ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5,804,788)
  • Wiley-Blackwell  (471,889)
  • Blackwell Publishing Ltd  (182,058)
Collection
Publisher
Language
Years
  • 101
    Publication Date: 2024-05-09
    Description: Tectono-stratigraphic analysis coupled with digital 3D surface modelling derived from high-resolution seismic profiles is performed along a narrow turbidite basin offshore E-Sicily in order to increase understanding on the processes that contributed to the shaping of the Western Ionian Basin. Seismic-reflector patterns of the identified Pliocene-Quaternary sequence point to syn-depositional deformation during the Pliocene associated with the simultaneous activity of regional faults and underlying ductile units. Long-wavelength sediment fanning results from the extensional activity of the Malta Escarpment faults. Conversely, internal reflector architecture and lateral terminations indicate localized subsidence associated with the growth of uprising structures in the easternmost part of the basin. Lateral shifting of basin depocenters is in line with withdrawal effects observed in basins floored by ductile units (salt or shale). 3D modelling of time-reference surfaces highlights sub-circular depressions associated with nearby structural culminations. This pattern is similar to salt-withdrawal mini- basins commonly reported in evaporite-floored basins. Accordingly, salt migration/flow triggered by sediment loading, locally enhanced by fault activity, is proposed as the process controlling basin evolution during the Pliocene in the Western Ionian Domain. Nevertheless, the possibility of shale/mud tectonics as the ductile source of deformation cannot be discounted
    Description: Published
    Description: 104932
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Syn-depositional deformation ; Ductile flow ; Turbidite basin ; Western Ionian Basin
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2024-05-09
    Description: The chemical composition of volatile organic compounds (VOCs) in interstitial soil gases from hydrothermal areas is commonly shaped by both deep hydrothermal conditions (e.g., temperature, redox, sulfur fugacity) and shallow secondary processes occurring near the soil-atmosphere interface. Caldara di Manziana and Solfatara di Nepi, i.e., two hydrothermal systems characterized by diverse physicochemical conditions located in the Sabatini Volcanic District and Vicano-Cimino Volcanic District, respectively (Central Italy), were investigated to evaluate the capability of VOCs in soil gases to preserve information from the respective feeding deep fluid reservoirs. Hierarchical cluster analyses and robust principal component analyses allowed recognition of distinct groups of chemical parameters of soil gases collected from the two study areas. The compositional dissimilarities from the free-gas discharges were indeed reflected by the chemical features of soil gases collected from each site, despite the occurrence of shallow processes, e.g., air mixing and microbial degradation processes, affecting VOCs. Four distinct groups of VOCs were recognized suggesting similar sources and/or geochemical behaviors, as follows: (i) S-bearing compounds, whose abundance (in particular that of thiophenes) was strictly dependent on the sulfur fugacity in the feeding system; (ii) C4,5,7+ alkanes, n-hexane, cyclics and alkylated aromatics, related to relatively low-temperature conditions at the gas source; (iii) C2,3 alkanes, benzene, benzaldehyde and phenol, i.e., stable compounds and thermal degradation products; and (iv) aliphatic O-bearing compounds, largely influenced by shallow processes within the soil. However, they maintain a chemical speciation that preserves a signature derived from the supplying deep-fluids, with aldehydes and ketones becoming more enriched after intense interaction of the hypogenic fluids with shallow aquifers. Accordingly, the empirical results of this study suggest that the chemical composition of VOCs in soil gases from hydrothermal areas provides insights into both deep source conditions and fluid circulation dynamics, identifying VOCs as promising geochemical tracers for geothermal exploration.
    Description: Published
    Description: 169047
    Description: JCR Journal
    Keywords: Central Italy; Geochemical tracers; Hydrothermal reservoirs; Soil gases; VOCs
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2024-05-16
    Description: The China Seismo-Electromagnetic Satellite (CSES) was launched successfully in February 2018. It is China's first satellite to measure geophysical fields with scientific goals in both space and solid earth physics. In this work, we used CSES scalar magnetic data to derive a global lithospheric magnetic field model between ±65° geographic latitudes. The nightside data from March 2018 to November 2022 under quiet space weather conditions were selected. Then, the core and external fields were removed with the CHAOS-7 model. After further data quality control, the data were used to build a lithospheric magnetic field model using a spherical harmonic analysis. The obtained CSES model was compared with the CHAOS-7, CM6, and MF7 models in terms of power spectra and anomaly details, which confirmed that the CSES scalar data had good quality and could provide a reliable lithospheric magnetic field model up to degree 42.
    Description: Published
    Description: 107036
    Description: OSA1: Variazioni del campo magnetico terrestre, imaging crostale e sicurezza del territorio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2024-05-16
    Description: The Caviahue-Copahue Volcanic Complex is one of the most studied active volcanic systems in the South American Andean range, and yet little research has focused on trace and rare-earth elements of waters, especially during an eruptive cycle. In this study, we sampled and investigated natural waters from 23 sites (involving the crater lake, hot springs, streams, rivers, and bubbling pools) in two campaigns in 2017 and 2018, using physi cochemical parameters, major, trace and rare-earth elements concentrations. With this novel dataset, it was possible to identify, characterize and compare three groups of waters with distinctive hydrofacies. Indeed, the normalization of water compositions against host rock concentrations showed a particular trace element pattern for each group of waters. Although the absolute concentrations of the elements in each sampling site changed from 2017 to 2018, the normalized patterns did not. Boron, As, Cd, Tl, Se, and Te, commonly recognized as volatile, are the main trace elements that magmatic gases supply to the system headwaters, whereas elements such as Ca, K, and Ba are affected by precipitation of secondary minerals (gypsum, anhydrite, barite, jarosite, and alunite). Furthermore, the main river draining the summit volcano shows a steep decrease in As, Cr, and V concentrations correlated to the precipitation of Fe and Al hydroxysulfates (schwertmannite and basaluminite, respectively). Moreover, it is the first time that a comparison between the different water groups is made using the patterns of the rare-earth elements, allowing us to identify and separate depletion patterns due to dilution processes from those due to precipitation processes.
    Description: Published
    Description: 121602
    Description: JCR Journal
    Keywords: Copahue volcano ; Hydrological system ; Geothermal ; Trace elements ; Rare earth elements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2024-05-16
    Description: In this work, we present new biostratigraphic and paleoecological data from the Mignone River valley, located in the central sector of the Tyrrhenian Sea margin and part of the wider Tarquinia basin, and cores in the area of Rome. By combining the new paleontological information with a review of the extant literature, we re-examine the stratigraphic architecture of the Pliocene succession in the central sector of the northwestern Tyrrhenian Sea margin, spanning the Zanclean (MPl1; 5.33–5.08 Ma) through the early Piacenzian (MPl4b; 3.57–3.31 Ma), and of the following Pleistocene transgressive-regressive sequence, comprising the Gelasian (MPl6; 2.59–1.81 Ma) through the Santernian (MPl1; 1.81–1.5 Ma). We propose a revision of the paleogeographic evolution of the central Tyrrhenian Sea basins throughout the Pliocene-Lower Pleistocene interval, by coherently framing it within the chronology of the volcanic phases that occurred in this region. In particular, our reconstruction points toward the presence of a single Transgressive- Regressive (T-R) sequence starting with the Zanclean reflooding of the Mediterranean after the Messinian Salinity Crisis and ending in the Piacenzian, as opposed to the previously proposed occurrence of two depositional T-R sequences separated by an erosional phase affecting part of the Globorotalia puncticulata biozone.
    Description: Published
    Description: 1-20
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Description: JCR Journal
    Keywords: Pliocene ; Pleistocene ; Biostratigraphy ; Tyrrhenian sea margin ; Paleoenvironments ; Depositional T-R sequence
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2024-05-16
    Description: The Latin American Giant Observatory (LAGO) is a ground-based observatory studying solar or high-energy astrophysics transient events. LAGO takes advantage of its distributed network of Water Cherenkov Detectors (WCDs) in Latin America as a tool to measure the secondary particle flux reaching the ground. These secondary particles are produced during the interaction between the modulated cosmic rays flux and the atmosphere. The LAGO WCDs are sensitive to secondary charged particles, high energy photons through pair creation and Compton scattering, and even neutrons thanks to, e.g., the deuteration of protons in the water volume. The pulse shape generated by these particles depends on several factors, such as the detector geometry, the water purity, the sensor response, or the reflectivity and diffusivity of the inner coating. Due to the decentralized nature of LAGO, these properties are different for each node. Additionally, the pulse shape depends on the convolution between the response of the central photomultiplier (PMT) to individual photons and the time distribution of the Cherenkov photons reaching the PMT. Typically, a WCD gives pulses with a sharp rise time ( 10 ns) and a longer decay time ( 70 ns). In this work, the WCD data used is acquired using the original LAGO data-acquisition system that digitizes pulses at a sampling rate of 40 MHz and 10 bits resolution on time windows of 400 ns. Here, we apply unsupervised machine learning techniques to find patterns in the WCDs data and subsequently create groups, through clustering, that can be used to provide particle separation. We use data acquired from an individual WCD, showing that density-based clustering algorithms are suitable for automatic particle separation producing good candidate groups. Improved separation would help LAGO to reconstruct in situ the properties of primary cosmic rays flux. These results open the possibility to deploy machine learning-based models in our distributed detection network for onboard data analysis as an operative prototype, allowing detectors to be installed at very remote sites.
    Description: Published
    Description: 168557
    Description: JCR Journal
    Keywords: 05.07. Space and Planetary sciences
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2024-05-17
    Description: Volcanic ashes can threaten the human respiratory system through inhalation. In this study we investigated the physical and chemical characteristics of volcanic ashes from the Pomici di Avellino (PdA) eruption, an Early Bronze Age (ca. 3.9 ka) Plinian event from Somma-Vesuvius volcano, southern Italy, whose wide dispersal affected most of the Italian peninsula. In particular, we analysed particle size, shape, composition, and surface reactivity of samples from both proximal and distal locations. Our results indicate that some tephra layers north of Rome have a phonolitic composition and match that of PdA eruption; they reach grain-sizes 〈2 μm (~13.5%), thus having the potential to enter the deep respiratory system. Furthermore, the reactivity in free radical generation makes these products potentially able to cause oxidative stress within cells. While commonly no volcanic hazard assessment is made in areas far from active volcanoes, this study highlights that fine ashes from future similar large eruptions, producing high amount of highly fragmented material, can pose a health hazard even in remote, non-volcanic areas, hundreds of km away from the vent, suggesting that further studies on ash toxicity (e.g., in vitro toxicity studies) are required.
    Description: Published
    Description: 107826
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2024-05-17
    Description: Several high spatial resolution thermal infrared (TIR) missions are planned for the coming decade and their data will be crucial to constrain volcanic activity patterns throughout pre- and post-eruption phases. Foundational to these patterns is the subtle (1−2 K) thermal behavior, which is easily overlooked using lower spatial resolution data. In preparation for these new data, we conducted the first study using the entire twenty-two-year archive of higher spatial, lower temporal resolution TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. This archive presents a unique opportunity to quantify low-magnitude temperature anomalies and small plumes over long time periods. We developed a new statistical algorithm to automatically detect the full range of thermal activity and applied it to 〉5000 ASTER scenes of five volcanoes with well-documented eruptions. Unique to this algorithm is its ability to use both day and night data, account for clouds, quantify accurate background temperatures, and dynamically scale depending on the anomaly size. Results improve upon those from the more commonly used lower spatial resolution data, despite the less frequent temporal coverage of ASTER, and show that high spatial resolution TIR data are equally as effective. Significantly, the smaller, subtle thermal detections served as precursory signals in ∼81% of eruptions, and the algorithm's results create a framework for classifying future eruptive styles.
    Description: Published
    Description: 113704
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-05-17
    Description: This paper presents the results from a geographic information systems (GIS) workflow, which was used to analyze the spatial distribution and temporal evolution of volcanoes in the Mio-Pleistocene monogenetic Bakony- Balaton Highland Volcanic Field (BBHVF), located in the Pannonian Basin, Hungary. Volcanism occurred during the tectonic inversion in a back-arc setting and a compressive/transpressive tectonic regime on the hottest and thinnest lithosphere of continental Europe. The main goal of this study is to clarify the effect of the pre-existing structure of the upper lithosphere in the distribution of the volcanic centers across the volcanic field using an innovative GIS methodology. Orientation of the volcanic field was compared to the orientation of the faults in the BBHVF, and in its larger vicinity, which resulted in correspondence, suggesting the dominance of the SW-NE direction. The directions of the volcanic lineaments fit well to the two main fault directions. The fault-volcano proximity analysis suggests that the fault plane of a thrust fault was an important structural feature during the lifespan of the volcanism. All results suggest that the fault plane of a regionally significant Cretaceous thrust fault (Lit ́er Fault) might have served as a temporary pathway for the ascending magma, whereby (similarly to other, smaller faults) redirecting the magmas causing clustering of the volcanoes. This highlights the importance of major upper crustal structural heterogeneities for magma transport in a compressive tectonic system, espe- cially in the case of active, monogenetic volcanic fields from a volcanic hazard perspective. The present GIS workflow can be effective in analyzing the spatial patterns of the volcanism and its connection with crustal structures at monogenetic volcanic fields worldwide.
    Description: Published
    Description: 107940
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-05-17
    Description: We present the first investigation of Equatorial Plasma Bubble (EPB) intensities across longitudinal sectors of the globe using observations from global navigation satellite system (GNSS) receivers. GNSS data from a total of 93 receiver stations located within ±20 degrees of the geomagnetic equator across the globe were used. The data covered periods of years 2014 and 2019 which are respectively years of high and low solar activity in solar cycle 24. We define a parameter known as the Standard deviation of Residual TEC (SRT) to characterize the EPB intensities. The EPB occurrence was defined by day-night differences of the rate of change of TEC index (ROTI). We observed a high correlation (r ∼ 0.80) between the magnitudes of the SRT and ROTI during the EPB occurrence, but the correlation is low (r ∼ 0.37) during non occurrence of EPB. The EPB intensities are greater during seasons with high occurrence rates. The EPB intensities and occurrence rates are also greater during the high solar activity. We found that the post-sunset intensities are greatest in the Atlantic region, followed by the African region, then the American, Australian, Asian, and Pacific regions in that order. The post-midnight intensities are greatest in the African region, followed by the Atlantic, American, Australian, Asian, and Pacific regions in that order.
    Description: Published
    Description: 106097
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-05-08
    Description: In the last few years, several works have analyzed rainfall regime changes with the increase of temperature as a result of global warming. These changes, documented mainly in northern Europe, still need to be clarified in the Mediterranean area. Many studies have identified sometimes contradictory trends according to the type of data used, the methodology, and the daily or subdaily types of events. Therefore, an in-depth investigation of the Mediterranean area is required for the definition of more certain future scenarios. In this study, we examined a very large database including 〉1000 raingauges and thermometers in northern and central Italy to analyze the relationship between temperature and rainfall using the relation Clausius-Clapeyron. Furthermore, we analyzed the relationship between temperature and extreme precipitation events (EPEs, defined as the events higher than the 95th percentile) calculating the temperature anomalies occurred during these events. This large database covers a low rainfall accumulation period (RAP) that allowed us to study the relationship between temperature and rainfall and to distinguish rapid from long events related to rainfall intensity. The results show different relationships between rainfall and temperature in relation to seasons, RAPs, rainfall intensity, and geographical factors. The high spatial density of the database made it possible to identify spatial clusters with homogenous characteristics mainly influenced by geographical factors. With an increase in temperature, the wet season is characterized by a general increase in rainfall with a higher surge for intense and fast events. Instead, the dry season shows a general rainfall decrease for less intense and longer events, but an increase in rapid and more intensive rainfall events. This outcome has further implications involving a future decrease in water availability and an increase of the EPEs, causing an extremization of the climate during the dry season for northern and central Italy.
    Description: Published
    Description: 163368
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Keywords: Current global warming; Extreme precipitation events; Italy; Mediterranean; Temperature increase
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-05-10
    Description: The Changbaishan Tianchi intraplate volcano is one of the most active and hazardous volcanoes of NE Asia, characterized by a summit caldera formed after the 946 CE ‘Millennium’ Plinian eruption. From December 2020 to June 2021, the frequency and magnitude of earthquakes at Tianchi were significantly higher than during background periods, with hundreds of earthquakes (46 events per month in average) and reaching a local magnitude of ML 3.1. This study reports a comprehensive deformation analysis and geophysical inversion scheme aimed to unveil the dynamics of this period. Multi-temporal InSAR analysis results of 32 ALOS-2 images from 2018 to 2022 show that the surface deformation is a combination of seasonal fluctuations (± 25 mm in average, with a maximum ± 45 mm) and a long-term positive component. The least squares linear regression of the deformation time series and temperature data, isolates the seasonal fluctuations, revealing a clear upliftsubsidence process from June 2020 to July 2021 in the caldera area. To constrain the Tianchi plumbing system dynamics, a combined inversion scheme consisting of three deformation sources is designed. The inversion results and the seismic records indicate that Tianchi volcano has experienced a low-level unrest episode from December 2020 to June 2021. The shallower plumbing system, located at about 5–9 km depth and modelled by pressurized spheroids, underwent a cumulative volume increase of 26 × 106 m3 from November 2018 to April 2021, followed by a volume decrease of 9 × 106 m3 from April to July 2021. This suggests magma uprising from the 14 km deep storage zone to the shallower plumbing system, followed by depressurization of the plumbing system due to the escape of fluids. This research provides a comprehensive understanding of the magma and fluid migration dynamics within the Tianchi multi-level plumbing system for the first time.
    Description: Published
    Description: 103775
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-05-27
    Description: In this paper we employ a combination of gravity and hydrologic data to constrain a hydraulic model of the Škocjan Caves, an allogenic dominated karstic system in Slovenia. The gravity time-series recorded by a spring-based gravimeter, are carefully analyzed to remove tidal and non-tidal effects and unveil the local hydrologic contribution, which is influenced by the temporary accumulation of water in the cave system during the flood events of the Reka river. We make use of a combined analysis of three large flood events with peak river discharge of about 200, 230 and 300 m3/s, that caused significant water level and gravity variations sensed by the pressure transducer and by the gravimeter. By the integration of hydraulic modelling we study the different coupled gravimetric-hydrologic responses to these flood events: we show that, depending on the peak discharge and duration of the event, different flow conditions are present in the cave system. In addition to the information provided by the pressure transducer, the gravimeter is sensitive to the flow dynamics in a different sector of the cave due to the choice of its location; this configuration helps to better constrain the hydraulic model. Moreover, we find that the autogenic recharge by percolating water can significantly affect the gravity time-series and must be considered in related models. By inclusion of both the hydraulic model outcomes and of the modelling of the autogenic recharge, we are able to better explain the gravity transients during the two smaller magnitude events. In particular, during such events the autogenic contribution produces a transient gravity signal, which is about 4 times larger than the allogenic one, while during the largest flood the allogenic contribution drastically overcomes the autogenic effect by a factor 20. By discussing this case, we prove the potential of terrestrial gravity observation to depict the hydro-dynamics of these complex karstic systems as well as the potential of gravimetry to remotely monitor these storage units.
