data presented in similar previous studies to assess trends or common themes regarding how airline crews apply visual attention in complex flight deck and operational environments.
    Keywords: Air Transportation and Safety
    Type: NF1676L-27024 , AIAA Aviation and Aeronautics Forum and Exposition; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: The recent prolonged activity minimum has led to the question of whether there is a base level of the solar magnetic field evolution that yields a ''floor'' in activity levels and also in the solar wind magnetic field strength. Recently, a flux transport model coupled with magneto-frictional simulations has been used to simulate the continuous magnetic field evolution in the global solar corona for over 15 years, from 1996 to 2012. Flux rope eruptions in the simulations are estimated (Yeates), and the results are in remarkable agreement with the shape of the SOlar Heliospheric Observatory/Large Angle and Spectrometric Coronagraph Experiment coronal mass ejection (CME) rate distribution. The eruption rates at the two recent minima approximate the observed-corrected CME rates, supporting the idea of a base level of solar magnetic activity. In this paper, we address this issue by comparing annual averages of the CME occurrence rates during the last four solar cycle minima with several tracers of the global solar magnetic field. We conclude that CME activity never ceases during a cycle, but maintains a base level of 1 CME every 1.5 to approx. 3 days during minima. We discuss the sources of these CMEs.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN53060 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 851; 2; 142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: In an air traffic environment, task demand is dynamic. However, previous research has largely considered the association of task demand and controller performance using conditions of stable task demand. Further, there is a comparatively restricted understanding of the influence of task demand transitions on workload and performance in association with different types and levels of automation that are available to controllers. This study used an air traffic control simulation to investigate the influence of task demand transitions, and two conditions of automation, on workload and efficiency-related performance. Findings showed that both the direction of the task demand variation and the amount of automation influenced the relationship between workload and performance. Findings are discussed in relation to capacity and arousal theories. Further research is needed to enhance understanding of demand transition and workload history effects on operator experience and performance, in both air traffic control and other safety-critical domains.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN56592 , International Symposium on Human Mental Workload: Models and Applications (H-WORKLOAD 2017 ); Jun 28, 2017 - Jun 30, 2017; Dublin; Ireland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The relationship between springtime mid-latitude cyclones and background ozone at two rural monitoring sites on the west coast of Europe -- Mace Head, Ireland and Monte Velho, Portugal -- is explored using a combination of observations and three reanalyses: 1) the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-Interim reanalysis, 2) the Monitoring Atmospheric Composition and Climate (MACC) reanalysis and 3) NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis. The ERA-Interim cyclone tracks are used here to establish the long-term relationship between cyclones and ozone observations (since 1988). The MACC reanalysis data set, which covers the period 2003-2012, is produced with the ECMWF integrated forecast system (IFS) model two-way coupled to a chemistry transport model (CTM). Since the MACC reanalysis uses a similar atmospheric model to ERA-Interim, MACC is used to explore the mechanisms within the case study cyclones that can influence surface ozone concentrations at Mace Head and Monte Velho. The MERRA-2 reanalysis also provides 3D distributions of ozone, although less ideal for analysis of surface ozone concentrations since MERRA-2 ozone under represents ozone variability outside the stratosphere as it does not have a detailed chemistry scheme or emission sources for the troposphere. The MERRA-2 reanalysis, which has the potential to identify more features within the cyclones as the resolution is higher than the MACC reanalysis, is used in conjunction with the MACC reanalysis to provide a measure of uncertainty to the case study analysis. We found the main source of high ozone to these two sites is from the stratosphere, which is well represented in both the MERRA-2 and the MACC reanalyses, either from direct injection into the cyclone or associated with aged airstreams from decaying downstream cyclones that can become entrained and descend toward the surface within new cyclones over the NA region.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49327 , International Conference on Reanalysis; Nov 13, 2017 - Nov 17, 2017; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: This demo shows the UAS-NAS project's Vigilant Spirit Control Station developed in partnership with the U.S. Air Force Research Lab. Attendees will be able to view encounters and see how the DAA and TCAS II alerting and guidance displays are used to avoid simulated aircraft.