ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019
    Description: Summary Ultraviolet‐B radiation is known to harm most photosynthetic organisms with the exception of several studies of photosynthetic eukaryotes in which UV‐B showed positive effects. In this study, we investigated the effect of acclimation to low UV‐B radiation on growth and photosynthesis of the cyanobacterium Nostoc sphaeroides. Exposure to 0.08 W m−2 UV‐B plus low visible light for 14 d significantly increased the growth rate and biomass production by 16% and 30%, respectively, compared with those under visible light alone. The UV‐B acclimated cells showed an approximately 50% increase in photosynthetic efficiency (α) and photosynthetic capacity (Pmax), a higher PSI/PSII fluorescence ratio, an increase in PSI content and consequently enhanced cyclic electron flow, relative to those of non‐acclimated cells. Both the primary quinone‐type acceptor and plastoquinone pool re‐oxidation were up‐regulated in the UV‐B acclimated cells. In parallel, the UV‐B acclimated colonies maintained a higher rate of D1 protein synthesis following exposure to elevated intensity of UV‐B or visible light, thus functionally mitigating photoinhibition. The present data provide novel insight into photosynthetic acclimation to low UV‐B radiation and suggest that UV‐B may act as a positive ecological factor for the productivity of some photosynthetic prokaryotes, especially during twilight periods or in shaded environments. This article is protected by copyright. All rights reserved.
    Print ISSN: 1462-2912
    Electronic ISSN: 1462-2920
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-18
    Description: Total alkalinity (TA) is an important variable of the ocean carbonate system. In coastal oceans, carbonate system dynamics are controlled by a range of processes including photosynthesis and respiration, calcification, mixing of water masses, continental inputs, temperature changes, and seasonal upwelling. Assessments of diel, seasonal and interannual variations in TA are required to understand the carbon cycle in coastal oceans. However, our understanding of these variations remains underdeveloped due to limitations in observational techniques. Autonomous TA measurements are therefore required. In this study, an in situ TA analyzer (ISA-TA) based on a single-point titration with spectrophotometric pH detection was deployed in Tong'an Bay, Xiamen, China, over a five-month period in 2021 to determine diel and seasonal TA variations. The TA observations were combined with an artificial neural network (ANN) model to construct TA prediction models for this area. This provided a simple method to investigate TA variations in this region and was applied to predict surface water TA between March and April 2021. The in situ TA observations showed that TA values in Tong'an Bay varied within a range from 1931 to 2294 μmol kg−1 over the study period, with low TA in late winter, early summer and late summer, and high TA in early winter. The TA variations in late summer and early winter were mainly controlled by mixing of water bodies. The diel variations of TA were greatly determined by tides, with a diel amplitude of 9 to 247 μmol kg−1. The ANN model used temperature, salinity, chlorophyll, and dissolved oxygen to estimate TA, with a root-mean-square error (RMSE) of ∼14 μmol kg−1, with salinity as the input variable with the greatest weight. The approach of combining ISA-TA observations with an ANN model can be extended to study the carbonate system in other coastal regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Total alkalinity (TA) is an essential variable for the study of physical and biogeochemical processes in coastal and oceanic systems, and TA data obtained at high spatiotemporal resolutions are highly desired. The performance of the current in situ TA analyzers/sensors, including precision, accuracy, and deployment duration, cannot fully meet most research requirements. Here, we report on a novel high-precision in situ analyzer for surface seawater TA (ISA-TA), based on an automated single-point titration with spectrophotometric pH detection, and capable of long-term field observations. The titration was carried out in a circulating loop, where the titrant (a mixture of HCl and bromocresol green) and seawater sample were mixed in a constant volume ratio. The effect of ambient temperature on the TA measurement was corrected with an empirical formula. The weight, height, diameter, and power consumption of ISA-TA were 8.6 kg (in air), 33 cm, 20 cm, and 7.3 W, respectively. A single measurement required ∼7 min of running time, ∼32 mL of seawater, and ∼0.6 mL of titrant. ISA-TA was able to operate continuously in the field for up to 30 days, and its accuracies in the laboratory and field were 0.5 ± 1.7 μmol kg–1 (n = 13) and 10.3 ± 2.8 μmol kg–1 (n = 29) with precisions of 0.6–0.8 μmol kg–1 (n = 51) and 0.2–0.7 μmol kg–1 (n = 8), respectively. This study provides the research community with a new tool to obtain seawater TA data of high temporal resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...