    Description: Published
    Description: 130453
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-05-27
    Description: The 28th September 2018 Sulawesi Supershear earthquake (MW 7.5) was one of the deadliest earthquakes in the recent history of Indonesia causing ∼4000 causalities. The earthquake caused a ∼ 177 km long surface rupture along the Palu-Karo fault. Apart from surface rupture, the earthquake caused extensive earthquake environmental effects (EEEs) around the Palu-Donggala area of Central Sulawesi, Indonesia, which includes tsunami, coastal landslide, liquefaction, ground cracks and more than 7300 landslides in hilly areas. Initial post-event analysis and reports assigned a Modified Mercalli Intensity (MMI) of VII to VIII in Palu City and the surrounding area. Building damage and ground effects caused by the earthquake suggested that seismic intensity was understated. Here we applied the EEEs information from field survey data, published reports, and remote sensing tools to determine macroseismic intensity using the Environmental Seismic Intensity (ESI-07) Scale. The ESI-07 intensity derived from the ground effects suggests the maximum intensity of X-XI, which is 3–4° higher than the traditional intensity estimated by the United States Geological Survey (USGS) and the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG). ShakeMaps were generated considering the ESI-07 values. The ShakeMap was compared with the instrumentally derived ShakeMap for the Palu earthquake, which proves that the ShakeMap prepared from the instrumental data or structural damage data is underrated. We argue that proper documentation of the EEEs is necessary for such damaging earthquakes for future earthquake hazard mapping and planning in the study area and other earthquakes in Indonesia. In addition, this will help in defining the on-fault and off-fault damage zone towards reducing the seismic risk of the Palu Donggala area.
    Description: Published
    Description: 107054
    Description: JCR Journal
    Keywords: Sulawesi Earthquake ; Indonesia ; EEEs ; ESI-07 ; ShakeMap ; Seismic Hazard
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-05-28
    Description: Nominally anhydrous minerals (NAMs) may contain significant amounts of water and constitute an important reservoir for mantle hydrogen. The colloquial term ‘water’ in NAMs is related to the presence of hydroxyl-bearing (OH􀀀 ) point defects in their crystal structure, where hydrogen is bonded to lattice oxygen and is charge-balanced by cation vacancies. This hydrous component may therefore have substantial effects on the thermoelastic parameters of NAMs, comparable to other major crystal-chemical substitutions (e.g., Fe, Al). Assessment of water concentrations in natural minerals from mantle xenoliths indicates that olivine commonly stores ~0–200 ppm of water. However, the lack of samples originating from depths exceeding ~250 km coupled with the rapid diffusion of hydrogen in olivine at magmatic temperatures makes the determination of the olivine water content in the upper mantle challenging. On the other hand, numerous experimental data show that, at pressures and temperatures corresponding to deep upper mantle conditions, the water storage capacity of olivine increases to 0.2–0.5 wt%. Therefore, determining the elastic properties of olivine samples with more realistic water contents for deep upper mantle conditions may help in interpreting both seismic velocity anomalies in potentially hydrous regions of Earth’s mantle as well as the observed seismic velocity and density contrasts across the 410-km discontinuity. Here, we report simultaneous single-crystal X-ray diffraction and Brillouin scattering experiments at room temperature up to 11.96(2) GPa on hydrous [0.20(3) wt% H2O] Fo90 olivine to assess its full elastic tensor, and complement these results with a careful re-analysis of all the available single-crystal elasticity data from the literature for anhydrous Fo90 olivine. While the bulk (K) and shear (G) moduli of hydrous Fo90 olivine are virtually identical to those of the corresponding anhydrous phase, their pressure derivatives K′ and G′ are slightly larger, although consistent within mutual uncertainties. We then defined linear relations between the water concentration in Fo90 olivine, the elastic moduli and their pressure derivatives, which were then used to compute the sound velocities of Fo90 olivine with higher degrees of hydration. Even for water concentrations as high as 0.5 wt%, the sound wave velocities of hydrous and anhydrous olivines were found to be identical within uncertainties at pressures corresponding to the base of the upper mantle. Contrary to previous claims, our data suggest that water in olivine is not seismically detectable, at least for contents consistent with deep upper mantle conditions. In addition to that, our data reveal that the hydration of olivine is unlikely to be a key factor in reconciling seismic velocity and density contrasts across the 410-km discontinuity with a pyrolitic mantle.
    Description: Published
    Description: 107011
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-05-28
    Description: The rapid decline in both quality and availability of freshwater resources on our planet necessitates their thorough assessment to ensure sustainable usage. The growing demand for water in industrial, agricultural, and domestic sectors poses significant challenges to managing both surface and groundwater resources. This study tests and proposes a hybrid evaluation approach to determine Groundwater Quality Indices (GQIs) for irrigation (IRRI), seawater intrusion (SWI), and potability (POT), finalized to the spatial distribution of groundwater suitability involving water quality indicator along with hydrogeological and socio-economic factors. Mean Decrease Accuracy (MDA) and Information Gain Ratio (IGR) were used to state the importance of chosen factors such as level of groundwater above the sea, thickness of the aquifer, land cover, distance from coastline, silt soil content, recharge, distance from river and lagoons, depth to water table from ground, distance from agricultural wells, hydraulic conductivity, and lithology for each quality index, separately. The results of both methods showed that recharge is the most important parameter for GQIIRRI and GQIPOT, while the distance from the coastline and the rivers, are the most important for GQISWI. The spatial modelling of GQIIRRI and GQIPOT in the study area has been achieved applying three machine learning (ML) algorithms: the Boosted Regression Tree (BRT), the Random Forest (RF), and the Support Vector Machine (SVM). Validation results showed that RF has the highest prediction for GQIIRRI, while the SVM model has the highest prediction for the GQIPOT index. It is worth to mention that the future utilization and testing of new algorithms could produce even better results. Finally, GQIIRRI and GQIPOT were combined and compared using two combine and overlay methods to prepare a hybrid map of multi-GQIs. The results showed that 69% of the study area is suitable for irrigation and potable use, due to both geogenic and anthropogenic activities which contribute to make some water resources unsuitable for either use. Specifically, the northern, western, and eastern portions of the study area are in the "very high and high quality" classes while the southern portion shows "very low and low quality" classes. In conclusion, the developed map and approach can serve as a practical guide for enhancing groundwater management, identifying suitable areas for various uses and pinpointing regions requiring improved management practices.
    Description: Published
    Description: 119041
    Description: JCR Journal
    Keywords: Artificial intelligence ; Groundwater suitability ; Quality index ; Vulnerability map
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2024-05-29
    Description: Fault creep along the lower eastern flank of Mt. Etna volcano has been documented since the end of the 19th century and significantly contributes to the surface faulting hazard in the area. On 29 October 2002, during a seismic swarm related to dyke intrusions, two earthquakes caused extensive damage and surface faulting in an area between the Santa Venerina and Santa Tecla villages. On the same day after the two earthquakes, an episodic aseismic creep occurred along the Scalo Pennisi Fault close to the Santa Tecla coastline. On 8 February 2022, during another aseismic creep event along the Scalo Pennisi Fault, we observed the reopening of the pre existing 2002 ground ruptures mostly as pure dilational fractures. We mapped the 2002 and 2022 surface ruptures, and collected data on displacement, length, and pattern of ground breaks. Ground ruptures affected structures located along the activated fault segments, including roads, walls and buildings. The 2002 surface faulting propagation can be ascribed to a sliding of the Mt. Etna eastern flank toward the SE, as also suggested by the related shallow seismicity, and InSAR and geodetic data between 2002 and 2005. For the 2022 event, dif ferential InSAR data, acquired in both descending and ascending views, allowed us to decompose Line of Sight (LOS) displacement into horizontal and vertical components. We detect a ~ 700 m long and ~ 500 m wide deformation zone with a downward and eastward motion (max displacement ~1,5 cm) consistent with a normal fault. We inverted the InSAR–detected surface deformation using a uniform-slip fault model and obtained a shallow detachment for the causative fault, located at ~300 m depth, within the volcanic pile. This is the first in depth study along the Scalo Pennisi Fault to suggest a shallow faulting that accommodates Mt. Etna E flank gravitational sliding.
    Description: Published
    Description: 229829
    Description: JCR Journal
    Keywords: Etna ; Aseismic creep ; Earthquake ; Surface faulting ; Volcano-tectonic deformation ; InSAR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2024-05-21
    Description: The increase in summer monsoon precipitation over western Africa during the last interglacial (LIG) relative to the pre-industrial (PI) is well documented, but it is uncertain whether this increase is due to larger rainfall rate alone, an extension of the summer monsoon season or a combination of the two. Due to different orbital config- uration, the boreal summer of the LIG was warmer but shorter than the PI, potentially influencing the summer monsoon duration. In this study, we employ a newly developed isotope-enabled climate model, AWI-ESM-wiso to investigate the intensity and length of the West African Summer Monsoon (WASM) for both LIG and PI time periods. Our model results indicate that, despite an intensification in summer insolation and an enhanced hydro-logical cycle, WASM season in the LIG is 9 days shorter compared to the PI. During the LIG, increased insolation in late spring and early summer strengthens the Saharan heat low (SHL) and its associated sub-systems, facilitating a faster accumulation of potential instability and an earlier WASM onset. However, a substantial earlier withdrawal of the WASM is also detected, driven by an earlier southward shift of insolation maximum. More- over, our findings are further supported by models participating in the 4th phase of the Paleoclimate Modelling Intercomparison Project (PMIP4).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-05-22
    Description: Delineating hydrothermal alteration and supergene caps is fundamental for mineral exploration of sulfide ores. The aim of this study is to apply a multi-scale workflow based on hyperspectral remote and proximal sensing data in order to delineate hydrothermal dolomitization and supergene alteration associated with the Mississippi Valley-Type Zn-Pb(-Ag) deposit of Jabali (Western Yemen). The area was investigated through hyperspectral images derived from the new launched Italian Space Agency’s PRISMA satellite, which has a higher spectral resolution compared to multispectral sensors and covers the mineral-diagnostic wavelength regions (such as the 2100 nm to 2300 nm range) with a Signal to Noise Ratio (SNR) ≥ 100. Spectral mineral maps were produced through the band ratios method using specific feature extraction indices applied to the hyperspectral satellite data. The results were validated by using Visible Near InfraRed (VNIR) to Short Wave InfraRed (SWIR) reflectance spectra, mineralogical (XRPD) and geochemical (ICP-ES/MS) analyses on rock samples collected in the Jabali area. The dolomites footprint was mapped using a PRISMA Level 2C image, by enhancing the spectral differences between limestones and dolomites in the SWIR-2 region (major features centered at 2340 nm and 2320 nm, respectively). Gossans were detected due to the Fe3+ absorption band in the VNIR region at 900 nm. The Zn-Pb mineralized area, extended for approximately 25 km2, was thus identified by recognizing gossan occurrences in dolomites. The study demonstrates that the PRISMA satellite is effective in identifying Zn-Pb mineralized outcrops in sedimentary basins.
    Description: Published
    Description: 105244
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-05-20
    Description: Meta menardi (Latreille, 1804) and M. bourneti Simon, 1922 (Araneae: Tetragnathidae) are ubiquitous inhabitants of the twilight zone of most hypogean sites across Europe. The two species are broadly distributed in Italy, including Sicily, where they show a remarkable segregation along the altitudinal gradient of Mount Etna. Thanks to our recent sampling activities in this area, we create a georeferenced dataset allowing the application of Species Distribution Modelling aiming at evaluating the current and the future habitat in light of the impacts caused by climate change on the local populations. We predicted a relatively wide suitable area for M bourneti, ranging from the sea level up to 1100 m a.sl., whereas for M. menardi the suitable area encompasses a narrow mid altitude strip, extending halfway between the areas suitable for M. bourneti, and the highly unsuitable volcanic uplands, heavily disturbed by the volcanic activity. The averaged future predictions for 2070 under RCP 8.5 scenario, show that M. bourneti will expand its range upwards, in areas that are now suitable for M. menardi. In turn, predictions for M. menardi indicate an extreme reduction of the current strip of suitable habitat, likely determining its local extinction. Our findings are further corroborated by the analysis of the bioclimatic niche of the two species assessed via multidimensional Hutchinsonian hypervolume, being much smaller in M. menardi compared to of M. bourneti. In light of our results, it seems likely that having wider climatic preference, M. bourneti will substitute M. menardi in most of its current range in Sicily. Future interventions aiming at the conservation of M. menardi on Mount Etna are strongly advised.
    Description: Published
    Description: e02699
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Keywords: Cave-dwelling spiders ; Mount Etna ; Lava caves ; Climate change ; Niche segregation ; Species distribution modelling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-05-20
    Description: Observations of the tidal response of celestial bodies quantified by the Love numbers are highly relevant in planetary geophysical investigations because they provide unique insight into the interior structures. For example, the high sensitivity of tidal deformations to the properties of the oceans detected beneath the icy surfaces of some moons is of paramount importance for investigations of their habitability. We present here PyALMA3, a software framework developed in Python devoted to the computation of planetary Love numbers. PyALMA3 is based on ALMA3, a previous version developed in Fortran. Conversion to Python significantly improves the accessibility and portability of the software. We tested PyALMA3 by applying it to the exploration of the tidal responses of Europa and the other Galilean moons. We show that accurate modeling of effects such as the viscoelastic deformations of ice and the water density gradient in the ocean (variations of 2–3% on the real part of k2) will be important in the context of geophysical investigations that will be conducted by future missions targeting icy moons, such as Europa Clipper and JUICE.
    Description: Published
    Description: 116120
    Description: JCR Journal
    Keywords: Galilean satellites ; Tides ; Planetary interior ; Ocean planets
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-05-20
    Description: When approximating elliptic problems by using specialized approximation techniques, we obtain large structured matrices whose analysis provides information on the stability of the method. Here we provide spectral and norm estimates for matrix-sequences arising from the approximation of the Laplacian via ad hoc finite differences. The analysis involves several tools from matrix theory and in particular from the setting of Toeplitz operators and Generalized Locally Toeplitz matrix-sequences. Several numerical experiments are conducted, which confirm the correctness of the theoretical findings.
    Description: Published
    Description: 10-43
    Description: JCR Journal
    Keywords: Toeplitz matrix ; Generating function and spectral symbol ; Approximation of differential operators
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2024-05-20
    Description: To ensure the long-term sustainable use of African Great Lakes (AGL), and to better understand the functioning of these ecosystems, authorities, managers and scientists need regularly collected scientific data and information of key environmental indicators over multi-years to make informed decisions. Monitoring is regularly conducted at some sites across AGL; while at others sites, it is rare or conducted irregularly in response to sporadic funding or short-term projects/studies. Managers and scientists working on the AGL thus often lack critical long-term data to evaluate and gauge ongoing changes. Hence, we propose a multi-lake approach to harmonize data collection modalities for better understanding of regional and global environmental impacts on AGL. Climate variability has had strong impacts on all AGL in the recent past. Although these lakes have specific characteristics, their limnological cycles show many similarities. Because different anthropogenic pressures take place at the different AGL, harmonized multilake monitoring will provide comparable data to address the main drivers of concern (climate versus regional anthropogenic impact). To realize harmonized long-term multi-lake monitoring, the approach will need: (1) support of a wide community of researchers and managers; (2) political goodwill towards a common goal for such monitoring; and (3) sufficient capacity (e.g., institutional, financial, human and logistic resources) for its implementation. This paper presents an assessment of the state of monitoring the AGL and possible approaches to realize a long-term, multi-lake harmonized monitoring strategy. Key parameters are proposed. The support of national and regional authorities is necessary as each AGL crosses international boundaries.
    Description: Published
    Description: 101988
    Description: JCR Journal
    Keywords: Fisheries ; Limnology ; Pollution ; Biodiversity ; Climate change ; Erosion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2024-05-23
    Description: Geofluids from natural springs connect with the crust and/or mantle in many cases, and their geochemical anomalies could be significant for the study on faults activity and even earthquakes. Several natural springs are distributed along the Lenglongling fault zone (LLLFZ) in the northeastern margin of the Tibetan Plateau, where the Ms 6.9 Menyuan earthquake occurred on January 8th, 2022. Based on chemical and isotopic compositions (δD, δ18O, δ13C, and 3He/4He) of water and gas samples, the origin of geofluids and their potential correlation with fault activity even including earthquakes are preliminarily assessed in this paper. The δ13CCO2 values and 3He/4He ratios showed that the gas originating from the crust was associated with the metamorphism of carbonate rocks, whereas the δ18O and δD values of water samples indicated that the natural springs were predominantly infiltrated with precipitations from local mountains ranging 3.7 - 5.5 km in height. Obvious changes of Ca2+ and HCO3􀀀 concentrations in SZK spring waters in the surface rupture zones were observed in a short period (about three months) after the main shock, in contrast to those of the GSK springs far from the surface rupture zones. Such variations might be correlated with the stress increase prior to the 2022 Menyuan Ms 6.9 earthquake. The mechanical fracturing of surrounding limestone rocks during the slipping movement of LLLF could facilitate the water-rock interactions. Compared to three-month observations after the main shock, relatively higher concentrations of HCO3􀀀 and heavier δ18OH2O values of the LHG springs were also observed in the short-term period. The shallow stored formation water might be squeezed along the cracks and rose to the surface during earthquake tremors, causing a sandblasting water phenomenon.
    Description: Published
    Description: 105767
    Description: JCR Journal
    Keywords: Menyuan earthquake ; Natural spring ; Fluid geochemistry ; Lenglongling fault ; Tibetan plateau
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-05-23
    Description: The influence of the hydrothermal circulation on seismicity and uplift observed at the Campi Flegrei caldera (Italy) is a topic of great interest to the scientific community. Recently, Thermo-Poro-Elastic (TPE) inclusions were proposed as likely deformation sources. They are suitable to explain the mechanical effects induced by hot and pressurized hydrothermal fluids, possibly exsolved from underlying magma, and pervading an overlying brittle layer. Recent works show that a TPE inclusion located at approximately 2 km depth below the Campi Flegrei caldera significantly contributed to the large and rapid soil uplift observed during the ‘82-’84 unrest phase. In the present work we demonstrate that such a source of deformation is likely playing a role even in the current unrest phase, which is characterized by a much lower uplift-rate with respect to the one occurred in the previous unrest phase. We will show that the time-series of soil uplift observed in the last 18 years can be reproduced by assuming the reactivation of the same deformation source responsible of the ‘82-’84 unrest located within a shallow brittle layer at about 2 km depth. The presence of a brittle layer has been evidenced in the past by tomographic studies and is confirmed by a sharp variation of the b-value at the corresponding depth.We believe that our results provide very important insights and evidences, supporting the existence and the importance of an active thermo-poro-elastic deformation source, which can be useful for understanding the unrest of the Campi Flegrei caldera, from both a scientific and geohazard perspective.