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN43282 , Annual AIAA Aviation Forum and Exposition 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: The underlying origin of solar eruptive events (SEEs), ranging from giant coronal mass ejections to small coronalhole jets, is that the lowest-lying magnetic flux in the Sun's corona undergoes continual buildup of stress and free energy. This magnetic stress has long been observed as the phenomenon of "filament channels:" strongly sheared magnetic field localized around photospheric polarity inversion lines. However, the mechanism for the stress buildup-formation of filament channels-is still debated. We present magnetohydrodynamic simulations of a coronal volume that is driven by transient, cellular boundary flows designed to model the processes by which the photosphere drives the corona. The key feature of our simulations is that they accurately preserve magnetic helicity, the topological quantity that is conserved even in the presence of ubiquitous magnetic reconnection. Although small-scale random stress is injected everywhere at the photosphere, driving stochastic reconnection throughout the corona, the net result of the magnetic evolution is a coherent shearing of the lowest-lying field lines. This highly counterintuitive result-magnetic stress builds up locally rather than spreading out to attain a minimum energy state-explains the formation of filament channels and is the fundamental mechanism underlying SEEs. Furthermore, this process is likely to be relevant to other astrophysical and laboratory plasmas.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN51341 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 851; 1; L17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: We propose a novel Bayesian Monte Carlo Integration (BMCI) technique to retrieve the profiles of temperature, water vapor, and cloud liquid/ice water content from microwave cloudy measurements in the presence of TCs. These retrievals then can either be directly used by meteorologists to analyze the structure of TCs or be assimilated to provide accurate initial conditions for the NWP models. The technique is applied to the data from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) and Global Precipitation Measurement (GPM) Microwave Imager (GMI).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50544 , AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: The Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD) is a web-based, open access, decision-support tool designed to assist scientists, non-governmental organizations and policy-makers working to meet the management objectives as set forth by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and other components of the Antarctic Treaty System (ATS) (that is, Consultative Meetings and the ATS Committee on Environmental Protection). MAPPPD was designed specifically to complement existing efforts such as the CCAMLR Ecosystem Monitoring Program (CEMP) and the ATS site guidelines for visitors. The database underlying MAPPPD includes all publicly available (published and unpublished) count data on emperor, gentoo, Adelie) and chinstrap penguins in Antarctica. Penguin population models are used to assimilate available data into estimates of abundance for each site and year.Results are easily aggregated across multiple sites to obtain abundance estimates over any user-defined area of interest. A front end web interface located at www.penguinmap.com provides free and ready access to the most recent count and modelled data, and can act as a facilitator for data transfer between scientists and Antarctic stakeholders to help inform management decisions for the continent.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN51540 , Polar Record (ISSN 0032-2474) (e-ISSN 1475-3057); 53; 2; 160-166
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: We report on a study comparing coronal flux ropes inferred from eruption data with their interplanetary counterparts constructed from in situ data. The eruption data include the source region magnetic field, post-eruption arcades, and coronal mass ejections (CMEs). Flux ropes were fit to the interplanetary CMEs (ICMEs) considered for the 2011 and 2012 Coordinated Data Analysis Workshops (CDAWs). We computed the total reconnected flux involved in each of the associated solar eruptions and found it to be closely related to flare properties, CME kinematics, and ICME properties. By fitting flux ropes to the white-light coronagraph data, we obtained the geometric properties of the flux ropes and added magnetic properties derived from the reconnected flux. We found that the CME magnetic field in the corona is significantly higher than the ambient magnetic field at a given heliocentric distance. The radial dependence of the flux rope magnetic field strength is faster than that of the ambient magnetic field. The magnetic field strength of the coronal flux rope is also correlated with that in interplanetary flux ropes constructed from in situ data, and with the observed peak magnetic field strength in ICMEs. The physical reason for the observed correlation between the peak field strength in MCs is the higher magnetic field content in faster coronal flux ropes and ultimately the higher reconnected flux in the eruption region. The magnetic flux ropes constructed from the eruption data and coronagraph observations provide a realistic input that can be used by various models to predict the magnetic properties of ICMEs at Earth and other destination in the heliosphere.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN50080 , Journal of Atmospheric and Solar-Terrestrial Physics (ISSN 1364-6826)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.
