ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: The use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft, is reviewed. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high angle of attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AGARD, Piloted Simulation Effectiveness; 16 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: The use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP) to provide methods and concepts for the design of advanced fighter aircraft is discussed. A major focus is to develop the design process required to fully exploit the benefits from advanced control concepts for high-angle-of attack agility.
    Keywords: Spacecraft Instrumentation and Astrionics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-201651 , NAS 1.26:201651
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-110217 , NAS 1.15:110217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The 'f18harv' six degree-of-freedom nonlinear batch simulation used to support research in advanced control laws and flight dynamics issues as part of NASA's High Alpha Technology Program is described in this report. This simulation models an F/A-18 airplane modified to incorporate a multi-axis thrust-vectoring system for augmented pitch and yaw control power and actuated forebody strakes for enhanced aerodynamic yaw control power. The modified configuration is known as the High Alpha Research Vehicle (HARV). The 'f18harv' simulation was an outgrowth of the 'f18bas' simulation which modeled the basic F/A-18 with a preliminary version of a thrust-vectoring system designed for the HARV. The preliminary version consisted of two thrust-vectoring vanes per engine nozzle compared with the three vanes per engine actually employed on the F/A-18 HARV. The modeled flight envelope is extensive in that the aerodynamic database covers an angle-of-attack range of -10 degrees to +90 degrees, sideslip range of -20 degrees to +20 degrees, a Mach Number range between 0.0 and 2.0, and an altitude range between 0 and 60,000 feet.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-110216 , NAS 1.15:110216
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TM-107601 , NAS 1.15:107601
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.
    Keywords: AIRCRAFT STABILITY AND CONTROL
    Type: NASA-TP-3446 , L-17323 , NAS 1.60:3446
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation.
    Keywords: AERODYNAMICS
    Type: NASA-CR-181684 , NAS 1.26:181684
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: One of the major challenges facing the integration of Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is the lack of an onboard pilot that can comply with the legal requirement identified in the US Code of Federal Regulations (CFR) that pilots see and avoid other aircraft. UAS will be expected to demonstrate the means to perform the function of see and avoid while preserving the safety level of the airspace and the efficiency of the air traffic system. This paper introduces a Sense and Avoid (SAA) concept for integration of UAS into the NAS that is currently being developed by the National Aeronautics and Space Administration (NASA) and identifies areas that require additional experimental evaluation to further inform various elements of the concept. The concept design rests on interoperability principles that take into account both the Air Traffic Control (ATC) environment as well as existing systems such as the Traffic Alert and Collision Avoidance System (TCAS). Specifically, the concept addresses the determination of well clear values that are large enough to avoid issuance of TCAS corrective Resolution Advisories, undue concern by pilots of proximate aircraft and issuance of controller traffic alerts. The concept also addresses appropriate declaration times for projected losses of well clear conditions and maneuvers to regain well clear separation.
    Keywords: Air Transportation and Safety
    Type: NF1676L-13199 , ICAS 2012-28th Congress of the International Council of the Aeronautical Sciences; 23-28 Sept. 2012; Brisbane; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will support UAS maneuver performance requirements development for integrating UAS in the NAS. The methods described are being used to help RTCA Special Committee 228 develop requirements.
    Keywords: Air Transportation and Safety; Aircraft Design, Testing and Performance
    Type: AIAA Paper 2014-2288 , NF1676L-18922 , AIAA Aviation and Aeronautics Forum and Exposition (AVIATION 2014); Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States|AIAA Aviation Technology, Integration and Operations (ATIO) Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...