    Description: Published
    Description: 107930
    Description: JCR Journal
    Keywords: Campi Flegrei ; Hydrothermal fluids ; Caldera ; Uplift ; Induced seismicity ; Deformation source
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-06-13
    Description: Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2024-06-12
    Description: The Campanian Volcanic Zone (CVZ) comprises multiple active volcanoes and includes the highly productive Campi Flegrei and Ischia caldera systems. These caldera volcanoes have produced probably the largest eruptions in Europe in the past 200 ka, such as the Monte Epomeo Green Tuff (MEGT; Ischia) at ca. 56 ka and the Campanian Ignimbrite (CI; Campi Flegrei) at ca. 40 ka, which form widespread isochrons across the Mediterranean region. These closely-spaced volcanic centres erupt phonolitic to trachytic glass compositions that are similar, and thus it can be challenging to correlate tephra deposits to specific volcanic sources. Here we present a detailed tephrostratigraphy for pre-CI eruption activity using the units preserved within a sequence at the coastal Acquamorta outcrop, on the western side of the CI caldera rim. Both the MEGT and CI units are present in the section, and they bracket twelve eruption units that were logged and sampled. New major and trace element glass chemistry data have been acquired for these Acquamorta tephra deposits. Three eruption deposits from Ischia and nine from Campi Flegrei are identified, which helps constrain the tempo of volcanic activity of these centres between the large caldera-forming eruptions. The three Ischia tephra deposits between the MEGT and the CI are indistinguishable based on both major and trace element glass chemistry and cannot be correlated to a specific or known eruption in this interval, such as the Schiappone tephra. The compositional variations between the Campi Flegrei eruptions reveal temporal shifts in the composition of the tephra deposits that reflect changes in the magmatic system prior to the CI eruption. These deposits indicate that there were at least nine eruptions at Campi Flegrei within 16 ka of the enormous CI eruption, and suggest that there was no significant period of repose before the caldera generating eruption.
    Description: Published
    Description: 107915
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-06-12
    Description: Active volcanoes are a continuous threat for several regions worldwide and cause socio-economic and environmental issues, including the Virunga Volcanic Province (D.R. Congo). There, more than 2 million people are permanently exposed to the hazards of the most active volcanoes in Africa: Nyiragongo and Nyamulagira. However, there is a clear lack of information regarding the impacts of these hazards and how they may be affected by social vulnerability. In this study, a household survey based on semi-structural interviews was performed for rural communities in Virunga. This research aims to (i) investigate the impacts of volcanic hazards on rural communities facing distinct levels of social vulnerability, (ii) understand the adaptive strategies developed by these communities to address these impacts, and finally (iii) identify the main grievances with respect to volcanic hazards raised by these rural communities. The most vulnerable households are those directly affected by volcano-tectonic hazards such as lava flows, mazukus, volcanic gases, ash fallout, and seismic activity. Indirect dangers related to water and food contamination by volcanic emissions are also stronger for the most vulnerable households. Respondents reported that most edible plants and waters are strongly affected by direct volcanic emissions. Drinking waters, which come from traditional drainage, rainfall, and streams, are generally not suitable for human consumption in the study area. Community suggestions for addressing issues related to volcanic-tectonic hazards include efforts to improve water and food quality, enhancement of the sanitary system, timely information on the volcanic activity, volcano monitoring, and capacity building for volcanologists.
    Description: Published
    Description: 103566
    Description: JCR Journal
    Keywords: Volcanic hazards ; Social vulnerability ; Risks perception ; Nyiragongo ; Nyamulagira
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-06-12
    Description: On December 26, 2018 (2:19 UTC), during a volcanic eruption on the Mt. Etna eastern flank (Sicily, southern Italy), the largest instrumental earthquake ever recorded in the volcano ruptured the Fiandaca Fault, with epicenter between Fleri and Pennisi villages (hypocenter at ca. 300 m a. s. l., Mw 4.9). This was the mainshock of an earthquake swarm and it was accompanied by widespread surface faulting and extensive damage along a narrow belt near the fault trace. Few hours after the mainshock, an episodic aseismic creep event occurred along the Aci Platani Fault, a SE extension of the Fiandaca Fault, which caused several damages in the Aci Platani village. We surveyed and mapped the coseismic and aseismic ground ruptures, and collected structural data on their geometry, displacement, and fault zone fabric. We compared the mapped surface ruptures with topography, lithology, and morphology of the buried top of the sedimentary basement. We conclude that the geometry of the volcanic pile influenced the surface expression of faulting during the December 26, 2018 event. The top surface of the marly clay basement should be considered as a detachment surface for shallow sliding blocks. The earthquake occurred on top of a depression of the sedimentary basement forcing the sliding eastward, causing at surface the re-arrangement of the fault strand pattern and deformation style, switching from shear faulting to a tensile failure. The Fleri earthquake therefore provides an unprecedented dataset for 1) understanding active faulting in the European largest onshore volcano, 2) modeling its complex dynamics, and 3) contributing to a more refined surface faulting hazard assessment at Mt. Etna. Results from this investigation might be useful for characterizing capable faulting in similar volcano-tectonic settings worldwide.
    Description: Published
    Description: 25-41
    Description: JCR Journal
    Keywords: 2018 Fleri earthquake ; Mt. Etna ; Surface faulting ; Geological hazards ; Aseismic creep
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-06-13
    Description: Volcanic rocks are the prominent host rocks in geothermal and volcanic systems in general, displaying heterogeneity. Although various external factors such as temperature, pressure, time, fluid chemistry, and subsurface geology have been thoroughly researched regarding the source of hydrothermal minerals in geothermal fields, the effect of hydrothermal alteration on volcanic hosts is still controversial in the literature. This review compiles data on the physical and mechanical properties of the host rocks composing volcanic environments exhibiting hydrothermal alteration or remaining unaltered. The considered data is originated from hydrothermal areas from Kuril-Kamchatka (Russia), Los Humeros (Mexico), Ngatamaraki, Rotokawa, Kawerau and Ohakuri geothermal fields and Mt. Ruapehu, Mt. Taranaki, and Whakaari volcanoes (New Zealand), Solfatara (Italy), Reykjanes, Nesjavellir, and Theistarereykir geothermal fields (Iceland), La Soufrière de Guadeloupe (Caribbean) volcano, and Merapi volcano (Indonesia). Analysis of average values displayed in several graphical representations and correlations finds that dense rocks (such as lavas and intrusive rocks) exhibit greater competence and lower porosity than fragmental rocks. However, altered dense rocks display greater variability in mechanical properties compared to pyroclastic rocks, primarily influenced by mineral dissolution leading to rock weakening. Exceptions occur for high-temperature hydrothermal alteration, such as advanced silicification and propylitic alteration, with the latter influenced by minor types of alteration. Fragmental rocks have diverse behaviour with the extent of hydrothermal alteration and welding/compaction. According to the compiled data, an overall strengthening of pyroclastic rocks develops as hydrothermal alteration increases, regardless of the type of hydrothermal alteration. The complexity of hydrothermal systems, the variability shown by different hydrothermal settings and histories in terms of temperature, fluid chemistry and secondary mineral assemblage, and the variety of rock materials with different microstructures contribute to moderate correlations between properties compared to those established in an unaltered state. However, the same trends (linear, nonlinear, positive, negative) are preserved along hydrothermal alteration. This review emphasizes the significance of the type and degree of hydrothermal alteration, along with the rock type and pre-existence of fractures, in shaping the development of alteration in volcanic environments and modifying the properties of host rocks. The relevance of the review relies on the fact that these properties are considered to enhance the productivity of geothermal fields and improve the assessment of volcanic hazards. Future research is expected to expand on this groundwork.
    Description: Published
    Description: 104754
    Description: OSV4: Preparazione alle crisi vulcaniche
    Description: JCR Journal
    Keywords: Hydrothermal alteration ; physical properties ; degree of hydrothermal alteration ; mechanical properties ; hydrothermal alteration facies ; intrusion-related geothermal systems ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-06-13
    Description: Climate change affects human activities, including tourism across various sectors and time frames. The winter tourism industry, dependent on low temperatures, faces significant impacts. This paper reviews the implications of climate change on winter tourism, emphasising challenges for activities like skiing and snowboarding, which rely on consistent snowfall and low temperatures. As the climate changes, these once taken-for-granted conditions are no longer as commonplace. Through a comprehensive review supported by up-to-date satellite imagery, this paper presents evidence suggesting that the reliability of winter snow is decreasing, with findings revealing a progressive reduction in snow levels associated with temperature and precipitation changes in some regions. The analysis underscores the need for concerted efforts by stakeholders who must recognize the reality of diminishing snow availability and work towards understanding the specific changes in snow patterns. This should involve multi-risk and multi-instrument assessments, including ongoing satellite data monitoring to track snow cover changes. The practical implications for sports activities and the tourism industry reliant on snow involve addressing challenges by diversifying offerings. This includes developing alternative winter tourism activities less dependent on snow, such as winter hiking, nature walks, or cultural experiences.
    Description: Published
    Description: 120554
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Keywords: Climate change ; Adaptation ; Tourism losses ; Winter sport ; Multi-date satellite imagery ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-06-13
    Description: The topside ionosphere extends from the F2-layer peak, where the electron density reaches its absolute maximum in the ionosphere, to the overlying plasmasphere and magnetosphere. In the topside ionosphere, the electron density decreases with height with a vertical variation rate strongly dependent on height itself. The last version of the International Reference Ionosphere (IRI) model, i.e., IRI-2020, describes this complex behavior through four topside options based on different sub-models (i.e., options) developed from the 1970s to the present. All these options have in common the F2-layer peak as an anchor point, while they differ in their topside electron density profile and/or plasma effective scale height formulations. In this work, we perform a validation of the accuracy of the four IRI-2020 topside options based on the comparison against in-situ electron density observations by Gravity Recovery and Climate Experiment (GRACE), Ionospheric Connection Explorer (ICON), and Defense Meteorological Satellite Program (DMSP) F15 low-Earth-orbit satellites. Datasets used in this study encompass observations recorded from 1999 to 2022, covering different diurnal, seasonal, and solar activity conditions, on a global basis and for the height range 400–850 km above the ground. The nearly two solar cycles dataset facilitated the evaluation of IRI-2020 topside options ability to reproduce the spatial and time variations of the topside ionosphere for different solar activity conditions. The weaknesses and strengths of each IRI-2020 topside option are highlighted and discussed, and suggestions on how to improve the modeling of the challenging topside ionosphere region within the IRI model are provided for future reference.
    Description: In press
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: Topside ionosphere modeling ; International Reference Ionosphere (IRI) model ; In-situ electron density observations ; Low-Earth-Orbit satellites ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2024-06-17
    Description: In the period February–April 2021, seventeen energetic hours-long episodes of intense lava fountaining occurred at Mt. Etna, producing lava flows and ash plumes followed by heavy fallout. Clinopyroxene mesocrysts from these paroxysms show complex sector and concentric zoning patterns, with juxtaposition of Si-Mg-rich (Al-Ti-poor) and Si-Mg-poor (Al-Ti-rich) crystal layers. Clinopyroxene-based equilibrium thermobarometry and hygrometry define an overall crystallization path in the range of ~170–480 MPa, ~1060–1110 °C, and ~ 1.2–2.7 wt% H2O, with a main magma storage region estimated at depths of ~11–15 km. From this perspective, we observe that 2021 lava fountains were fed by hotter magmas of deeper origin with respect to those feeding 2011–2012 paroxysms. Zoning patterns of 2021 clinopyroxene mesocrysts formed in a vertically-extended plumbing system upon the effect of mixing phenomena and crystal recycling caused by recurrent inputs of fresh magmas into interconnected mushy reservoirs. Kinetic growth modeling constrains the formation of 2021 clinopyroxene mesocrysts over timescales of ~30–90 h and small degrees of undercooling ≤28 °C. Fesingle bondMg diffusion chronometry confirms that the time elapsed between the formation of clinopyroxene rim and magma eruption is utterly related to growth kinetics caused by pre-eruptive dynamic transfer of magma at crustal depths. Kinetic effects are exacerbated for clinopyroxene microlites/microcrysts forming at the syn-eruptive stage, when magma decompression, degassing, and cooling become more effective in the last 1.5 km below the vent of Mt. Etna. Kinetic growth modeling reveals that eruption dynamics within the conduit promote an exceptionally rapid disequilibrium growth of clinopyroxene microlites/microcrysts in only ~0.4–3.3 min upon large degrees of undercooling 〉60 °C. The resulting ascent velocity of 2021 magmas within the conduit is ~8–63 m/s, a factor of ~3 higher than the less energetic 2011–2012 paroxysms.
    Description: Published
    Description: 106710
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Magma dynamics at Mt. Etna ; Clinopyroxene zoning patterns ; P-T-H2O magma crystallization histories ; Magma ascent velocities ; petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2024-06-17
    Description: Petrological studies of active volcanoes typically focus on eruptive phenomena occurring over long timescales of the order of days to years, aiming at identifying major changes in the physico-chemical state of magma during ascent towards the surface. Exceptionally, we present results from an integrated petrological and statistical approach based on the compilation of ∼5300 major and trace element data for glass and crystals, in combination with volcanological data on eruptive events occurred over timescales of minutes at Stromboli volcano (Sicily). On May 11, 2019, we had the rare opportunity to collect individual fresh fallout ash products from eighteen mostly consecutive explosions, erupted in a 2-h time span and, at the same time, to acquire continuous high frequency (50 Hz) infrared thermal data of the same explosions. Through video analysis, we observe that explosions were more frequent and ash-dominated at the southwestern crater area (SCA, 8–10 events/h) than at the northeastern crater area (NCA, 3–5 events/h), where coarser material was ejected. The statistical analysis of glass and plagioclase compositions reveals differences in the products erupted from the two crater areas. SCA explosions tapped less differentiated magmas (Mg#∼42–46, ∼257–365 LaN, ∼0.7–0.9 Eu/Eu*) in equilibrium with more anorthitic plagioclase cores (An∼72–88), whereas NCA area explosions are more differentiated (Mg#∼40–44, ∼286–387 LaN, ∼0.6–0.8 Eu/Eu*) and in equilibrium with less anorthitic plagioclase cores (An∼68–82). Thermometric calculations based on major and trace element clinopyroxene-plagioclase-melt equilibrium modeling highlight that the SCA explosions were statistically fed by hotter magmas in comparison to NCA explosions. Plagioclase-based diffusion modeling also indicates longer timescales for the dynamic ascent of NCA magmas, leading to preferential groundmass crystallization at the conduit walls and transition from sideromelane to tachylite groundmass textures. The final emerging picture is that in May 2019, concurrent normal eruptions from different crater areas at Stromboli were heralds of compositionally and thermally diverse magmas rising at different rates within the uppermost branched part of the conduit region. High frequency petrological investigations aided by statistical treatment of data have the potential to constrain dynamic conduit processes related to transient, explosive eruptions in persistently active volcanoes, thereby offering new insights on the interplay between magma dynamics, ascent timescales, and eruptive behavior.
    Description: Published
    Description: 107255
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: High-temporal resolution petrology ; Stromboli volcano ; Thermobarometry ; Eruptive timescales ; Plumbing, conduit and eruptive dynamics ; Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2024-06-17
    Description: We present undercooling (∆T) experiments aimed at investigating the effect of growth kinetics on the textural and compositional evolution of clinopyroxene crystals growing from a high-K basalt erupted during the 2003 paroxysm of Stromboli volcano (Italy). The experiments were performed at P = 350 MPa, T = 1050–1210 °C, H2Omelt = 0–3 wt%, and fO2 = Ni-NiO + 1.5 buffer. An initial stage of supersaturation was imposed to the melt under nominally anhydrous (∆Tanh = 10–150 °C) and hydrous (∆Thyd = 25–125 °C) conditions. Afterwards, this supersaturation state was mitigated by melt relaxation phenomena over an annealing time of 24 h. Results show that plagioclase is the liquidus mineral phase of the high-K basalt at ∆Tanh = 10 °C and dominates the phase assemblage as the degree of undercooling increases. Conversely, clinopyroxene and spinel co-saturate the melt at ∆Thyd = 25 °C, followed by the subordinate formation of plagioclase. At ∆Tanh/hyd ≤ 50 °C, the textural maturation of clinopyroxene produces polyhedral crystals with {−111} (hourglass) and {hk0} (prism) sectors typical of a layer-by-layer growth mechanism governed by an interface-controlled crystallization regime. At ∆Tanh/hyd ≥ 75 °C, the attainment of dendritic and skeletal morphologies testifies to the establishment of diffusion-limited reactions at the crystal-melt interface. 3D reconstructions of synchrotron radiation X-ray microtomographic data reveal a composite growth history for clinopyroxene crystals obtained at ∆Tanh/hyd ≥ 95 °C. The early stage of melt supersaturation produces rosette-like structures composed of dendritic branches of clinopyroxene radiating from a common spinel grain, which acts as surface for heterogeneous nucleation. As diffusive relaxation phenomena progress over the annealing time, the elongate dendrites that constitute the inner crystal domain are partially infilled by the melt and develop skeletal overgrowths in the outer domain. With the increasing degree of undercooling, TAl and M1Ti cations are progressively incorporated in the lattice site of clinopyroxene at the expense of TSi and M1Mg cations. Because of the effect of H2Omelt on the liquidus depression and melt depolymerization, crystals obtained at ∆Thyd are also more enriched in TAl and M1Ti and depleted in TSi and M1Mg than those growing at ∆Tanh. The emerging picture is that the morphological and geochemical evolution of clinopyroxene is mutually controlled by the combined effects of melt supersaturation and relaxation phenomena. A new empirical relationship based on the cation exchange reactions in the lattice site of clinopyroxene is finally proposed to estimate the degree of undercooling governing the crystallization of augitic phenocrysts erupted during normal and violent explosions at Stromboli.