    Keywords: Meteorology and Climatology
    Type: A11B-1880 , GSFC-E-DAA-TN50420 , 2017 AGU Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: We studied three solar energetic particle (SEP) events observed on 14 August 2010, 3 November 2011, and 5 March 2013 by Solar Terrestrial Relations Observatory (STEREO) A, B, and near-Earth (L1) spacecraft with a longitudinal distribution of particles greater than 90 degrees. Using a forward modeling method combined with extreme ultraviolet and white-light images, we determined the angular extent of the shock, the time and location (cobpoint) of the shock intersection with the magnetic field line connecting to each spacecraft, and compute the shock speed at the cobpoint of each spacecraft. We then examine whether the observations of SEPs at each spacecraft were accelerated and injected by the spatially extended shocks or whether another mechanism such as cross-field transport is required for an alternative explanation. Our analyses results indicate that the SEPs observed at the three spacecraft on 3 November, STEREO B (STB) and L1 on 14 August, and the 5 March SEP event at STEREO A (STA) can be explained by the direct shock acceleration. This is consistent with the observed significant anisotropies, short time delays between particle release times and magnetic connection times, and sharp rises in the SEP time profiles. Cross-field diffusion is the likely cause for the 14 August SEP event observed by STA and the 5 March SEPs observed by STB and L1 spacecraft, as particle observations featured weak electron anisotropies and slow rising intensity profiles. Otherwise, the wide longitudinal spread of these SEP increases would require an existence of a circumsolar shock, which may not be a correct assumption in the corona and heliosphere.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN50953 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 7; 7021–7041
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN49880 , USA/Europe Air Traffic Management Research and Development Seminar (ATM2017); Jun 26, 2017 - Jun 30, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited because of a paucity of modern instrumental observations that are distributed unevenly across the globe and only span parts of the 20th and 21st centuries. Such data coverage is insufficient for characterizing hydroclimate and its associated dynamics because of its multidecadal to centennial variability and highly regionalized spatial signature. High-resolution (seasonal to decadal) hydroclimatic proxies that span all or parts of the Common Era (CE) and paleoclimate simulations from climate models are therefore important tools for augmenting our understanding of hydroclimate variability. In particular, the comparison of the two sources of information is critical for addressing the uncertainties and limitations of both while enriching each of their interpretations. We review the principal proxy data available for hydroclimatic reconstructions over the CE and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE. A specific review of simulated hydroclimatic changes forced by volcanic events is provided, as is a discussion of expected improvements in estimated radiative forcings, models, and their implementation in the future. Our review of hydroclimatic proxies and last-millennium model simulations is used as the basis for articulating a variety of considerations and best practices for how to perform proxy-model comparisons of CE hydroclimate. This discussion provides a framework for how best to evaluate hydroclimate variability and its associated dynamics using these comparisons and how they can better inform interpretations of both proxy data and model simulations.We subsequently explore means of using proxy-model comparisons to better constrain and characterize future hydroclimate risks. This is explored specifically in the context of several examples that demonstrate how proxy-model comparisons can be used to quantitatively constrain future hydroclimatic risks as estimated from climate model projections.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50993 , Climate of the Past (e-ISSN 1814-9332); 13; 12; 1851-1900
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50591 , Journal of Hydrometeorology (ISSN 1525-755X) (e-ISSN 1525-7541); 18; 6; 1689-1706
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: We report on further evidence that solar energetic particles are organized by the kinematic properties of coronal mass ejections (CMEs). In particular, we focus on the starting frequency of type II bursts, which is related to the distance from the Sun where the radio emission starts. We find that the three groups of solar energetic particle (SEP) events known to have distinct values of CME initial acceleration, also have distinct average starting frequencies of the associated type II bursts. SEP events with ground level enhancement (GLE) have the highest starting frequency (107 MHz), while those associated with filament eruption (FE) in quiescent regions have the lowest starting frequency (22 MHz); regular SEP events have intermediate starting frequency (81 MHz). Taking the onset time of type II bursts as the time of shock formation, we determine the shock formation heights measured from the Sun center. We find that the shocks form on average closest to the Sun (1.51 Rs) in GLE events, farthest from the Sun in FE SEP events (5.38 Rs), and at intermediate distances in regular SEP events (1.72 Rs). Finally, we present the results of a case study of a CME with high initial acceleration (approx.3 km s-2) and a type II radio burst with high starting frequency (approx. 200 MHz) but associated with a minor SEP event. We find that the relation between the fluence spectral index and CME initial acceleration continues to hold even for this minor SEP event.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN50955 , Journal of Physics: Conference Series (ISSN 1742-6588) (e-ISSN 1742-6596); 900; 1; 012009
