ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-12
    Description: Factors governing the strength and frequency of stratospheric ozone intrusions over the Pacific-North American region are considered for their role in modulating tropospheric ozone on interannual timescales. The strength of the association between two major modes of climate variability—the El Niño–Southern Oscillation (ENSO) and the Northern Annular Mode (NAM)—and the amount of ozone contained in stratospheric intrusions are tested in the context of two mechanisms that modulate stratosphere-to-troposphere transport (STT) of ozone: (StratVarO3) the winter season buildup of ozone abundances in the lowermost stratosphere (LMS) and (JetVar) Pacific jet and wave breaking variability during spring. In essence, StratVarO3 corresponds to variability in the amount of ozone per intrusion, while JetVar governs the frequency of intrusions. The resulting analysis, based on two different reanalysis products, suggests that StratVarO3 is more important than JetVar for driving interannual variations in STT of ozone over the Pacific-North American region. In particular, the abundance of ozone in the LMS at the end of winter is shown to be a robust indicator of the amount of ozone that will be contained in stratospheric intrusions during the ensuing spring. Additionally, it is shown that the overall strength of the winter season stratospheric NAM is a useful predictor of ozone intrusion strength. The results also suggest a nuanced relationship between the phase of ENSO and STT of ozone. While ENSO-related jet variability is associated with STT variability, it is wave breaking frequency rather than typical ENSO teleconnection patterns that is responsible for the ENSO-STT relationship. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-05
    Description: Computer vision techniques are used to characterize the Arctic stratospheric polar vortex in 38 years of reanalysis data. Such techniques are typically applied to analyses of digital images, but they represent powerful tools that are more widely applicable: basic techniques and considerations for geophysical applications are outlined herein. Segmentation, descriptive, and tracking algorithms are combined in the Characterization and Analysis of Vortex Evolution using Algorithms for Region Tracking (CAVE‐ART) package, which was developed to comprehensively describe dynamical and geometrical evolution of polar vortices. CAVE‐ART can characterize and track multiple vortex regions through time, providing an extensive suite of region, moments, and edge diagnostics for each. CAVE‐ART is valuable for identifying vortex‐splitting events including, but not limited to, previously cataloged vortex‐split sudden stratospheric warmings. An algorithm for identifying such events detects 52 potential events between 1980 and 2017; of these, 38 are subjectively classified as distinct “split‐like” events. The algorithm based on CAVE‐ART is also compared with moment‐based methods previously used to detect split events. Furthermore, vortex edge‐averaged wind speeds from CAVE‐ART are used to define extreme weak and strong polar vortex events over multiple vertical levels; this allows characterization of their occurrence frequencies and extents in time and altitude. Weak and strong events show distinct signatures in CAVE‐ART diagnostics: in contrast to weak events, strong vortices are more cylindrical and pole centered, and less filamented, than the climatological state. These results from CAVE‐ART exemplify the value of computer vision techniques for analysis of geophysical phenomena.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-14
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-27
    Description: The representation of upper tropospheric–lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern-Era Retrospective analysis for Research and Applications), ERA-I (ERA-Interim; the European Centre for Medium-Range Weather Forecasts, ECMWF, interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution – for example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 (the Japanese 55-year Reanalysis) a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterizations. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude Southern Hemisphere (SH) winter upper tropospheric jets and multiple tropopauses as well as in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large-scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry–climate models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-25
    Description: We compare herein polar processing diagnostics derived from the four most recent “full-input” reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis/Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim) reanalysis, the Japanese Meteorological Agency's 55-year (JRA-55) reanalysis, and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower-to-middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex. Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the Southern Hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in Tmin are as large as 3 K at some levels in the SH (1.5 K in the Northern Hemisphere – NH), and absolute differences of reanalysis APSC from the REM up to 1.5 % of a hemisphere (0.75 % of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: average Tmin differences from the REM are generally less than 1 K in both hemispheres, and average APSC differences less than 0.3 % of a hemisphere. The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVGs) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVGs showed convergence toward better agreement with the REM after 1999, while NH MPVGs differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically resolved PV for the different reanalyses. We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general, the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas. Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to advanced TOVS and other data around 1998–2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2020-01-28