    Description: Published
    Description: 107327
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Clinopyroxene ; Undercooling ; Hourglass ; Crystallization ; Microtomography ; Stromboli ; Experimental Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2024-06-17
    Description: We investigated the Late Pleistocene-Holocene crustal vertical movements off the coast of Marzamemi village in SE Sicily, Italy. By using a Synchronous Correlation Approach (SCA), we analysed terraced landforms that characterize a submerged sector within one of Southern Italy's most seismically active regions. In this area, the emerging portion of the NE-SW oriented bulge of the African foreland structurally shapes the coastal and marine regions off Marzamemi village. Based on a newly created 17 km2 high-resolution bathymetric map generated from a Multibeam Echosounder (MBES) survey conducted in June 2021, we identified and examined four main paleo-shorelines identifying four submerged terraces. Terraced landforms play a crucial role in reconstructing Quaternary glacial and interglacial stages, offering insights into associated sea level fluctuations. Through the application of the SCA, our goal is to refine the chronology of these recently mapped and submerged marine terraces off the Marzamemi village, thereby contributing to the calculation of associated rates of crustal vertical movements. We demonstrate that these rates persist constantly throughout the Late Pleistocene-Holocene epoch, suggesting overall tectonic stability, with a slight and likely local fault-related subsidence. We explore a few chronology scenarios, raising questions about whether these submerged marine terraces are indeed recording the Late Pleistocene-Holocene limit or not. This research contributes to a better understanding of the geological dynamics in this region and sheds light on the potential factors influencing coastal landscape development over time.
    Description: Published
    Description: 107326
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Submarine geomorphology ; Submerged marine terraces ; Marine terraces chronology ; Late Quaternary ; Sea Level Change ; Crustal vertical movements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2024-06-17
    Description: Yedoma is a permafrost deposit widely distributed across the Arctic and found exclusively within the unglaciated regions in northern Siberia, Alaska, and the Yukon, which are the core regions of Beringia. Yedoma deposits accumulated during the late Pleistocene Stage and are characterized by their predominantly fine-grained texture and association with syngenetic perma-frost formation. The very high ground ice content is most commonly present as pore ice and wedge ice that formed contemporaneously with sediment deposition. In the last decade, research has transitioned from debates about the origin of the Yedoma deposits towards increasing attention on the large carbon and nitrogen pools in Yedoma, their vulnerability to thaw, and increasing mobilization as the climate has warmed across the Arctic. In addition to classical cryolithological and sedimentological research, new methods such as stable isotope paleoclimate reconstruction and ancient sedimentary DNA studies have been more widely applied to better understand the characteristics of Yedoma deposits and helped emphasize their value as archives of Quaternary climate and paleoecological conditions during Ice Age Beringia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Earth and Planetary Science Letters, Elsevier, 640, pp. 118801-118801, ISSN: 0012-821X
    Publication Date: 2024-06-17
    Description: Carbon cycle models used to calculate the marine reservoir age of the non-polar surface ocean (called Marine20) out of IntCal20, the compilation of atmospheric C, have so far neglected a key aspect of the millennial-scale variability connected with the thermal bipolar seesaw: changes in the strength of the Atlantic meridional overturning circulation (AMOC) related to Dansgaard/Oeschger and Heinrich events. Here we implement such AMOC changes in the carbon cycle box model BICYCLE-SE to investigate how model performance over the last 55 kyr is affected, in particular with respect to available 14C and CO2 data. Constraints from deep ocean 14C data suggest that the AMOC in the model during Heinrich stadial 1 needs to be highly reduced or even completely shutdown. Ocean circulation and sea ice coverage combined are the processes that almost completely explain the simulated changes in deep ocean 14C age, and these are also responsible for a glacial drawdown of ∼60 ppm of atmospheric CO2. We find that the implementation of abrupt reductions in AMOC during Greenland stadials in the model setup that was previously used for the calculation of Marine20 leads to differences of less than ±100 14C yrs. The representation of AMOC changes therefore appears to be of minor importance for deriving non-polar mean ocean radiocarbon calibration products such as Marine20, where atmospheric carbon cycle variables are forced by reconstructions. However, simulated atmospheric CO2 exhibits minima during AMOC reductions in Heinrich stadials, in disagreement with ice core data. This mismatch supports previous suggestions that millennial-scale changes in CO2 were probably not driven directly by the AMOC, but rather by biological and physical processes in the Southern Ocean and by contributions from variable land carbon storage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2024-06-21
    Description: Stromboli (Italy) is an open-vent volcano with persistent explosive activity producing up to five hundred mild explosions per day. Fluctuations in explosion intensity, varying even by orders of magnitude in terms of emitted volume and their subsequent impact on the surrounding regions, sometimes occur abruptly. Consequently, identifying precursors of larger eruptive activities, particularly for more intense (paroxysmal) explosions, is challenging. In order to search for anomalies in the pre-paroxysm activity related to the summer 2019 eruption, we applied a hybrid method to the automatic analysis of geophysical and geochemical time series. This approach is based on the combination of two methods: 1. the Empirical Mode Decomposition (EMD) and 2. the Support Vector Regression (SVR). The aggregation of these two methods allowed us to identify anomalies in the patterns of the geophysical and geochemical parameters measured on Stromboli in a ten-month period including the July–August 2019 eruption. The results of this study are encouraging for an improvement of the monitoring systems and for volcano early warning applications.
    Description: This work has been supported by the INGV project Pianeta Dinamico 2023-2025 - ObseRvation, Measurement and modelling of Eruptive processes (ORME), and partially supported by the Progetto Strategico Dipartimentale INGV 2019 “Forecasting eruptive activity at Stromboli volcano: timing, eruptive style, size, intensity and duration” (FIRST, Delibera n. 144/2020; Scientific Responsibility: S.C.). Furthermore, this research has benefited from the support of Convenzione B2 DPC-INGV 2022-2024, Stromboli, Task 1.3 “Development of a unique activity index and estimation of the probability of the transition between ‘ordinary’ and ‘extraordinary’ eruptive activity”, and of the INGV project “Reti Multiparametriche”, Task A2 “Development of methods for the identification of precursors of Stromboli's paroxysms and major explosions based on multiparametric data analysis and study of possible early warning techniques”.
    Description: In press
    Description: 108131
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: Stromboli volcano ; Volcanic monitoring ; Data analysis ; Multiparametric geophysics ; Paroxysmal explosions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2024-06-21
    Description: The Qinghai-Tibet Plateau (QTP) is characterized by a vast number of frozen and unfrozen freshwater reservoirs, which is why it is also called “the third pole” of the Earth or “Asian Water Tower”. We analyzed testate amoeba (TA) biodiversity and corresponding protozoic biosilicification in lake sediments of the QTP in relation to environmental properties (freshwater conditions, elevation, and climate). As TA are known as excellent bio-indicators, our results allowed us to derive conclusions about the influence of climate warming on TA communities and microbial biogeochemical silicon (Si) cycling. We found a total of 113 TA taxa including some rare and one unknown species in the analyzed lake sediments of the QTP highlighting the potential of this remote region for TA biodiversity. 〉1/3 of the identified TA taxa were relatively small (〈30 μm) reflecting the relatively harsh environmental conditions in the examined lakes. TA communities were strongly affected by physico-chemical properties of the lakes, especially water temperature and pH, but also elevation and climate conditions (temperature, precipitation). Our study reveals climate-related changes in TA biodiversity with consequences for protozoic biosilicification. As the warming trend in the QTP is two to three times faster compared to the global average, our results provide not only deeper insights into the relations between TA biodiversity and environmental properties, but also predictions of future developments in other regions of the world. Moreover, our results provide fundamental data for paleolimnological reconstructions. Thus, examining the QTP is helpful to understand microbial biogeochemical Si cycling in the past, present, and future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    Elsevier
    In:  Ecohydrological Complexity from Catchment to Coast
    Publication Date: 2024-05-17
    Description: The Mekong River Basin: Ecohydrological Complexity from Catchment to Coast, Volume Three presents real facts, data and predictions for quantifying human-induced changes throughout the Mekong watershed, including its estuaries and coasts, and proposes solutions to decrease or mitigate the negative effect and enable sustainable development. This is the first work to link socio–ecological interaction study over the whole Mekong River basin through the lens of ecohydrology. Each chapter is written by a leading expert, with coverage on climate change, groundwater, land use, flooding drought, biodiversity and anthropological issues. Human activities are enormous in the whole watershed and are still increasing throughout the catchment, with severe negative impacts on natural resources are emerging. Among these activities, hydropower dams, especially a series of 11 dams in China, are the most critical as they generate massive changes throughout the system, including in the delta and to the livelihoods of millions of people and they threaten sustainability.
    Type: info:eu-repo/semantics/book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2023-11-21
    Description: The world's forests store large amounts of carbon (C), and growing forests can reduce atmospheric CO2 by storing C in their biomass. This has provided the impetus for world-wide tree planting initiatives to offset fossil-fuel emissions. However, forests interact with their environment in complex and multifaceted ways that must be considered for a balanced assessment of the value of planting trees. First, one needs to consider the potential reversibility of C sequestration in trees through either harvesting or tree death from natural factors. If carbon storage is only temporary, future temperatures will actually be higher than without tree plantings, but cumulative warming will be reduced, contributing both positively and negatively to future climate-change impacts. Alternatively, forests could be used for bioenergy or wood products to replace fossil-fuel use which would obviate the need to consider the possible reversibility of any benefits. Forests also affect the Earth's energy balance through either absorbing or reflecting incoming solar radiation. As forests generally absorb more incoming radiation than bare ground or grasslands, this constitutes an important warming effect that substantially reduces the benefit of C storage, especially in snow-covered regions. Forests also affect other local ecosystem services, such as conserving biodiversity, modifying water and nutrient cycles, and preventing erosion that could be either beneficial or harmful depending on specific circumstances. Considering all these factors, tree plantings may be beneficial or detrimental for mitigating climate-change impacts, but the range of possibilities makes generalisations difficult. Their net benefit depends on many factors that differ between specific circumstances. One can, therefore, neither uncritically endorse tree planting everywhere, nor condemn it as counter-productive. Our aim is to provide key information to enable appropriate assessments to be made under specific circumstances. We conclude our discussion by providing a step-by-step guide for assessing the merit of tree plantings under specific circumstances.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2023-11-29
    Description: Seaweed farming contributes substantial amounts of organic carbon to the ocean, part of which can be locked for a long term in the ocean and perform the function of ocean carbon sequestration, and the other part can be converted into inorganic carbon through microbial mineralization and aerobic respiration, affecting the pCO2, pHT and dissolved oxygen of seawater. It is generally believed that seaweed farming will cause the seawater to become a sink of CO2 due to carbon fixation by macroalgal photosynthesis. However, little attention has been paid to the fact that seaweed farming environment may sometimes become a source rather than a sink of CO2. Here, through in-situ mesocosm cultivation experiments and eight field investigations covering different kelp growth stages in an intensive farming area in China, we found that compared with the surrounding seawater without kelps, the seawater at the fast-growth stage of kelp was a sink of CO2 (pCO2 decreased by 17−73 μatm), but became a source of CO2 at the aging stage of kelp (pCO2 increased by 20−37 μatm). Concurrently, seawater pHT experienced a transition from increase (by 0.02−0.08) to decline (by 0.03−0.04). In-situ mesocosm cultivation experiments showed that the positive environmental effects (i.e., pCO2 decrease and pHT increase) induced by kelps at the early growth stage could be offset within only 3 days at the late-growth and aging stages. The release of dissolved organic carbon by kelps at the late growth stage increased significantly, supporting the enhancement in microbial abundance and respiration, which was manifested by the remarkable decrease in seawater dissolved oxygen, ultimately leading to CO2 release exceeding photosynthetic CO2 absorption. This study suggests that mature farmed kelps should be harvested in time to best utilize their carbon sink function and environmental benefits, which has guiding significance for the rational management of seaweed farming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2023-12-06
    Description: Highlights: • Inhibitory potential of eelgrass microbiome against aquatic and fecal pathogens • Isolation of epiphytes and endophytes associated with eelgrass leaves and roots • Particularly leaf epibiotic bacteria exhibit significant antimicrobial activity. • Rich secondary metabolite composition by untargeted metabolomics • Potential involvement of eelgrass microbiome in seagrass ecosystem services Seagrass meadows provide crucial ecosystem services for coastal environments and were shown to reduce the abundance of waterborne pathogens linked to infections in humans and marine organisms in their vicinity. Among potential drivers, seagrass phenolics released into seawater have been linked to pathogen suppression, but the potential involvement of the seagrass microbiome has not been investigated. We hypothesized that the microbiome of the eelgrass Zostera marina, especially the leaf epiphytes that are at direct interface between the seagrass host and the surrounding seawater, inhibit waterborne pathogens thereby contributing to their removal. Using a culture-dependent approach, we isolated 88 bacteria and fungi associated with the surfaces and inner tissues of the eelgrass leaves (healthy and decaying) and the roots. We assessed the antibiotic activity of microbial extracts against a large panel of common aquatic, human (fecal) and plant pathogens, and mined the metabolome of the most active extracts. The healthy leaf epibiotic bacteria, particularly Streptomyces sp. strain 131, displayed broad-spectrum antibiotic activity superior to some control drugs. Gram-negative bacteria abundant on healthy leaf surfaces, and few endosphere-associated bacteria and fungi also displayed remarkable activities. UPLC-MS/MS-based untargeted metabolomics analyses showed rich specialized metabolite repertoires with low annotation rates, indicating the presence of many undescribed antimicrobials in the extracts. This study contributes to our understanding on microbial and chemical ecology of seagrasses, implying potential involvement of the seagrass microbiome in suppression of pathogens in seawater. Such effect is beneficial for the health of ocean and human, especially in the context of climate change that is expected to exacerbate all infectious diseases. It may also assist future seagrass conservation and management strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2023-12-18
    Description: Total alkalinity (TA) is an important variable of the ocean carbonate system. In coastal oceans, carbonate system dynamics are controlled by a range of processes including photosynthesis and respiration, calcification, mixing of water masses, continental inputs, temperature changes, and seasonal upwelling. Assessments of diel, seasonal and interannual variations in TA are required to understand the carbon cycle in coastal oceans. However, our understanding of these variations remains underdeveloped due to limitations in observational techniques. Autonomous TA measurements are therefore required. In this study, an in situ TA analyzer (ISA-TA) based on a single-point titration with spectrophotometric pH detection was deployed in Tong'an Bay, Xiamen, China, over a five-month period in 2021 to determine diel and seasonal TA variations. The TA observations were combined with an artificial neural network (ANN) model to construct TA prediction models for this area. This provided a simple method to investigate TA variations in this region and was applied to predict surface water TA between March and April 2021. The in situ TA observations showed that TA values in Tong'an Bay varied within a range from 1931 to 2294 μmol kg−1 over the study period, with low TA in late winter, early summer and late summer, and high TA in early winter. The TA variations in late summer and early winter were mainly controlled by mixing of water bodies. The diel variations of TA were greatly determined by tides, with a diel amplitude of 9 to 247 μmol kg−1. The ANN model used temperature, salinity, chlorophyll, and dissolved oxygen to estimate TA, with a root-mean-square error (RMSE) of ∼14 μmol kg−1, with salinity as the input variable with the greatest weight. The approach of combining ISA-TA observations with an ANN model can be extended to study the carbonate system in other coastal regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-01-17
    Description: Highlights • SPM concentration and organic fractions are analyzed in coastal-offshore gradients • Diagnostic model of SPM allows separating fresh, labile from less reactive PON • Analysis of PON fractions reveals a characteristic area, the transition zone • There, particle settling is enhanced, fostering their transport back to the coast, which controls the fate of organic matter • The transition zone is generally confined to water depths below 20 m Abstract Identifying the mechanisms that contribute to the variability of suspended particulate matter concentrations in coastal areas is important but difficult, especially due to the complexity of physical and biogeochemical interactions involved. Our study addresses this complexity and investigates changes in the horizontal spread and composition of particles, focusing on cross-coastal gradients in the southern North Sea and the English Channel. A semi-empirical model is applied on in situ data of SPM and its organic fraction to resolve the relationship between organic and inorganic suspended particles. The derived equations are applied onto remote sensing products of SPM concentration, which provide monthly synoptic maps of particulate organic matter concentrations (here, particulate organic nitrogen) at the surface together with their labile and less reactive fractions. Comparing these fractions of particulate organic matter reveals their characteristic features along the coastal-offshore gradient, with an area of increased settling rate for particles generally observed between 5 and 30 km from the coast. We identify this area as the transition zone between coastal and offshore waters with respect to particle dynamics. Presumably, in that area, the turbulence range and particle composition favor particle settling, while hydrodynamic processes tend to transport particles of the seabed back towards the coast. Bathymetry plays an important role in controlling the range of turbulent dissipation energy values in the water column, and we observe that the transition zone in the southern North Sea is generally confined to water depths below 20 m. Seasonal variations in suspended particle dynamics are linked to biological processes enhancing particle flocculation, which do not affect the location of the transition zone. We identify the criteria that allow a transition zone and discuss the cases where it is not observed in the domain. The impact of these particle dynamics on coastal carbon storage and export is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-01-30
    Description: Coastal German waters contain about 1.6 million tons of dumped munition, mostly left after World Wars. This study investigated the benthic macrofauna around the 'Kolberger Heide' munition dumpsite (Baltic Sea). A total of 93 macrofauna grab samples were obtained in the proximity of the munition dumpsite and in reference areas. Environmental variables analysed included the latitude/longitude, depth, terrain ruggedness, sediment grainsize distribution, TNT concentration in the bottom water and distance to the centre of munition dumpsite. The overall abundance, biomass and diversity varied among these groups, though demonstrated no clear differences regarding the proximity to munition and modelled near-bottom dissolved TNT. Among individual taxa, however, a total of 16 species demonstrated significant correlation with TNT concentration. Moreover, TNT may serve as a predictor for the distribution of three species: molluscs Retusa truncatula, Varicorbula gibba and polychaete Spio goniocephala. Possible reasons for the species distribution including their biological traits are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-01-30