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Spruce and tamarack logs dating from the Younger Dryas and Early Holocene (YDEH; approx. 12.9 - 11.3k cal a BP) were found at Bell Creek in the Lake Ontario lowlands of the Great Lakes region, North America. A 211-year tree-ring chronology dates to approx. 11 755 -11 545 cal a BP, across the YDEH transition. A 23-year period of higher year-to-year ring-width variability dates to around 11 650 cal a BP, infers strong regional climatic perturbations and may represent the end of the YD. Tamarack and spruce were dominant species throughout the YD - EH interval at the site, indicating that boreal conditions persisted into the EH, in contrast to geographical regions immediately south and east of the lowlands, but consistent with the Great Lakes interior lowlands. This infers that Bell Creek was at the eastern boundary of a boreal ecotone, perhaps a result of its lower elevation and the non-analog dynamics of the Laurentide Ice Sheet. This finding suggests that the ecotone boundary extended farther east during the YD - EH transition than previously thought.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN40851 , Journal of Quaternary Science (ISSN 0267-8179) (e-ISSN 1099-1417); 32; 3; 341-346
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: AGU H33J-03 , MSFC-E-DAA-TN50484 , American Geophysical Union (AGU) Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Dynamical ice sheet models are being used in simulations of future sea level change resulting from changing glacier mass. One of the difficulties in doing so are the input conditions obtained from earth system models. These inputs can be of coarse spatial resolution, and may not represent surface melt in a future climate. I review various methods for overcoming this with the aim of promoting discussion among modelers.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN50498 , ISMIP6 (Ice Sheet Model Intercomparison for CMIP6 (Coupled Model Intercomparison Project Phase 6)) Pre-AGU workshop; Dec 10, 2017; New Orleans, LA; United States|AGU Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN50389 , American Geophysical Union (AGU) 2017 Fall Meeting; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Inclusion of ecosystem services (ES) information into national-scale development and climate adaptation planning has yet to become common practice, despite demand from decision makers. Identifying where ES originate and to whom the benefits flowunder current and future climate conditionsis especially critical in rapidly developing countries, where the risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how ecosystems provide key benefits to the countrys people and infrastructure. We model the supply of and demand for sediment retention, dry-season baseflows, flood risk reduction and coastal storm protection from multiple beneficiaries. We find that locations currently providing the greatest amount of services are likely to remain important under the range of climate conditions considered, demonstrating their importance in planning for climate resilience. Overlap between priority areas for ES provision and biodiversity conservation is higher than expected by chance overall, but the areas important for multiple ES are underrepresented in currently designated protected areas and Key Biodiversity Areas. Our results are contributing to development planning in Myanmar, and our approach could be extended to other contexts where there is demand for national-scale natural capital information to shape development plans and policies
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN47171 , PLoS One; 12; 9; e0184951
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Surface Trajectory-based Operations (STBO) is a potential concept candidate for flight deck autonomous operations. Existing research will be reviewed and possible architectures and research issues will be presented.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN41789 , SAE/NASA Autonomy and Next Generation Flight Deck; Apr 18, 2017 - Apr 19, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: Overview of UAS Traffic Management and CN (Communications and Navigation) RTT (Research Transition Team) working group.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN41387 , Integrated Communications Navigation and Surveillance Conference (ICNS 2017); Apr 18, 2017 - Apr 20, 2017; Herndon, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: RTCA (Radio Technical Commission for Aeronautics) Special Committee 228 has initiated a second phase for the development of minimum operational performance standards (MOPS) for UAS (Unmanned Aircraft Systems) detect and avoid (DAA) systems. Technologies to enable UAS with less available Size, Weight, and Power (SWaP) will be considered. A white paper is in development for what topics and issues need to be addressed to develop DAA requirements for low SWAP surveillance systems. This briefing will document the issues to be investigated in SC-228. It will also serve as a review with the committee to get feedback so the white paper can be written and finalized. These topics and issues are not necessarily all the things that NASA will contribute to SC-228 during Phase 2, but what the overall committee needs to accomplish. A portion of the work will be in NASA's UAS in the NAS (National Airspace System) project plan.