    Description: Characteristics of the Arctic stratospheric polar vortex are examined using reanalysis data with dynamic time warping (DTW) and a clustering technique to determine whether the polar vortex exhibits canonical signs of preconditioning prior to sudden stratospheric warmings (SSWs). The DTW and clustering technique is used to locate time series motifs in vortex area, vortex edge-averaged PV gradients, and vortex edge-averaged wind speeds. Composites of the motifs reveal that prior to roughly 75% of SSWs, in the middle to upper stratosphere, PV gradients and wind speeds in the vortex edge region increase, and vortex area decreases. These signs agree with prior studies that discuss potential signals of preconditioning of the vortex. However, similar motifs are also found in a majority of years without SSWs. While such non-SSW motifs are strongly associated with minor warming signals apparent only in the middle and upper stratosphere, only roughly half of these can be associated with later “significant disturbances” (SDs) that do not quite meet the threshold for major SSWs. The median lead time for sharpening vortex edge PV gradients represented in the motifs prior to SSWs and SDs is ~25 days, while the median lead time for the vortex area and edge wind speeds is ~10 days. Overall, canonical signs of preconditioning do appear to exist prior to SSWs, but their existence in years without SSWs implies that preconditioning of the vortex may be an insufficient condition for the occurrence of SSWs.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-29
    Description: The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS) show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming (“major final warming”, MFW) began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. And although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, net chemical ozone loss was considerably less. We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower stratospheric N2O and middle stratospheric CO from MLS (long-lived tracers) show rapid vortex erosion and extensive mixing during and immediately after the split in mid-March; however, air in the resulting offspring vortices remained isolated until they disappeared. Although the offspring vortices in the lower stratosphere survived longer than those in the middle stratosphere, the rapid temperature increase and dispersal of chemically-processed air caused active chlorine to quickly disappear. Furthermore, ozone-depleted air from the lower stratospheric vortex core was rapidly mixed with ozone rich air from the vortex edge and midlatitudes during the split. The impact of the 2016 MFW on polar processing was the latest in a series of unexpected events that highlight the diversity of potential consequences of sudden warming events for Arctic ozone loss.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-22
    Description: The representation of upper tropospheric/lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern Era Retrospective Analysis for Research and Applications), ERA-I (the ECMWF interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution: For example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterization. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude southern hemisphere winter upper tropospheric jets and multiple tropopauses, and in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large scale climatological features in UTLS jet and multiple tropopause distributions. Quantitative differences may, however, have important consequences for transport and variability studies. Our results highlight the importance of considering reanalyses differences in UTLS studies, especially in relation to resolution and model grids; this is particularly critical when using high-resolution reanalyses as an observational reference for evaluating global chemistry climate models.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-19
    Description: We compare herein polar processing diagnostics derived from the five most recent full-input reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR), the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim), the Japanese Meteorological Agency's Japanese 55-year Reanalysis (JRA-55), and the National Aeronautics and Space Administration's Modern Era Retrospective-analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower to middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex. Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the southern hemisphere (SH), for years prior to 1999. Average absolute differences between the reanalyses in Tmin are as large as 6K at some levels in the SH (2K in the NH), and absolute differences in APSC larger than 2% of a hemisphere (1% of a hemisphere in the NH). After 1999, there is a dramatic convergence toward better agreement between the reanalyses in both hemispheres throughout the lower stratosphere, with average Tmin differences generally less than 1K in both hemispheres, and average APSC differences less than 0.5% of a hemisphere. The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVG) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: Some reanalyses show convergence toward better agreement in vortex diagnostics after 1999, while others show some persistent differences across all years. While the average differences are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically-resolved PV for the different reanalyses. We also evaluated other winter season summary diagnostics, including the number of days below PSC thresholds integrated over vertical levels, the winter mean volume of air below PSC thresholds, and vortex decay dates. For these summary diagnostics, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions and high sensitivity to reanalysis differences. Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to Advanced TOVS and other data around 1998–2000 data had a profound effect on the agreement of the temperature diagnostics presented, and to a lesser extent the agreement of the vortex diagnostics. Our results lead to several recommendations for usage of reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to present the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...