    Description: Highlights • Global primitive arc lavas (Mg# ≥60) display notable δ49/47Ti heterogeneity. • Residual rutile imposes high δ49/47Ti of 0.24 ± 0.06 ‰ on hydrous, silicic slab melts. • Primitive Aleutian rhyodacites have the same δ49/47Ti as predicted for slab melts. • A variably diluted signature of slab melts is found in all eight subduction zones. • A slab melt component is required to generate silicic primitive arc lavas. Abstract It is still a matter of intense debate to what extent partial melting of the subducting slab contributes to arc magmatism in modern subduction zones. In particular, it is difficult to differentiate between silicate melts formed by partial melting of the slab, and aqueous fluids released during subsolidus dehydration as the main medium for slab-to-mantle wedge mass transfer. Here we use δ49/47Ti (the deviation in 49Ti/47Ti of a sample to the OL-Ti reference material) as a robust geochemical tracer of slab melting. Hydrous partial melting of subducted oceanic crust and the superjacent sedimentary layer produces silicic melts in equilibrium with residual rutile. Modelling shows that such silicic slab melts have notably higher δ49/47Ti (+0.24 ± 0.06 ‰) than their protolith due to the strong preference of rutile for the lighter isotopes of Ti. In contrast, even highly saline fluids cannot carry Ti from the slab and hence hydrous peridotite partial melts have δ49/47Ti similar to mid-ocean ridge basalts (MORB; ca. 0 ‰). Primitive (Mg# ≥60) arc lavas from eight subduction zones that are unaffected by fractional crystallisation of Fe-Ti oxides show a more than tenfold larger variation in δ49/47Ti than found in MORB. In particular, primitive arc lavas display a striking correlation between SiO2 content and δ49/47Ti that ranges from island arc basalts overlapping with MORB, to primitive rhyodacites with δ49/47Ti up to 0.26 ‰ erupted in the western Aleutian arc. The elevated δ49/47Ti of these primitive arc lavas provides conclusive evidence for partial melts of the slab as a key medium for mass transfer in subduction zones. The Aleutian rhyodacites represent a rare example of slab melts that have traversed the mantle wedge with minimal modification. More commonly, slab melts interact with the mantle wedge to form an array of primary arc magmas that are a blend of slab- and peridotite-derived melt. We identify primitive arc lavas with a clearly resolvable slab melt signature in all eight subduction zone localities, confirming that slab melting is prevalent in modern subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-01-30
    Description: Highlights • An event-scale, complete lithostratigraphic column for the Miocene BFVA was created through extensive field volcanology. • Field volcanology was supplemented by volcanic glass geochemistry to separate the eruptions. • An example is presented how to undertake lithostratigraphy-based classification in poorly preserved, deeply eroded volcanic terrains. • In the ancient BFVA landscape, sea cover during eruptions and terrestrial deposition is evident. Abstract This study documents the volcanic evolution of the Miocene silicic Bükk Foreland Volcanic Area (BFVA), Northern Hungary (Central Europe) at an event-scale. The BFVA is a deeply eroded and dissected volcanic field dominated by multiple, several 10-m thick, valley-filling silicic ignimbrite units, which are chemically and texturally very similar to each other. Hence, establishing lateral correlation is a real challenge due to the sporadic and small-scale outcrops and lack of stratotypes. Detailed field observations allowed us to identify eleven lithological members including fourteen eruption events and establish a nearly complete lithostratigraphic correlation between fifteen outcrops across the BFVA. Primary pyroclastic material of each member was sampled, and volcanic glass was geochemically analyzed for major and trace element composition. The geochemical results confirm the field-based classification of the members and enable the correlation of distinct outcrops. The major and trace element composition of the glassy pyroclasts of each member of the BFVA served as basis to create a field-wide chemical reference database for regional correlational studies. Here, a new lithostratigraphic classification scheme (consisting of one lithostratigraphic formation and eleven members) is presented, which reflects the challenges unraveling the stratigraphy of ancient volcanic terrains. The field-based event-scale lithostratigraphy of the BFVA suggests a wet, partly sea-covered depositional environment in the close vicinity of the eruption centers providing favorable conditions to ‘fuel’ silicic explosive phreatomagmatism. On the contrary, paleosol horizons formed after almost each major eruption event or sequence suggests an overall near-coast terrestrial environment for the BFVA, where the emplacement of the pyroclastic material occurred.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-02-01
    Description: Regime shifts in the diatom–dinoflagellate composition have occurred in the Baltic Sea (BS) and Bohai Sea (BHS) under eutrophication and have affected the entire coastal ecosystem, damaging the regulatory, provisioning, cultural, and supporting service functions of marine ecosystems. Therefore, finding a solution to restore the balance of phytoplankton community composition and mitigate eutrophication is of utmost importance. In this study, the Driver (per capita gross domestic product)-Pressure (terrestrial inputs)-State (seawater environmental parameters)-Impact (proportions of diatoms and dinoflagellates)-Response (eutrophication governance projects) framework served as a guide for our analysis of the causal relationship among various environmental components in the coastal system. The relevant data in BS and BHS spanning from the 1950s to the 2010s were collected and used to construct a diatom–dinoflagellate composition single index, which allowed us to identify the shifts in regimes (mutation points and phases) of the diatom–dinoflagellate composition and environmental factors using sequential t-test analysis. We also identified key environmental factors that moderated the diatom–dinoflagellate composition using redundancy analysis and analyzed the partial effects of the main environmental factors on the diatom–dinoflagellate composition using a generalized additive model. Finally, the regulation of the eutrophication governance investment on diatom–dinoflagellate composition was investigated. We found that (1) BS is a “time machine,” with coastal eutrophication governance and regime shift of diatom–dinoflagellate composition and environmental factors two decades earlier than that in BHS; (2) in BS, the key moderation factor of diatom proportion is SiO3-Si and those of dinoflagellates are sea surface salinity and N:P ratio; in BHS, the key moderation factors of diatom proportion are PO4-P and Si:N ratio and those of dinoflagellate are dissolved inorganic nitrogen and N:P and Si:P ratios; (3) it is projected that BHS will enter its recovery phase from eutrophication after mid-2020s. In summary, the N/P/Si stoichiometric relationships should be given greater consideration, with the exception of the “dose-response” relationship in both sea areas. Our results indicate an urgent need for an improved mechanistic understanding of how phytoplankton biodiversity changes in response to changes in nutrient load and how we should ultimately deal with the challenges that arise.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-02-05
    Description: A La Niña condition in the equatorial Pacific began in the early summer of 2020 and has lasted more than two and a half years (referred to as the 2020 La Niña hereafter). Predicting its temporal evolution had attracted a lot of attention. Considering the possible phase-locked impact of the 11-year solar cycle on the tropical Pacific variability, in this study the authors present the possible modulations by the solar cycle 25 (SC25) started from December 2019, on the future temporal evolution of the 2020 La Niña. Based on statistical features of historical solar cycles, the authors propose three possible scenarios of the timing of the SC25 maximum year and discuss its possible impacts on the temporal evolution of the 2020 La Niña in the next two years. The ongoing ascending phase of SC25 dampens the development of a super El Niño condition to some extent in 2023.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2024-02-12
    Description: Highlights: • Change in sea urchin species composition from RBC and NRBC habitats. • Sand coverage is an important factor that influences the sea urchin species composition. • The relationship between sea urchins and their habitat is species-specific. Sea urchins are important components of marine ecosystems and can act as bioindicators, reflecting the health of reefs. The spatial patterns of sea urchins are largely shaped by the type of habitat. In Hong Kong, coral communities are divided into two distinct types: reef -building coral habitats and non -reef -building coral habitats. In summer 2020, a qualitative survey was conducted using SCUBA at 56 sites across eastern and western waters, recording a total of 11 species from 6 families of sea urchins. Out of these 56 sites, 14 were selected for a quantitative survey to investigate the relationship between sea urchin assemblages and the two types of coral habitat. We found that the species composition of sea urchins differed significantly between the two habitats, and the presence of sand was a critical factor influencing the species composition of sea urchins. Sand coverage had a positive effect on Salmasic sphaeroides abundance but a negative effect on the abundance of Diadema setosum and Heliocidaris crassispina. The distribution of sea urchins across different degrees of sand coverage may be associated with food availability or species -specific adaptive behaviour, likely due to niche preferences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2024-02-12
    Description: Highlights • East Asian climate evolution was dependent on the latitude of the proto-Tibetan Plateau in the deep past; • Global warming induced wetting at mid-latitude East Asian in the mid-Cretaceous; • The proto-Tibetan Plateau uplift led to drying in the subtropical East Asian in the mid-Cretaceous. Abstract Sedimentary records indicate that subtropical and mid-latitude East Asia exhibited considerable drying and wetting, respectively, during the mid-Cretaceous, which is considered to be relevant to much higher atmospheric carbon dioxide (pCO2) concentrations and/or proto-Tibetan Plateau (proto-TP) uplift. In order to explore and compare their roles on the East Asian climate evolution, we conducted simulations of the mid-Cretaceous climate system with different atmospheric pCO2 levels and varying topographies. The results show that both factors had significant influences on the East Asian climate. As the increase in atmospheric pCO2 levels from ∼560–1120 ppmv to ∼1120–2240 ppmv, the precipitation increases considerably over mid-latitude East Asia, but only small changes in the subtropical portion of East Asia occur. Simultaneously, the effects of the proto-TP uplift are opposite to those of global warming trend during that period. Generally, it leads to a precipitation decrease over subtropical East Asia, but rather minor changes over mid-latitude East Asia. These changes are qualitatively consistent with the deduction based on the geological records, but the magnitudes of the modeled precipitation changes are relatively smaller. Therefore, we can conclude that the subtropical East Asian drying during the mid-Cretaceous can be partly explained by the proto-TP uplift, while the mid-latitude East Asian wetting was partly due to global warming. However, additional factor(s) also played a significant role in the East Asian climate evolution during the mid-Cretaceous.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2024-02-12
    Description: Carbon dioxide removal (CDR) – the creation, enhancement, and upscaling of carbon sinks – has become a pillar of national and corporate commitments towards Net Zero emissions, as well as pathways towards realizing the Paris Agreement's ambitious temperature targets. In this perspective, we explore CDR as an emerging issue of Earth System Governance (ESG). We draw on the results of a workshop at the 2022 Earth System Governance conference that mapped a range of actors, activities, and issues relevant to carbon removal, and refined them into research questions spanning four intersecting areas: modeling and systems assessment, societal appraisal, policy, and innovation and industry. We filter these questions through the five lenses of the ESG framework and highlight several key ‘cross-cutting’ issues that could form the basis of an integrated ESG research agenda on CDR.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2024-02-12
    Description: Highlights • Cu complexation was measured for the first time in the Fram Strait region. • Cu-binding ligand concentrations and binding strength varied longitudinally in the Fram Strait. • More than 99 % of dCu was organically complexed by strong ligands. • On the Greenland shelf the Transpolar Drift and the coastal processes were the main sources of Cu ligands. Abstract The Fram Strait represents the major gateway of Arctic Ocean waters towards the Nordic Seas and North Atlantic Ocean and is a key region to study the impact of climate change on biogeochemical cycles. In the region, information about trace metal speciation, such as copper, is scarce. This manuscript presents the concentrations and conditional stability constants of copper-binding ligands (LCu and log KcondCu2+L) in the water column of Fram Strait and the Greenland shelf (GEOTRACES cruise GN05). Cu-binding ligands were analysed by Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) using salicylaldoxime (SA) as competitive ligand. Based on water masses and the hydrodynamic influences, three provinces were considered (coast, shelf, and Fram Strait) and differences were observed between regions and water masses. The strongest variability was observed in surface waters, with increasing LCu concentrations (mean values: Fram Strait = 2.6 ± 1.0 nM; shelf = 5.2 ± 1.3 nM; coast = 6.4 ± 0.8 nM) and decreasing log KcondCu2+L values (mean values: Fram Strait = 15.7 ± 0.3; shelf = 15.2 ± 0.3; coast = 14.8 ± 0.3) towards the west. The surface LCu concentrations obtained above the Greenland shelf indicate a supply from the coastal environment to the Polar Surface Water (PSW) which is an addition to the ligand exported from the central Arctic to Fram Strait. The significant differences (in terms of LCu and log KcondCu2+L) between shelf and coastal samples were explained considering the processes which modify ligand concentrations and binding strengths, such as biological activity in sea-ice, phytoplankton bloom in surface waters, bacterial degradation, and meltwater discharge from 79NG glacier terminus. Overall, the ligand concentration exceeded those of dissolved Cu (dCu) and kept the free copper (Cu2+) concentrations at femtomolar levels (0.13–21.13 fM). This indicates that Cu2+ toxicity limits were not reached and dCu levels were stabilized in surface waters by organic complexes, which favoured its transport to the Nordic Seas and North Atlantic Ocean and the development of microorganism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-02-14
    Description: The increasing global demand for seafood, coupled with the limitations of current fish stocks and aquaculture practices, requires the development of sustainable aquaculture solutions. In this context, this study explores the potential of a novel cage technology - Flow2Vortex - for the cultivation of jellyfish, a low-trophic-level organism with increasing market demand. The unique cage design creates a laminar and circular water flow, providing optimal conditions for cultivating fragile planktonic species. Indoor experiments demonstrated the successful growth of jellyfish in the cage, with growth rates of up to 11.6% per day. In addition, field tests in open waters confirmed the cage's ability to maintain a diffuse and controlled flow inside, even under strong external currents. The cage also maintained significantly higher zooplankton concentrations than the surrounding environment, offering a consistent food source for the cultivated jellyfish. These findings highlight the potential of the Flow2Vortex cage for scalable indoor and outdoor cultivation of low-trophic-level organisms, such as jellyfish, contributing to the diversification and sustainability of aquaculture practices.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
  • 158
  • 159
    Publication Date: 2024-02-22
    Description: Highlights • More diverse non-native taxa generally include more economically costly species. • Chordates, nematodes and pathogens are among significantly over-represented taxa. • Monetary cost magnitude links positively to numbers of costly invasive species. • Costs are biased towards a few ‘hyper-costly’ invasive species groups. • Future invasion rates will continue to harbour new economically costly species. Abstract A dominant syndrome of the Anthropocene is the rapid worldwide spread of invasive species with devastating environmental and socio-economic impacts. However, the dynamics underlying the impacts of biological invasions remain contested. A hypothesis posits that the richness of impactful invasive species increases proportionally with the richness of non-native species more generally. A competing hypothesis suggests that certain species features disproportionately enhance the chances of non-native species becoming impactful, causing invasive species to arise disproportionately relative to the numbers of non-native species. We test whether invasive species with reported monetary costs reflect global numbers of established non-native species among phyla, classes, and families. Our results reveal that numbers of invasive species with economic costs largely reflect non-native species richness among taxa (i.e., in 96 % of families). However, a few costly taxa were over- and under-represented, and their composition differed among environments and regions. Chordates, nematodes, and pathogenic groups tended to be the most over-represented phyla with reported monetary costs, with mammals, insects, fungi, roundworms, and medically-important microorganisms being over-represented classes. Numbers of costly invasive species increased significantly with non-native richness per taxon, while monetary cost magnitudes at the family level were also significantly related to costly invasive species richness. Costs were biased towards a few ‘hyper-costly’ taxa (such as termites, mosquitoes, cats, weevils, rodents, ants, and asters). Ordination analysis revealed significant dissimilarity between non-native and costly invasive taxon assemblages. These results highlight taxonomic groups which harbour disproportionately high numbers of costly invasive species and monetary cost magnitudes. Collectively, our findings support prevention of arrival and containment of spread of non-native species as a whole through effective strategies for mitigation of the rapidly amplifying impacts of invasive species. Yet, the hyper- costly taxa identified here should receive greater focus from managers to reduce impacts of current invasive species.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-02-23
    Description: Highlights: • Ca. 418 ka Pauzhetka tephra from South Kamchatka was found in 11 marine sediment cores. • New major and trace element analyses allow identification of tephra glasses. • K/Ti and K/Fe maxima mark the Pauzhetka tephra presence in marine sediments. • The tephra occurs at Marine Isotope Stages 12 to 11c and below the Bermuda excursion. • The revised ash dispersal covers vast areas in the NW Pacific and Okhotsk Sea. Abstract: The distal Pauzhetka tephra, formed by a large caldera-forming volcanic eruption in South Kamchatka, has been identified in eleven recently recovered marine sediment cores based on major and trace element compositions of tephra glass. Ten SO264 cores form a transect along the Emperor Seamount Chain (ESC) in the Northwest (NW) Pacific between ∼50.3° and ∼45°N, 800–1200 km southeast of the Pauzhetka caldera. One additional core LV28-41-4 was retrieved in the Okhotsk Sea, ∼600 km west of the caldera. The Pauzhetka tephra glass shards have a characteristic medium-K rhyolite composition and trace element content compatible with the rear-arc position of the source volcano that ensures their identification. In the NW Pacific SO264 cores, the tephra is preserved as layers in cores 33, 47, 49, 53, 55, 56 and 62, as a lens in core 45, and as cryptotephra in cores 57 and 66. It forms a cryptotephra in the Okhotsk Sea core LV28-41-4. Distinctively high XRF-retrieved K/Ti and K/Fe ratios compared to those for the host sediments help identify the Pauzhetka tephra. According to our refined stable oxygen isotope (δ18O)- and magneto-stratigraphy of two studied and two reference cores, the Pauzhetka tephra occurs within a local δ18O maximum during a transition from marine isotope stage 12 to 11c (Termination V) and below a paleointensity minimum referred to as the Bermuda excursion, at ca. 418 ka. Using the tephra age as an isochron, we show that average linear sedimentation rates decrease southward along a transect of the SO264 cores, except in core 55. It partially reflects an intensification of mid-depth currents causing winnowing, erosion or non-deposition along the ESC over the past 418 kyr. An increased linear sedimentation rate in core 55, recovered from the southern leeward side of the Minnetonka Seamount, appears to record the pelagic accumulation protected from the mid-depth current influence. Our findings expand the former ash dispersal area farther southeast in the NW Pacific and southwest in the Okhotsk Sea. The new data on the tephra thickness supports the axis direction of the fallout zone southeast of the Pauzhetka caldera. Our results suggest the Pauzhetka tephra as a key middle Pleistocene isochron for the stratigraphy and correlation of the NW Pacific and Okhotsk Sea sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-02-29