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN39303 , RTCA SC-228 Working Group 1 Meeting; Feb 14, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: The Airspace Technology Demonstration 2 (ATD-2) project conducted a pilot community workshop at Charlotte Douglas International Airport (CLT) in Charlotte, North Carolina. The goal was to familiarize pilots with the ATD-2 project, with an emphasis on procedures that may affect pilots during the Phase 1 Field Demonstration (beginning September 30, 2017). At this workshop, the high-level goals and objectives of ATD-2, expected benefits for pilots, changes to procedures, training requirements, and data sharing elements were presented.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN39731 , ATD-2 Pilot Community Engagement; Mar 01, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: Constituent evolution for 1990-2015 simulated using the Global Modeling Initiative chemistry and transport model driven by meteorological fields from the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) is compared with three sources of observations: ground-based column measurements of HNO3 and HCl from two stations in the Network for the Detection of Atmospheric Composition Change (NDACC, 1990- ongoing), profiles of CH4 from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS, 1992-2005), and profiles of N2O from the Microwave Limb Sounder on the Earth Observing System satellite Aura (2005- ongoing). The differences between observed and simulated values are shown to be time dependent, with better agreement after 2000 compared with the prior decade. Furthermore, the differences between observed and simulated HNO3 and HCl columns are shown to be correlated with each other, suggesting that issues with the simulated transport and mixing cause the differences during the 1990s and that these issues are less important during the later years. Because the simulated fields are related to mean age in the lower stratosphere, we use these comparisons to evaluate the time dependence of mean age. The ongoing NDACC column observations provide critical information necessary to substantiate trends in mean age obtained using fields from MERRA-2 or any other reanalysis products.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN47957 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 17; 19; 12081–12096
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: NASAs Orbiting Carbon Observatory-2 (OCO-2) mission was motivated by the need to diagnose how the increasing concentration of atmospheric carbon dioxide (CO2) is altering the productivity of the biosphere and the uptake of CO2 by the oceans. Launched on July 2, 2014,OCO-2 provides retrievals of the total column carbon dioxide (XCO2) as well as the fluorescence from chlorophyll in terrestrial plants. The seasonal pattern of uptake by the terrestrial biosphere is recorded in fluorescence and the drawdown of XCO2 during summer. Launched just prior to one of the most intense El Ninos of the past century, OCO-2 measurements of XCO2 and fluorescence record the impact of the large change in ocean temperature and rainfall on uptake and release of CO2 by the oceans and biosphere.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN45076 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 358; 6360; eaam5745
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: The representation of upper tropospheric/lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern Era Retrospective Analysis for Research and Applications), ERA-I (the ECMWF interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution: For example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterization. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude southern hemisphere winter upper tropospheric jets and multiple tropopauses, and in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry climate models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46367 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 17; 18; 11,541-11,566
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Elevated water vapor (H2Ov) mole fractions were occasionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H2Ov excess signal was observed, H2Ov emissions estimates range between 1.6 10(exp. 4) and 1.7 34 10(exp. 5) kg s(exp. -1), and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1degrees Celsius day(exp. -1) to the urban heat island at the surface. This integrated warming through the boundary layer is offset by long wave cooling by H2Ov at the top of the boundary layer. While the radiative impacts of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov emissions may have the potential to alter downwind aerosol and cloud properties.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46048 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 17; 9467-9484
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: NF1676L-22411 , Asia Oceana Geophysical Society (AOGS) 2017 Annual Meeting; Aug 07, 2017 - Aug 11, 2017; Singapore; Singapore
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN46332 , Conference on Radar Meteorology; Aug 28, 2017 - Sep 01, 2017; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: JSC-CN-40403 , Space Environment Engineering and Science Applications Workshop; Sep 05, 2017 - Sep 09, 2017; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45991 , European Solar Physics Meeting; Sep 04, 2017 - Sep 08, 2017; Budapest; Hungary
