ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-15
    Description: Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-11
    Description: The growing interest in old durum wheat cultivars, due to enhanced consumer attention on healthy, traditional products and low-input agricultural systems, partly relies on their different quality characteristics compared to modern cultivars. Nine Italian durum wheat cultivars from different breeding periods were compared in two late-sown (January) field trials in order to subject their grain filling period to high temperatures similar to those expected in the future. Late sowing moved anthesis forward by about 10 days and increased the mean temperature during grain filling by 1.3 °C compared to that obtained when using the common sowing period of November–December. In these conditions, old cultivars were on average less productive than modern ones (2.36 vs. 3.54 tons ha−1, respectively), had a higher protein percentage (13.8% vs. 11.1%), a lower gluten index (24.3% vs. 56.3%), and a lower alveographic W (baking strength) (64 vs. 100 J 10−4). The differences were partly associated to variations in the gliadins:glutenins ratio. It depended on the genotype whether the grain and semolina protein percentage and gluten strength compensated one another in terms of alveographic indices to give the dough a strength similar to that of the modern cultivars in the range of moderately high temperatures, which resulted from delayed sowing. Further studies aimed at exploring the genetic variability of quality traits in the large genetic pool represented by the several Italian old and intermediate durum wheat cultivars still available are therefore advisable.
    Electronic ISSN: 2304-8158
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-26
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-31
    Description: We assess the sustainability of groundwater irrigation in the Euro-Mediterranean region. After analysing the available data on groundwater irrigation, we identify areas where irrigation causes groundwater depletion. To prevent the latter, we experiment with guidelines to restrict groundwater irrigation to sustainable levels, simulating beneficial and detrimental impacts in terms of improved environmental flow conditions and crop yield losses. To carry out these analyses, we apply the integrated model of water resources, irrigation and crop production LISFLOOD-EPIC. Crop growth is simulated accounting for atmospheric conditions and abiotic stress factors, including transpiration deficit. Four irrigation methods are modelled: drip, sprinkler, and intermittent and permanent flooding. Hydrologic and agricultural modules are dynamically coupled at the daily time scale through soil moisture, plant water uptake, and irrigation water abstraction and application. Water abstractions of other sectors are simulated based on requirement data. Water may be withdrawn from groundwater, rivers, lakes and reservoirs. As groundwater is abstracted to buffer the effects of drought, we use groundwater depletion to detect unsustainable water exploitation. We characterise reported data of annual groundwater abstractions for irrigation available at country and sub-national levels. Country data are the most complete, but their spatial resolution is often coarse. While the resolution of sub-national data is finer, their coverage is heterogeneous. Simulated and reported irrigation groundwater abstractions compare well in several areas, particularly in France, while some structural discrepancies emerge: simulated values tend to be larger than those reported, especially in southern Spain; and simulated inter-annual variability is significantly smaller than reported in some areas, most remarkably in Turkey. Potential causes of these discrepancies are simplified model assumptions influencing irrigation frequency and amounts; lack of high temporal and spatial resolution data on irrigated areas, and irrigation technologies and distribution; and possible unreported abstractions in areas where groundwater irrigation is significant. We identify areas undergoing groundwater depletion from model simulations. In the southern Iberian Peninsula, Greece, Middle East and northern Africa, most simulated depletion is caused by irrigation. In other Mediterranean areas, depletion is caused by all sectors combined. From well measurements of groundwater table depth in Spain, we find statistically significant decline rates affecting large areas of the south, thus in agreement with the model, but also areas in the north-eastern and central parts where model estimates detect no depletion. The comparison of model- and well-based depletion rates is limited by spatial scale differences and groundwater model assumptions, for which we suggest potential research directions. We design rules restricting irrigation groundwater abstraction to prevent groundwater depletion and minimise severe irrigation shortages. We optimise them and simulate their effects in the southern Iberian Peninsula. Irrigation restrictions cause crop yield reductions in groundwater-dependent irrigated areas, particularly in the Algarve and Segura river basin districts. At the same time, they positively impact environmental flows. This study shows the potential of integrated agro-hydrologic modelling for detecting water resources over-exploitation and exploring trade-offs between crop production, sustainable irrigation and ecosystem support.
    Print ISSN: 1992-0628
    Electronic ISSN: 1992-0636
    Topics: Natural Sciences in General
    Published by Copernicus on behalf of European Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN14222 , Global Change Biology; 20; 7; 2301-2320
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46213 , Proceedings of the National Academy of Sciences of the United States of America (ISSN 1091-6490); 114; 35; 9326–9331
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.
    Keywords: Statistics and Probability; Meteorology and Climatology
    Type: GSFC-E-DAA-TN22468
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...