    Description: Highlights • Negligible Ba removal observed in the Rainbow hydrothermal system. • Insignificant modification of Ba isotope composition of the vent fluid endmember. • Rainbow vent introduces isotopically light Ba (−0.17) to the deep Atlantic Ocean. • Hydrothermal inputs contribute 4.6 ± 2.2 Gmol/yr Ba to the ocean. Abstract The marine barium (Ba) cycle is closely connected to the short-timescale carbon cycle, and Ba serves as a valuable paleo proxy for export production, ocean alkalinity, and terrestrial inputs. However, the marine Ba budget is poorly constrained, particularly regarding the fluxes of hydrothermally sourced Ba, which hinders our understanding of the Ba cycle and use of Ba-based proxies. Recent studies have suggested a modern source-sink imbalance of Ba isotopes in the global ocean, with sources being overall isotopically heavier than the sinks, and the hydrothermal Ba inputs were considered isotopically heavy sources. In this study, we present the first investigation of Ba and its isotopes in a non-buoyant hydrothermal plume based on dissolved and particulate samples collected from the Rainbow hydrothermal vent field on the Mid-Atlantic Ridge. Our data reveal strong hydrothermal signals at near-field stations, as evidenced by helium isotopes, accompanied by elevated concentrations of dissolved and particulate Ba. Dissolved Ba isotope compositions (δ138Ba) in hydrothermally influenced deep waters (∼0.3 ) are lighter than at similar depths of far-field stations (∼0.45 ) in the Atlantic Ocean. The concentrations and isotopic compositions of dissolved and labile particulate Ba in the non-buoyant hydrothermal plume can be explained by conservative mixing between a Ba-enriched hydrothermal component and North Atlantic Deep Water. By extrapolating the correlations to the vent fluid endmember, our results suggest that there is negligible removal of Ba, and insignificant modification of Ba isotopic signatures, from the vent fluid endmember to the non-buoyant hydrothermal plume. This indicates that the Rainbow hydrothermal system introduces isotopically light Ba (−0.17 ± 0.05 ) to the deep Atlantic Ocean. We estimate that global hydrothermal inputs of Ba are 4.6 ± 2.2 Gmol/yr. These observations highlight the potential of hydrothermal Ba to be an isotopically light source component of the marine Ba isotope budget.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-03-01
    Description: Highlights: • Transcriptomic immune response assessments in seahorse (Hippocampus erectus). • Seahorses exposed in two phases to heat-killed Vibrio and Tenacibaculum strains. • Adaptive immune memory evidence (double-exposed) and increased naivety to Tenacibaculum. • Upregulated gene expression pertaining to potential innate ‘trained immunity’. • Trained immunity potential compensator for deduced MHC II loss of function. Evolutionary adaptations in the Syngnathidae teleost family (seahorses, pipefish and seadragons) culminated in an array of spectacular morphologies, key immune gene losses, and the enigmatic male pregnancy. In seahorses, genome modifications associated with immunoglobulins, complement, and major histocompatibility complex (MHC II) pathway components raise questions concerning their immunological efficiency and the evolution of compensatory measures that may act in their place. In this investigation heat-killed bacteria (Vibrio aestuarianus and Tenacibaculum maritimum) were used in a two-phased experiment to assess the immune response dynamics of Hippocampus erectus. Gill transcriptomes from double and single-exposed individuals were analysed in order to determine the differentially expressed genes contributing to immune system responses towards immune priming. Double-exposed individuals exhibited a greater adaptive immune response when compared with single-exposed individuals, while single-exposed individuals, particularly with V. aestuarianus replicates, associated more with the innate branch of the immune system. T. maritimum double-exposed replicates exhibited the strongest immune reaction, likely due to their immunological naivety towards the bacterium, while there are also potential signs of innate trained immunity. MHC II upregulated expression was identified in selected V. aestuarianus-exposed seahorses, in the absence of other pathway constituents suggesting a possible alternative or non-classical MHC II immune function in seahorses. Gene Ontology (GO) enrichment analysis highlighted prominent angiogenesis activity following secondary exposure, which could be linked to an adaptive immune process in seahorses. This investigation highlights the prominent role of T-cell mediated adaptive immune responses in seahorses when exposed to sequential foreign bacteria exposures. If classical MHC II pathway function has been lost, innate trained immunity in syngnathids could be a potential compensatory mechanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-03-05
    Description: Highlights • Solutions to the climate crisis are not ahistorical. • Both social and technical processes explain their rise (or fall) on the agenda. • Thinking about ocean CDR closely co-evolved with scientific understandings of global climate change. • Ocean CDR methods have followed cycles of hype, controversy and disappointment. • Key sociotechnical configurations and narrative changes explain the new hype around ocean CDR. Abstract While the ocean has long been portrayed as a victim of climate change, threatened by ocean warming and acidification, it is now increasingly framed as a key solution to the climate crisis. In particular, the promising carbon sequestration potential of the ocean is being emphasised. In this paper, we seek to historicise the practices, discourses and actors that have constructed the ocean as a climate change solution space. We conceptualise the debate about the mitigation potential of the ocean as a contested site of governance, where varying actors form alliances and different sociotechnical narratives about climate action play out. Using an innovative quali-quantitative methodology which combines scientometrics with document analysis, observational fieldwork, and interviews, we outline three historical phases in the history of ocean carbon sequestration that follow recurring cycles of hype, controversy and disappointment. We argue that the most recent hype around ocean carbon sequestration was not triggered by a technological breakthrough or a reduction in scientific uncertainty, but by new socio-technical configurations and coalitions. We conclude by showing that how climate change solutions are put on the agenda and become legitimised is both a scientific and political process, linked to how science frames the climate crisis, and ultimately, its governance.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-03-04
    Description: Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient – representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (−2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-03-08
    Description: Marine heatwaves (MHWs) are widely recognized as prolonged periods of significantly elevated sea surface temperatures, leading to substantial adverse impacts on marine ecosystems. However, a comprehensive understanding of their characteristics and potential changes under climate change in the South China Sea (SCS, 0 ∼ 25°N, 105 ∼ 125°E) remains insufficient. Here, utilizing the OISST V2.0 reanalysis dataset, our study first examines MHW characteristics and their trends in the SCS during the historical period (1982 ∼ 2014). Then, in accordance with the criteria established in this study, GFDL-ESM4, EC-Earth3-Veg, NESM3, EC-Earth3, and GFDL-CM4 are identified from the CMIP6 ensemble of 19 models for their enhanced simulations of historical MHW characteristics. Moreover, considering that the fixed and sliding threshold methods offer distinct perspectives on the future evolution of MHWs, we employ both approaches to evaluate MHW characteristics under projected scenarios for the future period (2015 ∼ 2100) and subsequently compare the disparities between the two methodologies. The outcomes obtained using these methods consistently indicate that MHWs in the SCS are anticipated to intensify and persist for longer durations in the future. Besides, addressing seasonal variability, the peak intensity of MHWs falls in May during both the historical period and the four projected future scenarios. This study provides valuable insights into the behavior of MHWs in the SCS within the context of climate change, underscoring the urgency of adopting effective mitigation strategies. Especially, the use of two definition methods provides a more comprehensive set of information for understanding the future changes of MHWs in the SCS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-03-15
    Description: Highlights: • Microphytobenthos contributed to the particulate organic matter in both beaches. • Allochthonous materials provide relevant contributions to the POM in surf zones. • Estuarine subsidies' availability determines changes in consumers' isotopic niches. • Higher estuarine trophic subsidies resulted in narrower niches of dominant species. Abstract: Benthic invertebrates in the surf zone of exposed sandy beaches represent important links for energy circulation between benthic and pelagic food webs. This work assesses the trophic ecology of co-occurring epi- and hyper-benthic invertebrates inhabiting the surf zone of sandy beaches located close to an estuarine mouth. It illustrates that different sources of organic matter induce changes in resource utilization. The trophic positions, and the niche width and overlap of species were described using δ13C and δ15N stable isotope analysis. The contribution of different sources to the particulate organic matter was quantified through stable isotopes analysis and fatty acids profiles. Shifts in the trophic niches of dominant species reflected a decrease in the contribution of estuarine carbon to the diets along the coast. This change in contribution of estuarine carbon also influenced trophic niche properties: more diverse resources availability resulted in narrower niches without overlap while less diverse resources resulted in broad isotopic niches and a highest overlap. Results show that spatial variations in the availability of resources can modify carbon pathways and trophic interactions in coastal food webs. Whenever resources are abundant, species display a more specialized diet while food scarcity leads to broader diets, a pattern consistent with the optimal foraging theory. This resource maximization behavior commonly observed in nature is also occurring in surf zone ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2024-03-22
    Description: High dissolved iron (dFe) concentrations of the order of 10-100 nmol L-1 are a feature of waters influenced by sedimentary inputs in oxygen minimum zones (OMZ). However, the temporal development of dFe concentrations is poorly defined due to a general reliance on snapshot cross-shelf sections to study marine trace metal dynamics. Multiple cruise campaigns since the 1980s have investigated Fe dynamics over the Peruvian shelf, particularly between 9-17°S where the shelf is broad, extremely productive and known to feature benthic dFe effluxes which are amongst the highest measured globally. This extensive long-term dataset uniquely allows us to study the interannual variability in dFe concentrations and their response to El Niño–Southern Oscillation (ENSO) events. By combining data from 11 cruises during the period 1984-2017 we are able to evaluate dFe dynamics on interannual timescales in a major OMZ. The region where average dFe concentrations are sensitive to variations in ENSO is confined to a subsurface layer at depths between 50-150 m, particularly in the narrow coastal region within 50 km of the coastline. Subsurface dFe concentrations were generally low during El Niño events (0.7-15.4 nmol L-1) and relatively high with a wider range of variability during the cold ENSO phase (1.1-52.1 nmol L-1). Inverse relationships between wind speed and surface/subsurface dFe were evident. In the subsurface layer, this may be attributable to enhanced dFe offshore transport along isopycnals when upwelling-favorable winds relax in accordance with previously outlined theories. Surface layer (〈40 m) dFe variability was likely associated with a dilution and/or oxidation effect depending on the strength of wind driven water column mixing. Upwelling brings macronutrient-rich water into the euphotic zone, but its intensity had a limited impact on upper layer dFe concentrations possibly due to the influence of an onshore geostrophic flow. Interannual variability in surface chlorophyll-a (Chl-a) was found to correlate with dFe concentration in the offshore zone of northern Peru. This is consistent with bioassay experiments and climatological residual nitrate concentrations which both indicate proximal Fe limitation of phytoplankton growth over and beyond the northern Peruvian shelf. Overall, our work highlights the importance of physical factors driving short-term variations in Fe availability in one of the world’s most economically important fishery regions and suggests that, despite pronounced spatial and temporal variability in dFe concentrations, the ENSO phase has an impact on dFe availability.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2024-03-22
    Description: Underwater image restoration has been a challenging problem for decades since the advent of underwater photography. Most solutions focus on shallow water scenarios, where the scene is uniformly illuminated by the sunlight. However, the vast majority of uncharted underwater terrain is located beyond 200 meters depth where natural light is scarce and artificial illumination is needed. In such cases, light sources co-moving with the camera, dynamically change the scene appearance, which make shallow water restoration methods inadequate. In particular for multi-light source systems (composed of dozens of LEDs nowadays), calibrating each light is time-consuming, error-prone and tedious, and we observe that only the integrated illumination within the viewing volume of the camera is critical, rather than the individual light sources. The key idea of this paper is therefore to exploit the appearance changes of objects or the seafloor, when traversing the viewing frustum of the camera. Through new constraints assuming Lambertian surfaces, corresponding image pixels constrain the light field in front of the camera, and for each voxel a signal factor and a backscatter value are stored in a volumetric grid that can be used for very efficient image restoration of camera-light platforms, which facilitates consistently texturing large 3D models and maps that would otherwise be dominated by lighting and medium artifacts. To validate the effectiveness of our approach, we conducted extensive experiments on simulated and real-world datasets. The results of these experiments demonstrate the robustness of our approach in restoring the true albedo of objects, while mitigating the influence of lighting and medium effects. Furthermore, we demonstrate our approach can be readily extended to other scenarios, including in-air imaging with artificial illumination or other similar cases.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-03-25
    Description: The TetraEther indeX of 86 carbon atoms (TEX86) is widely used as a proxy to reconstruct past sea surface temperatures. Most current applications of TEX86 are primarily based on analyzing the composition of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) that comprise TEX86 in sediments, with the assumption that the sedimentary isoGDGTs are mainly derived from the surface mixed layer. Here we report on the variations in the isoGDGT distribution, archaeal abundance and community through the water column of the Western Pacific Ocean, directly testing the export depth of isoGDGTs and constraining the temperature records of TEX86. Our data show that maximum isoGDGT concentrations occurred in subsurface waters (150–200 m) with maximum archaeal abundances. The ratio between isoGDGTs bearing 2 vs. 3 cyclopentane moieties, i.e. [2/3] ratio, increased with depth, which is likely related to the shift of the archaeal community from Ca. Nitrosopelagicus-dominance to norank_f__Nitrosopumilaceae-dominance. Models based on the [2/3] ratios in the water column predicted an average export depth of isoGDGTs to sediments of around 150–200 m, consistent with the robust relationship between the compiled sedimentary TEX86 and the annual mean subsurface temperature. Taken together, our findings support that TEX86 records subsurface rather than surface temperatures in the open ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
  • 171
    Publication Date: 2024-03-26
    Description: This review has been undertaken to understand the effectiveness of ocean acidification on oceanic micronutrient metal cycles (iron, copper and zinc) and its potential impacts on marine biota. Ocean acidification will slow down the oxidation of Fe(II) thereby retarding Fe(III) formation and subsequent hydrolysis/precipitation leading to an increase in iron bioavailability. Further, the increased primary production sustains enzymatic bacteria assisted Fe(III) reduction and subsequently the binding of weaker ligands favours the dissociation of free Fe(II) ions, thus increasing the bioavailability. The increasing pCO2 condition increases the bioavailability of copper ions by decreasing the availability of free CO32− ligand concentration. The strong complexation by dissolved organic matter may decrease the bioavailable iron and zinc ion concentration. Since ocean acidification affects the bioavailability of essential metals, studies on the uptake rates of these elements by phytoplankton should be carried out to reveal the future scenario and its effect on natural environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-04-03
    Description: Highlights • Present day infiltration conditions in an monsoonal environment are studied. • Noble gas concentrations in groundwater are fixed near the soil surface. • Noble gas temperatures represent seasonal infiltration conditions in the monsoon. • Holocene and modern infiltration conditions are quite similar in southern Oman. Abstract Comparing directly measured soil temperatures with noble gas recharge temperatures (NGTs) inferred from noble gas concentrations indicates that the infiltrating soil water equilibrates with soil air near the soil surface during the rainy season. Therefore, NGTs of groundwater recently recharged by the Indian Summer Monsoon (ISM) in the Dhofar Mountains in southern Oman reflect the soil temperatures of the 3-month period and do not represent an annual mean. This finding highlights the need to account for seasonality when interpreting NGT data in regions with pronounced dry and wet seasons. We extend the observations from the southern flank of the Dhofar Mountains to three wells situated on the northern flank of the Dhofar Mountains. Two of these wells yield water of Holocene age that was recharged by the monsoon, their NGT signals are therefore classified as seasonal. The NGT calculated from a third well for recharge conditions during the Last Glacial Maximum (LGM), when the ISM was absent, is approximately 3 °C lower than that of the two Holocene wells. The lower LGM noble gas temperature corresponds well with the lower annual Sea Surface Temperature (SST) in the nearby Arabian Sea. NGTs from published studies from northern Oman are 1–3 °C higher when compared with our data of the same period in the southern Oman. We explain this regional difference of reconstructed temperatures for the LGM and Holocene groundwater with a more continental climatic influence on the infiltration conditions further to the north. The published NGTs from northern Oman show a large temperature difference between the late Holocene and the LGM. In view of our finding of seasonal NGT signals under monsoonal climate, part of this difference may reflect a change in the precipitation regime rather than in air temperature.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-04-03
    Description: Highlights • This study simulates the sedimentation-driven development of multiple stacked BSRs in the Danube paleo-delta, Black Sea. • Formation of multiple BSRs in the Black Sea is controlled by the sequence of sedimentation events of the levees induced by sea-level changes. • Kinetics of phase transitions plays a key role in the coexistence, location, and timing of the multiple BSRs. • Development of multiple stacked BSRs is possible only under a narrow range of parameters, unique for the Danube delta setting. Abstract The gas hydrate stability zone (GHSZ) is defined by pressure-temperature-salinity (pTS) constraints of natural gas hydrate (GH) system. It refers to a depth interval which usually extends several hundred meters into the sediment column at sufficient water depths. The lower boundary of the GHSZ often coincides in seismic reflection data with a bottom simulating reflector (BSR), which indicates the transition between the underlying free gas and the overlying no-free gas zone at the thermodynamic stability boundary. The GHSZ in geological systems is dynamic and can shift in response to sedimentation processes and/or changes in environmental conditions such as bottom water temperatures, hydrostatic pressure, and water salinity. The appearance of multiple BSRs has been interpreted as remnants of former GHSZ shifts which have persisted over geological timescales. In this study, we numerically simulate the sedimentation-driven development of multiple stacked BSRs in the Danube deep-sea fan in the Black Sea. We show that in this dynamic sediment depositional regime sufficient amounts of residual gas remain trapped in the former GHSZ, given sufficiently high initial gas hydrate saturations, so that paleo-BSRs could persist over long time scales (similar to 300 kyr). In particular, the formation and persistence of multiple BSRs in the Danube Delta is controlled by the sequence of sedimentation events of the levees induced by sea-level change. The kinetics of methane phase transitions between gas hydrate, dissolved methane, and free gas plays a key role in the coexistence, location and timing of the multiple BSRs. Thus, For a given permeability, distinct multiple BSRs appear only for a narrow range of GH formation (10(-14) 〈 k(f) [mol/m(2) Pa s] 〈= 10(-12)) and dissociation rates (10(-16) 〈 k(d) [mol/m(2) Pa s] 〈 10(-14)).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-04-03
    Description: Multiple stressors often act concomitantly on ecosystems but detection of species responses follows the “single species-single driver” strategy, and cumulative impacts are seldom considered. During 1990–2010, multiple perturbations in the Caspian Sea, led to the decline of kilka, sturgeon and Caspian seal populations. Specific causes for their collapse were identified but a cumulative assessment has never been carried out. Using loop analysis, a qualitative modelling technique suitable in poor-data contexts, we show how multiple drivers can be combined to assess their cumulative impact. We confirm that the decline of kilka, sturgeon and Caspian seal populations is compatible with a net effect of the concomitant perturbations. Kilkas collapse was certainly due to the outburst of M. leidyi and overfishing. In addition, the excess nutrient might have conspired to reduce these populations. The interplay between concurrent drivers produces trade-offs between opposite effects and ecosystem management must face this challenge
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-04-03