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45616 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 122; 2; 1437–1438|Conference on Measurement Techniques for Solar and Space Physics; Apr 20, 2017 - Apr 24, 2017; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: Study region: The Upper Rio Grande (URG) flows from its headwaters in Colorado, U.S., and provides an important source of water to millions of people in the U.S. states of Colorado, New Mexico, Texas, and also Mexico. Study focus: We reassess the explanatory power of the relationship of sea surface temperatures (SST) on URG streamflow variability on interannual to interdecadal timescales. We find a significant amount of the variance of spring-summer URG streamflow cannot be fully explained by SST. New hydrological insights: We find that the interdecadal teleconnection between SST and streamflow is more clear than on interannual timescales. The highest ranked years tend to be clustered during positive phases of the Pacific Decadal Oscillation (PDO). During the periods of decadal high flow (1900-1920, and 1979-1995), Pacific SST resembles a positive PDO pattern and the Atlantic a negative Atlantic Multidecadal Oscillation (AMO) pattern; an interbasin pattern shown in prior studies to be conducive to high precipitation and streamflow. To account for the part of streamflow variance not explained by SST, we analyze atmospheric Reanalysis data for the months preceding the highest spring-summer streamflow events. A variety of atmospheric configurations are found to precede the highest flow years through anomalous moisture convergence. This lack of consistency suggests that, on interannual timescales, weather and not climate can dominate the generation of high streamflow events.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46230 , Journal of Hydrology: Regional Studies (ISSN 2214-5818); o 13; 58-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46213 , Proceedings of the National Academy of Sciences of the United States of America (ISSN 1091-6490); 114; 35; 9326–9331
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Meltwater from snow that falls in the Catskill Mountains in southern New York contributes to reservoirs that supply drinking water to approximately nine million people in New York City. Using the NOAA National Ice Centers Interactive Multisensor Snow and Ice Mapping System (IMS) 4km snow maps, we have identified at least 32 lake-effect (LE) storms emanating from Lake Erie andor Lake Ontario that deposited snow in the CatskillDelaware Watershed in the Catskill Mountains of southern New York State between 2004 and 2017. This represents a large underestimate of the contribution of LE snow to the Catskills snowpack because many of the LE snowstorms are not visible in the IMS snow maps when they travel over snow-covered terrain. Most of the LE snowstorms that we identified originate from Lake Ontario but quite a few originate from both Erie and Ontario, and a few from Lake Erie alone. Using satellite, meteorological and reanalysis data we identify conditions that contributed to LE snowfall in the Catskills. Clear skies following some of the storms permitted measurement of the extent of snow cover in the watershed using multiple satellite sensors. IMS maps tend to overestimate the extent of snow compared to MODerate resolution Imaging Spectroradiometer (MODIS) and Landsat-derived snow-cover extent maps. Using this combination of satellite and meteorological data, we can begin to quantify the important contribution of LE snow to the Catskills Mountain snowpack. Changes that are predicted in LE snowfall from the Great Lakes could impact the distribution of rain vs snow in the Catskills which may affect future reservoir operations in the NYC Water Supply System.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46325 , Eastern Snow Conference; Jun 06, 2017 - Jun 08, 2017; Ottawa, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: GRC-E-DAA-TN40057/SUPPL , Central Aerohydrodynamic Institute Bilateral Discussion (TsAGI and NASA aviation safety seminar); Apr 06, 2017 - Apr 07, 2017; Moscow; Russia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: GRC-E-DAA-TN40057 , Central Aerohydrodynamic Institute Bilateral Discussion (TsAGI-NASA aviation safety seminar); Apr 06, 2017 - Apr 07, 2017; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN46231 , Conference on Radar Meteorology; Aug 28, 2017 - Sep 01, 2017; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN46006 , Presentation at Alabama A&M University; Aug 16, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45400 , Learning Quest Class- Huntsville Library; Aug 11, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45601 , Solar Eclipse Training Session; Aug 10, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45804 , US Space & Rocket Center Counselor Training; Aug 08, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitivity semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in Summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons that can limit the sensitivity of the observation of faint focused X-rays. Understanding and cutting down the singly reflected rays on the FOXSI optics will maximize the instrument's sensitivity of the faintest solar sources for future flights. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45609 , SPIE Optics + Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN46235 , Conference on Radar Meteorology; Aug 28, 2017 - Sep 01, 2017; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN46189 , 2017-IAPSO-IAMAS-IAGA Joint Assembly; Aug 27, 2017 - Sep 01, 2017; Cape Town; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Cirrus clouds determine the radiative balance of the upper troposphere and the transport of water vapor across the tropopause.The representation of vertical wind velocity, W, in atmospheric models constitutes the largest source of uncertainty in the calculation of the cirrus formation rate. Using global atmospheric simulations with a spatial resolution of 7 kilometers we obtain for the first time a direct estimate of the distribution of W at the scale relevant for cirrus formation, validated against long-term observations at two different ground sites. The standard deviation in W, sigma (sub W), varies widely over the globe with the highest values resulting from orographic uplift and convection, and the lowest occurring in the Arctic. Globally about 90 of the simulated sigma (sub W) values are below 0.1 meters per second and about one in 10 (sup 4) cloud formation events occur in environments with sigma (sub W) greater than 0.8 meters per second. Combining our estimate with reanalysis products and an advanced cloud formation scheme results in lower homogeneous ice nucleation frequency than previously reported, and a decreasing average ice crystal concentration with decreasing temperature. These features are in agreement with observations and suggest that the correct parameterization of sigma (sub W) is critical to simulate realistic cirrus properties.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN44309 , Scientific Reports (e-ISSN 2045-2322); 7; 6840
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Solar Physics
    Type: MSFC-E-DAA-TN45212 , Pre-Eclipse Talks at Magnolia Trace; Aug 27, 2017; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies.
    Keywords: Meteorology and Climatology
    Type: ARC-E-DAA-TN48688 , AGU Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains challenging. The presence of very thick clouds is a possible source of this challenge, because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data with a radius compatible with the evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provide a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperatures from 2000 K down to 1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constraints in the mid-infrared, helping to confirm or refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence or absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogs.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49958 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 850; 1; 46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: A number of organizations are working on processes, procedures, regulations, and technologies to maintain or improve the safety of the National Airspace System (NAS). In this paper, we describe a Real Time Safety Monitoring (RTSM) system that benefits from these efforts to define a set of safety metrics that are automatically monitored in real-time. In addition to providing information about current potentially adverse conditions to a variety of users, from those who need a broad overview of a day's flight operations to those who need to decide on a control tactic to employ in the next five minutes, the RTSM system predicts conditions within a specified prediction horizon. Its intelligent interface alerts the user, presenting the information as appropriate considering the current context and circumstances. We illustrate the system concept with five conceptual use cases, describing which safety metrics may be of the most interest to five user groups and suggesting a multi-modal display format. We posit that having access to information about adverse conditions in time to make efficient preemptive decisions without sacrificing safety will improve the already high level of safety and aid in the expansion planned for the NAS under the Next Generation Air Transportation System (NextGen).
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN42318 , AIAA Aviation Forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7+/-0.13 Gt dec(exp -1) since 1800 AD, representing a net reduction in sea level of 0.02 mm dec(exp -1) since 1800 and 0.04 mm dec(exp -1) since 1900 AD. The largest contribution is from the Antarctic Peninsula (75%) where the annual average SMB during the most recent decade (2001-2010) is 123+/-44 Gt yr(exp -1) higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49771 , Climate of the Past (ISSN 1814-9324) (e-ISSN 1814-9332); 13; 11; 1491-1513
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Model calibration (or tuning) is a necessary part of developing and testing coupled ocean-atmosphere climatemodels regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major U.S. climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present day radiative imbalance vs. the implied balance in the pre-industrial as a target.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN45125 , Geoscientific Model Development (ISSN 1991-959X) (e-ISSN 1991-9603); 10; 9; 3207-3223
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Particle radiation has significant effects for astronauts, satellites and planetary bodies throughout the Solar System. Acute space radiation hazards pose risks to human and robotic exploration. This radiation also naturally weathers the exposed surface regolith of the Moon, the two moons of Mars, and other airless bodies, and contributes to chemical evolution of planetary atmospheres at Earth, Mars, Venus, Titan, and Pluto. We provide a select review of recent areas of research covering the origin of SEPs from coronal mass ejections low in the corona, propagation of events through the solar system during the anomalously weak solar cycle 24 and important examples of radiation interactions for Earth, other planets and airless bodies such as the Moon.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN51144 , Space Science Review (ISSN 0038-6308) (e-ISSN 1572-9672); 212; 4-Mar; 1069-1106