    Description: Highlights • Four rhyolitic explosive eruption events were distinguished from 13.1 Ma to 11.6 Ma. • Silicic volcanism occurred at termination of subduction in a thinning lithosphere. • Rhyolites show extreme magma differentiation and reduced-dry character. • Zircon trace element and Hf isotope fingerprint is an effective correlation tool. Abstract The Tokaj Mts. volcanism occurred in a thinning continental lithosphere regime at the final stage of the subduction process. Using high-precision zircon U-Pb dating, four major explosive eruption events were distinguished. Among them the 13.1 Ma Sátoraljaújhely and the 12.0 Ma Szerencs eruptions could have yielded large amount of volcanic material (possibly 〉 100 km3) and they were associated with caldera collapse as shown by the several hundred-metre-thick pyroclastic deposits and the long (〉100 km) runout pyroclastic flow in case of the 13.1 Ma eruption. The 12.3 Ma Hegyköz and the 11.6 Ma Vizsoly eruptions were relatively smaller. The volcanic products can be readily distinguished by zircon and glass trace elements and trace element ratios, which can be used for fingerprinting and to correlate with distal deposits. The Rb, Ba, Sr content and strong negative Eu-anomaly of the glasses reflect extreme crystal fractionation, particularly for the Szerencs rhyolitic magma. The silicic volcanic products of the Tokaj Mts. show compositional similarities with the so-called ‘dry–reduced–hot’ rhyolite type consistent with an origin in an extensional environment, where the primary magmas were formed by near-adiabatic decompression melting in the mantle with subordinate fluid flux. In contrast, some of the older Bükkalja rhyolitic magmas evolved via more hydrous evolutionary paths, where amphibole played a role in the control of the trace element budget. The significant increase of zircon ε Hf values from −8.8 to + 0.2 in the rhyolitic pyroclastic rocks of Tokaj Mts. with time implies that mantle-derived magmas became more dominant. This can be explained by the specific tectonic setting, i.e. the final stage of subduction when the descending subducted slab became almost vertical, which exerted a pull in the upper lithosphere leading to thinning and accelerated subsidence as well as asthenospheric mantle flow just before the slab detachment.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2024-04-10
    Description: Trace metals (TMs) manganese (Mn), cobalt (Co), and aluminium (Al) have important geochemical and biological roles in the ocean. Here, we present full depth profiles of dissolved (d) and particulate Al, Mn, and Co along the latitude of 40 °S in the South Atlantic Ocean from the GEOTRACES GA10 cruises that operated in austral spring 2010 and summer 2011. The region is characterized by enhanced primary productivity and forms a key transition zone between the Southern Ocean and South Atlantic Subtropical Gyre. The mean concentrations of dAl, dCo, and dMn (±standard deviation) were 3.36 ± 2.65 nmol kg−1, 35.3 ± 17.6 pmol kg−1, and 0.624 ± 1.08 nmol kg−1, respectively. Their distributions in surface waters were determined by external sources and complex internal biogeochemical processes. Specifically, surface ocean dCo was controlled by the interplay between phytoplankton uptake, remineralization and external inputs; dMn was likely determined by the formation and photoreduction of Mn-oxides; and dAl was supplied by atmospheric deposition and removed by scavenging onto particles. Fluvial and sedimentary inputs near the Rio de La Plata estuary and benthic sources from the Agulhas Bank resulted in elevated dTM concentrations in near-shore surface waters. These externally sourced dTMs were effectively delivered to the open ocean by offshore diffusion and/or advection, and potentially facilitated enhanced primary productivity along the transect. The distributions of dTMs at depth were predominantly controlled by the mixing of North Atlantic Deep Water (NADW) and waters of Antarctic origin (e.g., Upper Circumpolar Water (UCDW) and Antarctic Bottom Water (AABW)). The calculated endmember concentrations of dAl and dCo in NADW showed minor decreases in the SASTG following north–south transport, suggesting removal rates of 0.064 nM/year and 0.035–0.075 pM/year, respectively. The endmember concentration of dCo in AABW was maintained at ∼30 pmol kg−1 without evidence for scavenging removal in the Southern Ocean and SASTG (time frame 〉400 years). The concentrations of dMn in NADW and AABW were between 0.1 and 0.16 nmol kg−1, and any elevated dMn concentrations were ascribed to local external inputs (e.g., from sediments in the Argentine Basin and hydrothermal activity near the Mid-Atlantic Ridge). Hence, four controlling factors (sources, internal cycling, water mass mixing and time) need to be considered when assessing TM distributions in the global ocean, even for TMs that are vulnerable to scavenging removal processes. Because the deep waters formed in high latitude oceans are crucial components of the global thermohaline overturning system, any processes (e.g., glacier melting, upwelling and sinking, and biological activity) that impact the preformed dTM concentrations in high latitude oceans will determine the downstream dTM distributions. Therefore, the sources and sinks of TMs and associated biological activity in high latitude oceans could engender basin to global scale impacts on seawater distributions of Al, Co, and Mn and their stoichiometric relationships with macronutrients, and the global biogeochemical cycles of these scavenged-type TMs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2024-04-09
    Description: The overriding physicochemical controls in seawater discussed here are the chemical composition and the state of master variables including temperature, pressure, salinity, pH and redox status. Dissolved Organic Matter also plays a major role, but since its properties are not sufficiently well quantified it is described as an emergent master variable at this stage. The theoretical basis for the treatment of equilibrium chemistry and kinetics is presented, together with projections of the future development of seawater chemistry resulting from climate change. Key points • Composition of seawater • Master variables (temperature, pressure, pH, oxygen/redox state) • The role of Dissolved Organic Matter • Equilibrium chemistry • Kinetics • The consequences of ongoing global changes
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2024-04-15
    Description: Fishes occur in a wider range of habitats than any other vertebrate or invertebrate group, from the upper reaches of streams in high mountain ranges to the mouths of temperate and tropical rivers, and from the intertidal zone to the ocean's abyss. Fish grow in size, spawn and die, either from natural causes (predation, diseases, ageing) or from being caught in fishing nets if the population is exploited. These dynamical processes are expressed with mathematical equations and are used in population models to estimate fisheries reference points (stock assessment), which in turn provide the basis for fisheries management. Fish populations subjected to fisheries exploitation are called fish “stocks”. Fishing has been increasingly affecting fish stocks and ecosystems both directly and indirectly, and along with the human-induced climate change they pose major threats to fish biodiversity worldwide. Using the available data stored in local or global databases to assess the status of all stocks, even the data-poor fish stocks, and following an ecosystem approach to fisheries management that incorporates effort reduction through marine protected areas, may contribute to the sustainable exploitation of fisheries resources.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2024-04-15
    Description: Cadmium (Cd) has a nutrient-like distribution in the ocean, similar to the macronutrient phosphate. Significant isotope fractionation induced by the biological cycling of Cd makes it a potential tracer for nutrients and productivity. However, the Cd flux and Cd isotope composition of marine sediments can also be influenced by local redox conditions and partial remineralization of organically hosted Cd. These confounding factors are under-constrained and render it challenging to use Cd as a reliable paleoproxy. To understand the relative importance of each of these processes, we examined the Cd isotope systematics of 69 modern sediments deposited across a wide range of environments. We complement these data with four profiles of particulate Cd isotope compositions from the Southern Ocean. We report three main results. First, we show that the sedimentary flux of Cd is tightly coupled to that of organic matter. Second, most Cd burial occurs in regions with some bottom-water oxygen, and the flux of CdS to anoxic regions is, globally, minor. Finally, we find that remineralization can substantially modify sedimentary Cd isotope compositions, though it is challenging to relate pelagic and sedimentary processes. For example, we find that the relationship between sedimentary Cd isotope compositions and surface seawater [Cd] is the reverse of that predicted by isotope reactor models. Likewise, sedimentary Cd isotope compositions are anti-correlated with bottom-water oxygen. While this pattern is consistent with preferential remineralization of isotopically heavy Cd, profiles of marine particulate matter reveal the reverse, whereby the Cd isotope composition of large particles, which are most likely to reach the seafloor, becomes increasingly ‘heavy’ with depth. These results highlight how productivity, redox, and remineralization all influence the flux and isotope composition of Cd to marine sediments. While our study suggests that there is no simple way to relate sedimentary Cd isotopes to surface nutrient utilization, our data point toward several potential controls that could form the basis of novel proxies for local redox conditions and remineralization.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2024-04-19
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2024-04-22
    Description: Highlights: • The interactions between vortices in a four-vortex flow field using a rotating water tank. • Driven by the strain field, non-ideal vortices stretch along the centerline, and manifest an asymmetric stretching pattern. • Non-ideal vortices disperse vorticity, accumulate filaments, and exhibit distinctive variations in anti-symmetric vorticity distribution, impacting respective merging efficiency. Abstract: Oceanic vortex merging is an important physical process for the vortex evolution and its impact on marine environment. However, limitation of the in-situ oceanic observational data of vortex merging inhabits its better understanding. This study investigates the interactions between non-ideal vortices in a four-vortex flow field in a rotating tank. We examine the merging stages of anticyclonic vortices, influenced by two other cyclonic vortices and their respective dynamical behaviors and quantify the effects of merging on vortex characteristics. The results indicate a strong shear flow between two counter-rotating vortices, which accelerates the motion of the anticyclonic vortex, while cyclonic ones exhibit greater stability. Subsequently, different stages of non-ideal vortex merging in a co-rotating framework are defined, primarily the encircling stage, rapid approaching stage, and merging vortex stage. In addition, we quantify and compare variations in morphological parameters and anti-symmetric vorticity distribution of non-ideal vortices across these stages. The stretching of vortices primarily occurs along the line connecting their centers due to the strain field exerted by neighboring vortices, resulting in an asymmetric stretching pattern in the interactions among non-ideal vortices. Furthermore, during the merging process, non-ideal vortices disperse vorticity outward and accumulate vortex filaments in the surrounding environment, leading to distinctive variations in anti-symmetric vorticity distribution, affecting their respective merging efficiency.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2024-04-22
    Description: In the past three decades, altimeter-based remote sensing has been a widely used system to estimate ocean surface currents. However, it remains a great challenge to effectively resolve scales below ∼100 km at high latitudes and ∼ 300 km at mid-latitudes. In this study, we propose a scheme that utilizes geostrophic equilibrium and surface quasigeostrophy theory (SQG) to improve surface current resolution by incorporating remote sensing sea surface temperature (SST), sea surface height (SSH), and sea surface salinity (SSS) observations. The scheme separately characterizes the larger-scale flows and smaller-scale motions of surface currents. A case study encompassing the Agulhas surface current demonstrates that the smaller-scale motions associated with temperature fronts are well captured by introducing high spatial-temporal resolution SST data. Furthermore, the reconstructed surface current is systemically evaluated by using surface drogued drifters and a Lagrangian synthetic particle tracking tool throughout the South Indian Ocean (SIO) for 2011–2015. Notably, the reconstructed zonal velocity component is closer to the drifter observations than the meridional counterpart and corresponding velocity phase. Regionally, the Antarctic Circumpolar Current (ACC) showcases superior reconstruction performance, with higher skill scores and lower Lagrangian separation distances. However, a relatively large uncertainty is observed around the Agulhas Retroflection (AR) and Greater Agulhas System (GAS), which are linked to complicated regional dynamic regimes. We finally conduct four simulation experiments to explore the effect of different SST products on surface current reconstruction within the subdomain AR. The results indicate the varying potentials of the four evaluated SST products for informing surface current applications. Specifically, the MWIRSST enhances the likelihood of particles reaching the target field, while DMI OI shortens the average deviation distance of the arrived particles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-04-22
    Description: Marine imaging studies have unique constraints on the data collected requiring a tool for defining the biological scope to facilitate data discovery, quality evaluation, sharing and reuse. Defining the ‘target population’ is way of scoping biological sampling or observations by setting the pool of organisms to be observed or sampled. It is used in survey design and planning, to determine statistical inference, and is critical for data interpretation and reuse (both images and derived data). We designed a set of attributes for defining and recording the target population in biological studies using marine photography, incorporating ecological and environmental delineation and marine imaging method constraints. We describe how this definition may be altered and recorded at different phases of a project. The set of attributes records the definition of the target population in a structured metadata format to enhance data FAIRness. It is designed as an extension to the image FAIR Digital Objects metadata standard, and we map terms to other biological data standards where possible. This set of attributes serves a need to update ecological metadata to align with new remotely-sensed data, and can be applied to other remotely-sensed ecological image data.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-05-03
    Description: Highlights: • Mnemiopsis leidyi is capable of catching and digesting herring yolk-sac larvae. • Predation on herring larvae is decreasing with prey age and increasing with predator size. • Predation of M. leidyi on herring larvae is not affected by the presence of alternative natural prey represented by the copepod Acartia tonsa. • Substantial predation of M. leidyi on yolk-sac herring larvae may occur in the field, when both overlap spatially and temporarily. Western Baltic spring spawning herring (Clupea harengus, L.) is a commercially important fish stock currently suffering a strong decline. Larval survival is essential for stock recruitment and can be substantially decreased by predation. The comb jelly Mnemiopsis leidyi A. Agassiz, 1865, is a lobate ctenophore which is invasive to the Baltic Sea and a known ichthyoplankton predator. However, predation on herring larvae in the Baltic Sea by M. leidyi has not been studied since its initial establishment in 2006. To address this knowledge gap, we conducted feeding experiments to investigate (1) the predation capability of M. leidyi on herring yolk-sac larvae, and (2) the influence of larval age, (3) predator size and (4) the presence of alternative prey on the clearance rate of M. leidyi on herring yolk-sac larvae. Our results showed that M. leidyi exhibited the ability to capture and digest herring larvae. The clearance rates of M. leidyi on herring larvae decreased with larval age and increased with predator size, while the presence of alternative prey had no effect on clearance rates. This finding suggests that M. leidyi can efficiently consume herring yolk-sac larvae under laboratory conditions. However, further investigations using mesocosm or field studies are necessary to evaluate the potential impact of M. leidyi on the mortality and recruitment of herring yolk-sac larvae under Baltic Sea field conditions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-06-11
    Description: Abundant mineral resources in the deep sea are prospected for mining for the global metal market. Seafloor massive sulphide (SMS) deposits along the Mid-Atlantic Ridge are one of the potential sources for these metals. The extraction of SMS deposits will expose adjacent marine ecosystems to suspended particle plumes charged with elevated concentrations of heavy metals and other potentially toxic compounds. Up to date there is no information about the impact of mining activities on deep-sea benthic ecosystems such as abundant deep-sea sponge grounds in the North Atlantic Ocean. Sponge grounds play a major role in benthic-pelagic coupling and represent an important habitat for a diversity of vertebrates, invertebrates and microorganisms. To simulate the effects of mining plumes on benthic life in the deep sea, we exposed Geodia barretti, a dominant sponge species in the North Atlantic Ocean, and an associated brittle star species from the genus Ophiura spp. to a field-relevant concentration of 30 mg L−1 suspended particles of crushed SMS deposits. Three weeks of exposure to suspended particles of crushed SMS resulted in a tenfold higher rate of tissue necrosis in sponges. All brittle stars in the experiment perished within ten days of exposure. SMS particles were evidently accumulated in the sponge's mesohyl and concentrations of iron and copper were 10 times elevated in SMS exposed individuals. Oxygen consumption and clearance rates were significantly retarded after the exposure to SMS particles, hampering the physiological performance of G. barretti. These adverse effects of crushed SMS deposits on G. barretti and its associated brittle star species potentially cascade in disruptions of benthic-pelagic coupling processes in the deep sea. More elaborate studies are advisable to identify threshold levels, management concepts and mitigation measures to minimize the impact of deep-sea mining plumes on benthic life.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
  • 187
    Publication Date: 2024-05-13
    Description: Highlights • Mercury methylation in sediment rapidly transported into water and diatoms. • CH3Hg flux was highest for sediments with higher sulfide and organic content. • Mineral and compressed sediment released minor Hg and CH3Hg. • Higher sediment Hg species flux does not correlate with high sediment content. • Stable isotope incubations provide substantial insight to environmental Hg cycling. Abstract Mercury (Hg) is a conspicuous and persistent global pollutant. Ionic Hg can be methylated into noxious methylmercury (CH3Hg), which biomagnifies in marine tropic webs and poses a health risk to humans and organisms. Sediment Hg methylation rates are variable, and the output flux of created CH3Hg are dependent on sediment characteristics and environmental factors. Thus, uncertainties remain about the formation and flux of CH3Hg from sediment, and how this could contribute to the bioaccumulative burden for coastal organisms in shallow ecosystems. Cores were collected from 3 estuarine locations along the Eastern USA to examine how sediments characteristics influence the introduction of Hg and CH3Hg into the base of the food chain. Stable isotopes of inorganic 200Hg and CH3199Hg were injected into sediments of individual cores, with cultured diatoms constrained to overlying waters. Five different treatments were done on duplicate cores, spiked with: (1) no Hg isotopes (control); (2) inorganic 200Hg; (3) CH3199Hg; (4) both 200Hg and CH3199Hg isotopes, (5) both 200Hg and CH3199Hg into overlying waters (not sediment). Experimental cores were incubated for 3 days under temperature and light controlled conditions. These results demonstrate that upper sediments characteristics lead to high variability in Hg cycling. Notably, sediments which contained abundant and peaty organic material (∼28 %LOI), had the highest pore water DOC (3206 μM) and displayed bands of sulfur reducing bacteria yielded the greatest methylation rate (1.97 % day−1) and subsequent diatom uptake of CH3200Hg (cell quota 0.18 amol/cell) in the overlying water.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2024-05-17
    Description: Highlights • Developed an innovative weighted outlier detection function that adaptively selects the best outlier detection technique, markedly improving precision and robustness in multibeam echosounder data analysis. • Demonstrated superior performance of the weighted function over traditional methods, achieving higher precision, recall, and F1 scores, pivotal for accurate seafloor mapping. • Enhanced data quality for geoscientific applications by effectively identifying and removing outliers without introducing data voids, preserving the integrity of multibeam sonar data. • The function’s significance extends to supporting sustainable environmental and resource management practices through improved accuracy in seabed mapping. • Discussed the adaptability of the method to various outlier patterns and its limitations, highlighting the need for further research and validation across different marine environments and data types. Abstract Multibeam sonar data are a valuable tool for seafloor mapping and geological studies. However, the presence of outliers in multibeam data can distort the results of analyses and reduce the accuracy of seafloor maps. In this paper, we define a weighting function based on the performance of various outlier detection techniques (OTDs) for detecting outliers in multibeam data, which calculates an outlier probability score for each sounding. Our results show that each OTD has its own strengths and weaknesses, and that a combination of outlier detection techniques is promising to improve reproducibility, explainability and the accuracy of the detection process. To address the challenge of detecting outliers in multibeam data, we propose a weighted outlier detection function that outperforms individual outlier detection techniques in terms of precision, recall and F1 scores by considering their strengths and combining them in a way that accounts for variations in the data. The function detects various types of outliers with high precision and recall values, resulting in valuable improvements in outlier detection performance for multibeam data. Overall, our proposed workflow has the potential to significantly improve the way multibeam data cleaning is performed, with the weighted outlier detection function being applied first, detecting most of the outlier automatically, followed by a domain-expert review of a small group of soundings whose automatic outlier labelling is not unequivocal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2024-05-21