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Key Findings: 1. Human activities have contributed substantially to observed ocean-atmosphere variability in the Atlantic Ocean (medium confidence), and these changes have contributed to the observed upward trend in North Atlantic hurricane activity since the 1970s (medium confidence). 2. Both theory and numerical modeling simulations generally indicate an increase in tropical cyclone (TC) intensity in a warmer world, and the models generally show an increase in the number of very intense TCs. For Atlantic and eastern North Pacific hurricanes and western North Pacific typhoons, increases are projected in precipitation rates (high confidence) and intensity (medium confidence). The frequency of the most intense of these storms is projected to increase in the Atlantic and western North Pacific (low confidence) and in the eastern North Pacific (medium confidence). 3. Tornado activity in the United States has become more variable, particularly over the 2000s, with a decrease in the number of days per year with tornadoes and an increase in the number of tornadoes on these days (medium confidence). Confidence in past trends for hail and severe thunderstorm winds, however, is low. Climate models consistently project environmental changes that would putatively support an increase in the frequency and intensity of severe thunderstorms (a category that combines tornadoes, hail, and winds), especially over regions that are currently prone to these hazards, but confidence in the details of this projected increase is low. 4. There has been a trend toward earlier snowmelt and a decrease in snowstorm frequency on the southern margins of climatologically snowy areas (medium confidence). Winter storm tracks have shifted northward since 1950 over the Northern Hemisphere (medium confidence). Projections of winter storm frequency and intensity over the United States vary from increasing to decreasing depending on region, but model agreement is poor and confidence is low. Potential linkages between the frequency and intensity of severe winter storms in the United States and accelerated warming in the Arctic have been postulated, but they are complex, and, to some extent, contested, and confidence in the connection is currently low. 5. The frequency and severity of landfalling "atmospheric rivers" on the U.S. West Coast (narrow streams of moisture that account for 30 percent to 40 percent of the typical snowpack and annual precipitation in the region and are associated with severe flooding events) will increase as a result of increasing evaporation and resulting higher atmospheric water vapor that occurs with increasing temperature. (Medium confidence)
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49609 , Climate Science Special Report: Fourth National Climate Assessment; I; 257-276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Annual precipitation has decreased in much of the West, Southwest, and Southeast and increased in most of the Northern and Southern Plains, Midwest, and Northeast. A national average increase of 4% in annual precipitation since 1901 is mostly a result of large increases in the fall season. Heavy precipitation events in most parts of the United States have increased in both intensity and frequency since 1901. There are important regional differences in trends, with the largest increases occurring in the northeastern United States. In particular, mesoscale convective systems (organized clusters of thunderstorms)-the main mechanism for warm season precipitation in the central part of the United States-have increased in occurrence and precipitation amounts since 1979. The frequency and intensity of heavy precipitation events are projected to continue to increase over the 21st century (high confidence). Mesoscale convective systems in the central United States are expected to continue to increase in number and intensity in the future. There are, however, important regional and seasonal differences in projected changes in total precipitation: the northern United States, including Alaska, is projected to receive more precipitation in the winter and spring, and parts of the southwestern United States are projected to receive less precipitation in the winter and spring. Northern Hemisphere spring snow cover extent, North America maximum snow depth, snow water equivalent in the western United States, and extreme snowfall years in the southern and western United States have all declined, while extreme snowfall years in parts of the northern United States have increased. Projections indicate large declines in snowpack in the western United States and shifts to more precipitation falling as rain than snow in the cold season in many parts of the central and eastern United States.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN49608 , Climate Science Special Report: Fourth National Climate Assessment; I; 207-230
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Blowing snow processes commonly occur over the earth's ice sheets when the 10 mile wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006-2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006-2016 Antarctica average integrated blowing snow sublimation is about 393 +/- 196 Gt yr(exp -1), which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km-1 yr(exp -1) over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr(exp -1). These continent-wide estimates are the first of their kind and can be used to help model and constrain the surface mass budget over Antarctica.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN51641 , The Cryosphere (e-ISSN 1994-0424); 11; 6; 2555-2569
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...