    Description: Highlights: • Huidobria chilensis is an endemic shrub distributed in the south of the Atacama Desert with a disjunct population at the northern coast. • Population and genetic structure correlate with geographic distance and geological factors. • Rain fall and fog, as well as ground water, must be regarded as important factors for populations at the coast and the Andean valleys, respectively. • A combination of different software tool to analyze GBS data allowed a good understanding of the population structure and genetic diversity. Abstract: Survival in hyperarid deserts is a major challenge for life in general and for plants in particular. The Atacama Desert presents harsh conditions such as limited rainfall, crusted soils, high soil salinity, high altitude, and intense solar radiation. These conditions, together with paleoclimatic variations over the last 10 million years, have influenced the genetic structure and connectivity of plant populations, resulting in a diverse flora with high endemism. However, the diversification of most lineages appears to be relatively recent, in contrast to the reported age of the Atacama Desert and the onset and expansion of hyperarid conditions since the late Oligocene and early Miocene. A prominent exception is Huidobria chilensis (Loasaceae), which is thought to be endemic to the Atacama since the Eocene. However, it is still not understood why this plant has been successful in adapting to the harshening environmental conditions. To investigate its genetic structure in relation to the history of the Atacama Desert, we studied 186 individuals from 11 populations using genotyping-by-sequencing (GBS). A total of nearly 56 k genome-wide single nucleotide polymorphisms (SNPs) were analyzed for population structure and genetic diversity. We identified four genetic clusters corresponding to geographic regions: the coastal region south of Tocopilla, the Cordillera de la Costa around Chañaral, and the Copiapó catchment 1 and 2. Genetic diversity within and between these clusters was analyzed along with rainfall, altitude, and landscape data. Although the genetic data support `isolation by distance’ as a major factor for genetic divergence between populations, the study also reveals the influence of topography on the distribution of H. chilensis and highlights the role of hydrologically connected watersheds and rivers in plant migration and colonization. This shapes the species' evolutionary trajectory and genetic diversity. Understanding these patterns in H chilensis lets one draw general conclusions about adaptation and survival strategies of plants in extreme desert environments such as the Atacama.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2024-05-24
    Description: Highlights • Investigation into the potential of Porites microatolls for SST reconstruction. • Comparison between recent and more conventional coral paleoclimatology methods. • Application of Srsingle bondU and Li/Mg paleothermometer. • Accuracy and reproducibility of Sr/Ca proved to be the most suitable proxy for SST reconstruction. Abstract Massive dome-shaped coral Porites are the predominant choice for paleoclimate studies due to their consistent and reliable growth. When growing close to sea level, they become limited in their vertical growth and form so-called ‘microatolls’. Microatolls have not yet been extensively explored for paleoclimate reconstruction. Here, we investigate how reliable modern Porites microatolls are against empirical sea-surface temperature using Sr/Ca, δ18O, Li/Mg and Srsingle bondU paleothermometry methods on samples from the Society Islands, French Polynesia. Our results show Sr/Ca ratios have the lowest Standard Error of the Inverse Prediction (SEIP) at 0.415 °C (N = 41) with a calibration of Sr/Ca (mmol mol−1) = −0.082 ± 0.006 SST (°C) + 11.256 ± 0.170 and with high reproducibility across multiple corals. The reproducibility of δ18O was less good, with SEIP increasing to 0.829 °C (N = 41). Considering methods directly from the literature, Li/Mg ratio empirically corrected for Sr/Ca had the best balance between bias and precision where no local calibration could be available. This study independently evaluates and confirms the suitability of Porites microatolls from well-flushed environments for paleoclimate studies. Fossil dome-shaped Porites grow anywhere between near-surface and roughly 20 m depths which inherently incorporates uncertainty into any sea surface temperature reconstruction. This uncertainty is significantly reduced for microatolls due to their well-constrained bathymetry. The study represents a fundamental step in paleoclimate research targeting consistently near the water-air interface bringing reliability and, especially when combined with their ability to reconstruct past sea-level changes, microatolls have the potential to be central for future paleoenvironmental studies.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2024-06-05
    Description: Highlights: • Acartia hudsonica shows strong seasonality in thermal tolerance. • The observed seasonal differences in are consistent with pheno-typic plasticity not adaptation. • Body size in A. hudsonica is negatively correlated to environmental and developmental temperature. Abstract: Seasonal changes in environmental conditions require substantial physiological responses for population persistence. Phenotypic plasticity is a common mechanism to tolerate these changes, but for organisms with short generation times rapid adaptation may also be a contributing factor. Here, we used a common garden design (11 °C and 18 °C) to disentangle the impacts of adaptation from phenotypic plasticity on thermal tolerance of the calanoid copepod Acartia hudsonica collected throughout spring and summer of a single year. Acartia hudsonica were collected from five time points across the season and thermal tolerance was determined using critical thermal maximum followed by additional measurements after one generation of common garden. As sea surface temperature increased through the season, field collected individuals showed corresponding increases in thermal tolerance but decreases in body size. Despite different thermal tolerances of wild collections, after one generation of common garden animals did not differ in within thermal treatments. Instead, there was evidence of phenotypic plasticity where higher temperatures were tolerated by the 18 °C versus the 11 °C treatment animals across all collections. Despite persisting differences between collections due to either adaptation or parental effects, acclimation also had significant effects on body size, with the warm treatment resulting in smaller individuals, consistent with the temperature size rule. Therefore, the differences in thermal tolerance and body size observed in field collected A. hudsonica were predominantly driven by plasticity rather than adaptation. However, the observed decrease in body size suggests that nutrient availability for higher trophic levels and ecosystem functioning could be impacted if temperatures consistently increase with no change in copepod abundance. This is the first record of A. hudsonica in the Baltic Sea known to the authors.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-06-07
    Description: The impact of oxygen on the preservation of organic matter in marine surface sediments is still controversial. We revisited this long-standing debate by determining the burial efficiency of sedimentary organic matter in the Black Sea, the largest anoxic and euxinic basin in the modern ocean. Surface sediments were sampled in the Danube paleodelta on the northwestern margin of the Black Sea at 420–1550 m water depth. Steady-state modeling of solid species (particulate organic carbon and nitrogen) and solutes (ammonium, sulfate, and total alkalinity) in sediments was performed to quantify rates of mass accumulation, particulate organic matter (POM) degradation, and POM burial. We develop a novel analytical model to quantify these rates applying an inverse modelling approach to down core data accounting for molecular diffusion, sediment burial and compaction. Our model results indicate that 56.7 ± 6.6 % of the particulate organic matter deposited in the study area is not degraded in surface sediments but accumulates below 10 cm sediment depth. This burial efficiency is substantially higher than those previously derived for seafloor areas underlying oxygenated bottom waters. Hence, our study confirms previous studies showing that euxinic bottom water conditions promote the preservation of particulate organic matter in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-06-07
    Description: Highlights • Development of an autonomous DIC analyzer based on Conductometric technique using a cell with 4 hollow brass electrodes. • CO2 extraction from seawater using a gas diffusion cell with a “Tube In A Tube” configuration and a gas permeable membrane. • Formulation of mathematical temperature and salinity correction to determine accurate DIC concentration. • Demonstration of the analyzer performance in the southwest Baltic Sea. Abstract Background The increase in anthropogenic CO2 concentrations in the Earth's atmosphere since the industrial revolution has resulted in an increased uptake of CO2 by the oceans, leading to ocean acidification. Dissolved Inorganic Carbon (DIC) is one of the key variables to characterize the seawater carbonate system. High quality DIC observations at a high spatial-temporal resolution is required to improve our understanding of the marine carbonate system. To meet the requirements, autonomous DIC analyzers are needed which offer a high sampling frequency, are cost-effective and have a low reagent and power consumption. Results We present the development and validation of a novel analyzer for autonomous measurements of DIC in seawater using conductometric detection. The analyzer employs a gas diffusion sequential injection approach in a “Tube In A Tube” configuration that facilitates diffusion of gaseous CO2 from an acidified sample through a gas permeable membrane into a stream of an alkaline solution. The change in conductivity in the alkaline medium is proportional to the DIC concentration of the sample and is measured using a detection cell constructed of 4 hollow brass electrodes. Physical and chemical optimizations of the analyzer yielded a sampling frequency of 4 samples h−1 using sub mL reagent volumes for each measurement. Temperature and salinity effects on DIC measurements were mathematically corrected to increase accuracy. Analytical precision of ±4.9 μmol kg−1 and ±9.7 μmol kg−1 were achieved from measurements of a DIC reference material in the laboratory and during a field deployment in the southwest Baltic Sea, respectively. Significance This study describes a simple, cost-effective, autonomous, on-site benchtop DIC analyzer capable of measuring DIC in seawater at a high temporal resolution as a step towards an underwater DIC sensor. The analyzer is able to measure a wide range of DIC concentrations in both fresh and marine waters. The achieved accuracy and precision offer an excellent opportunity to employ the analyzer for ocean acidification studies and CO2 leakage detection in the context of Carbon Capture and Storage operations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2024-06-07
    Description: The ocean region along the latitude of 40oS in the South Atlantic, characterized by enhanced primary productivity, forms a transition zone between the nutrient replete but iron depleted Southern Ocean, and the nitrate and iron depleted Subtropical Gyre. Here, we present distributions of nutrient-type dissolved and particulate trace metals (dTMs and pTMs) including cadmium (Cd), nickel (Ni), copper (Cu), and zinc (Zn) in the South Atlantic from the GEOTRACES GA10 cruises. Phytoplankton uptake, riverine and atmospheric inputs shaped dTM and pTM concentrations in surface waters (dCd 27.8±36.0 pmol kg-1, n=222; dCu 0.732±0.429 nmol kg-1, n=222; dNi 3.38±0.52 nmol kg-1, n=219; dZn 0.332±0.398 nmol kg-1, n=214). Subsurface nutrients and dTMs (dCd 563±184 pmol kg-1, n=335; dCu 1.819±0.773 nmol kg-1, n=334; dNi 6.19±1.06 nmol kg-1, n=330; dZn 3.71±2.10 nmol kg-1, n=333) were controlled by the mixing of Antarctic origin waters and North Atlantic Deep Waters (NADW) with negligible contributions from local remineralization. Dissolved and particulate TMs in the Argentine Basin showed elevated concentrations towards the seafloor because of benthic inputs. Direct hydrothermal inputs of dTMs and pTMs to deep waters were not observed along the transect. The Cd-Cu-Zn-phosphate stoichiometries of Antarctic origin waters were set by a combination of dynamic physical circulation and preferential uptake of Cd, Cu, and Zn relative to phosphate in surface waters because of a dominance by diatoms in the Southern Ocean. Water mass mixing subsequently produced convoluted dCu-P and dZn-P relationships and apparent linear dCd-P and dNi-P relationships in the South Atlantic. More importantly, endmember characteristics of Antarctic waters and NADW are largely fixed in their formation regions in high latitude oceans. Therefore, the highly dynamic high latitude oceans are key regions that supply nutrients and TMs at specific ratios to low latitude oceans via the thermohaline circulation. Changes to processes in the high latitude oceans may have consequences for marine primary productivity downstream, and hence the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2024-06-12
    Description: Highlights • Statistically different gas geochemistry was observed in two adjacent springs. • About 74% of helium was contributed by the mantle. • Excess N2 relative to Ar was attributed to subducted materials and seawater mixing. • Magmatic CO2 has been largely removed by calcite precipitation in the reaction zone. • The residual CO2 may also be supplied by microbial oxidation of alkanes. Gas emissions from hydrothermal systems can serve as indicators of subsurface activity. In addition to gas sources, hydrothermal gas geochemistry is strongly influenced by secondary processes that occur during/after hydrothermal circulation. Here, we observed statistically significant differences in the geochemical characteristics (except for helium isotopes) of bubbling gases discharged from two adjacent vents in the Northern Luzon Arc. Helium (3He/4He = 4.25–7.09 Ra) in both vents was controlled by mixing between mantle and crustal components, where about 74% of helium was contributed by the mantle. Differences in N2/Ar ratios (∼ 300–330) of the two neighboring springs are attributed to subducted materials and seawater mixing (contributing ∼2.5% N2 and Ar), rather than phase separation in the reaction zone. Specifically, Ar was mainly supplied by atmospheric components that dissolved in the percolated seawater with only 8%–9% contributed by the excess radiogenic 40Ar. Excess N2 relative to Ar was mainly supplied by the decomposition of subducted materials (83%–92%) of the South China Sea plate beneath the Philippine Sea Plate. The Lutao gases showed low CO2 concentrations (0.07–22.2 mmol/mol), despite the high 3He/4He ratios indicating a significant contribution of magmatic components. Magmatic CO2 may have been largely consumed by the high Ca Lutao vent fluids via carbonate precipitation in the reaction zone. Alternatively, stable carbon isotope compositions (δ13C) indicate that Lutao CO2 may be supplied by microbial oxidation of alkanes (e.g., CH4 with concentrations of 14.6–173 mmol/mol in the samples), with fractionation factor ΔCO2–CH4 ranging from −15‰ to −25‰ and conversion rates of 〈10%. Up to 65% of the CO2 in the 2016 samples experienced secondary calcite precipitation in the discharge zone. Our results indicate that recycled subducted materials could potentially affect the geochemical characteristics of gases discharged from arc-volcanic systems. In addition, the influence of secondary processes needs to be considered before tracing the sources of hydrothermal fluids and/or gases, especially in shallow-water hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2024-06-12
    Description: Highlights: • A cyclonic frontal eddy emerged near the South Java Coast (SJC) in 2019. • The cyclonic eddy induces filaments of Chl-a, cold water, and nutrients. • Anti-cyclonic eddies distribute the filaments further offshore. • The role of wind can't be ignored in distributing filaments in the SJC. • We propose a three-stage mechanism for Chl-a distribution in the offshore SJC. Intense mesoscale eddy activity has been observed off the southern Java coast (SJC), yet its impact on local ecosystems remains largely unknown. To investigate this, we examined remotely sensed altimetry, chlorophyll-a (Chl-a), and sea surface temperature (SST) data, focusing on their response to eddies in the region. Our eddy detection and tracking analysis revealed a unique cyclonic frontal eddy near the SJC coast and a large anticyclonic eddy offshore, active from July to September 2019. The cyclonic frontal eddy induced water transport through eddy filaments, upwelled subsurface cold water, and enhanced Chl-a concentrations by horizontally entraining Chl-a-rich shelf water offshore. The anticyclonic eddy then contributed to further distributing this enriched water southward. The mean cross-shelf transport associated with the frontal eddy was estimated at 1.80–2.33 Sv offshore, exporting approximately 1.87–2.40 × 103 tons of Chl-a to the Indian Ocean during its lifetime. Additionally, the spatial cross-correlation analysis of zonal and meridional wind stress with Chl-a revealed relatively high correlation values (0.6–1) and short lag times (〈5 days) in offshore areas, indicating that the role of wind in the Chl-a advection cannot be ignored. We propose a three-stage mechanism to explain the presence of high Chl-a offshore:1) Wind-driven upwelling intensifies coastal nutrients, elevating Chl-a concentrations in coastal waters, 2) Frontal cyclonic eddy facilitates the retention and offshore export of these upwelling-enriched waters. and 3) Anticyclonic eddy advects these nutrient-rich waters further south. The combination of enhanced coastal upwelling and eddies can explain nutrient-rich coastal waters in offshore regions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2024-06-12
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2024-06-13
    Description: The exchange of trace gases across the ocean/atmosphere interface, as well as the deposition of atmospheric pollutants and aerosols, are key processes linking the biogeochemical cycles and biological processes in the ocean with atmospheric chemistry and climate. Here we summarize our knowledge about the distributions of long-lived trace gases (CO2, CH4, N2O), short-lived trace gases, and pollutants (dimethyl sulfide (DMS), isoprene, halocarbons, NOx, SO2, O3, and others), and aerosols in the Indian Ocean. In general, dissolved trace gases show a pronounced temporal and spatial variability, which is caused by the variability of both physical processes (e.g., coastal upwelling) and biological productivity. The distributions of pollutants and aerosols and their depositions to the sea surface are mainly driven by the monsoon system and the variability of their land sources. Nitrogen and iron-containing aerosols can significantly affect biological production in the surface layer of the open Indian Ocean.
    Type: Book chapter , PeerReviewed
    Format: text
    Format: slideshow
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2024-06-13
    Description: The Indian Ocean is an important conduit for the exchange of physical and biogeochemical properties through many distinct interbasin oceanic connections. The Indonesian archipelago provides a gappy pathway for warm tropical waters to enter the Indian Ocean from the Pacific. South of Australia, a complex circulation transports cooler subtropical waters from the Pacific while Indian Ocean waters from within the Leeuwin Current feed a series of currents along the southern Australian continental margin. Southern Ocean waters source both the deep and shallow overturning circulations into the Indian Ocean. The westward leakage of eddies spawned from the Agulhas Current off South Africa returns warm and salty Indian Ocean waters into the Atlantic and plays a significant role in the upper branch of the global meridional overturning circulation. This chapter discusses these pathways and highlights how they change with time and influence the circulation and properties of the Indian and global oceans.
    Type: Book chapter , PeerReviewed
    Format: text
    Format: slideshow
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2024-06-14
    Description: Highlights • δ13C and δ18O profiles increase from exterior to interior until reaching a plateau. • Primary Layer δ13C reflects the δ13C of the Dissolved Inorganic Carbon. • In high pCO2 experiments, δ13C and δ18O closer to equilibrium fields. • Brachiopods grow according to an incremental growth model. Abstract Brachiopod shells are ubiquitous since the Early Cambrian up to now. As they secrete a shell made of low-magnesium calcite, more resistant to diagenesis than biocarbonates richer in Mg, their geochemical signatures are generally considered a powerful tool for paleo-environmental and paleo-climatic reconstructions. However, gaps in knowledge still remain on the underlying controls of the shell chemistry, in particular at a high spatial resolution. In this study, in situ oxygen and carbon isotope measurements by SIMS (Secondary Ion Mass Spectrometry) were performed in brachiopod shells of the cold-temperate water species Magellania venosa, constituted of a primary and a secondary layer. The individual specimens studied here grew under controlled conditions mimicking the natural environment and in experiments under low-pH (high pCO2) and high-temperature conditions. Transversal carbon and oxygen profiles showed a “brachiopod pattern” typical of extant two-layered brachiopods, with the primary layer depleted in 18O and 13C relative to equilibrium and the secondary layer showing a gradual increasing trend until reaching a near-equilibrium plateau. Overall, shells cultured at low pH were found to have δ18O and δ13C values closer to equilibrium when compared to shells from the control experiment. These near-equilibrium values may reflect a decrease in shell precipitation rate, leading to less kinetic effects, and/or a more rapid kinetics for the equilibration between DIC species and water. By close pairing of seawater δ18O and δ13C to that of shell microstructure, our study enables us to derive layer-specific C and O enrichment factors, which show the extent of pH and temperature effects superimposed on the seawater δ18O and DIC δ13C signal inherited. Finally, we show that during brachiopod shell growth, newly precipitated calcite is added to the calcite already existing, thus empirically validating the conceptual accretionary growth model proposed by Ackerly (1989).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...