ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2021-06-14
    Description: I was lucky enough to meet Mariano Valenza in September 1995. I was hitchhiking on the highway that leads from Cefalù to Palermo to go back home. I had spent my summer holidays in the beautiful and wild Madonie mountains. An off-road vehicle (a Land Rover Defender) stopped and a refined gentleman with a curious and charismatic gaze offered me a ride. During our journey, we chatted pleasantly and he told he was originally from that area. When I told him, I was a Geology student, he smiled at me and said “Then we will meet again soon, I am going to be your Teacher of Geochemistry!”. After a few weeks the lessons began and I met again Professor Valenza in Via Archirafi 36, at the University of Palermo. I will never forget the first introductive lesson of his course: “… we are going to study how the chemical elements have formed in the stars, and how these elements have spread out on our planet; we are going to study the chemicalphysical laws regulating their geochemical cycles and how they move in between the atmosphere, the hydrosphere and the lithosphere. We will also learn how the isotopes of these elements allow us to date the geological phenomena and the age of our own planet Earth; …let’s imagine that we are ourselves made of billions and billions and billions of atoms, and it is statically possible that one of Napoleon atom could be here, in this class room!”. I was truly fascinated and I discovered my passion for this interesting subject. In via Archirafi 36, in the historical building of the University of Palermo, once home of the Istituto di Mineralogia, I have graduated and got a Ph.D. in Geochemistry, and still nowadays I am working there. In these last 25 years I have learnt to know the stories of different personalities and their scientific researches, which have been hidden and looked after in the ancient building of the University for almost one century. With this article, we would like to remember Professor Mariano Valenza, by telling some stories about him and some others told by himself. Amongst these extraordinary stories we have focused on the one of a little-known scientist, Ludovico Sicardi (1895 - 1987), a modest man who followed his passion for volcanoes. In his field, he was a true innovator and the present research in the field of the geochemical surveillance of volcanos is deeply in debt to him. The “Scuola di Geochimica dei Fluidi”, born in the ‘70s at the University of Palermo, has the most debt of gratitude to him, but also the one which has treasured best his memory. This special paper is dedicated to Professor Valenza, who was one of the founders of this school and, before that, the teacher of most of this piece’s authors. He had preserved, beside the historical memory, also many documents, photos, and the scientific equipment used by Sicardi for his studies. Sergio Calabrese, Palermo, March 2020
    Description: Published
    Description: 413-435
    Description: 4V. Processi pre-eruttivi
    Description: 6TM. Poli Museali
    Description: JCR Journal
    Keywords: history of volcano geochemistry ; volcanic gases ; fumaroles ; volcanologists ; Vulcano Island
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-14
    Description: The eruption of Mt. Etna which occurred on December 24th 2018 was characterized by strombolian activity and fire fountains, emitted by the New South-East Crater and along a fissure that propagated towards the SE. The influence of volcanic emissions on atmospheric deposition was clearly detectable at several kilometres from the source. Wet and dry (bulk) deposition samples were collected each month, through a network of eleven collectors, in the areas of Milazzo, and Priolo between June 2018 and June 2019. They were analysed for major ions and trace elements concentrations. The pH values range from 3.9 to 8.3, while the EC values range from 7 to 396 μS cm-1. An extensive neutralization of the acidity has been recognised mainly due to the suspended alkaline dust particles, which have a buffering role in rainwater. A high load of Na+ and Cl- was observed at all sites, related to the closeness of the study areas to the coast, showing a high positive correlation (R2 = 0.989) along the line of Na+/Cl- ratio in seawater. During the eruption, the volcanic plume was carried by the winds for long distance (more than 300 km) affecting the area of Priolo but not that of Milazzo, which was upwind with respect to Mt. Etna. The impact of volcanic HF was clearly recognised in the samples collected after the eruption. Volcanic SO2 and HCl had a lower impact due to the overwhelming input of anthropogenic sulfate and marine chloride. On the contrary, the signature of the Mt. Etna eruption can be well recognised in the high concentrations of certain trace elements in the samples collected immediately after the eruption. The strongest contrast between affected and non-affected samples was recognised in Al, Cd, and especially in the volatile elements Tl and Te, which are typically enriched in volcanic emissions. The results showed that volcanic eruptions might have a relevant effect on the atmospheric chemistry and on the composition of rainwater up to distances of 80 km from the emission vents.
    Description: Published
    Description: 341-358
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: rainwater ; fluoride ; trace elements ; volcanic emissions ; 01. Atmosphere ; 03. Hydrosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-22
    Description: Geothermal areas of Greece are located in regions affected by recent volcanism and in continental basins characterised by elevated heat flow. Many of them are found along the coast and thus, water is often saline due to marine intrusion. In the current study, we present about 300 unpublished and literature data from thermal and cold mineral waters collected along Greece. Samples were analysed for major ions, Li, SiO2 and isotopes in water. Measured temperatures range from 6.5 to 98°C, pH from 1.96 to 11.98, whilst Total Dissolved Solutes (TDS) from 0.22 to 51 g/L. Waters were subdivided into four main groups: i) thermal; ii) cold; iii) acidic (pH 〈5) and iv) hyperalkaline (pH 〉11). On statistical basis, the thermal waters were subdivided into subgroups according to both their temperature [warm (〈29 °C), hypothermal (29-48 °C), thermal (48-75 °C) and hyperthermal (〉75 °C)] and TDS [low salinity (〈4 g/L), brackish (4-30 g/L) and saline (〉30 g/L)]. Cold waters were subdivided basing on their pCO2 [low (〈0.05 atm), medium (0.05-0.85 atm) and high (〉0.85 atm)]. δ18O-H2O ranges from -12.7 to +2.7 ‰ vs. SMOW, while δ2H-H2O from -91 to +12 ‰ vs. SMOW being generally comprised between the Global Meteoric Water Line and the East Mediterranean Meteoric Water Line. Positive δ18O shifts with respect to the former are mostly related to mixing with seawater, while only for a few samples they point to high-temperature water-rock interaction processes. Only a few thermal waters gave reliable geothermometric estimates, suggesting reservoir temperatures between 80 and 260 °C.
    Description: Published
    Description: 2111–2133
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Hydrogeochemistry ; Stable isotopes ; Carbon dioxide ; Geothermometry ; 03. Hydrosphere ; 03.04. Chemical and biological
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-08-29
    Description: The chemical composition of rainwater was studied in two highly-industrialised areas in Sicily (southern Italy), between June 2018 and July 2019. The study areas were characterised by large oil refining plants and other industrial hubs whose processes contribute to the release of large amounts of gaseous species that can affect the chemical composition of atmospheric deposition As in most of the Mediterranean area, rainwater acidity (ranging in the study area between 3.9 and 8.3) was buffered by the dissolution of abundant geogenic carbonate aerosol. In particular, calcium and magnesium cations showed the highest pH-neutralizing factor, with ~92% of the acidity brought by SO42- and NO3- neutralized by alkaline dust. The lowest pH values were observed in samples collected after abundant rain periods, characterised by a less significant dry deposition of alkaline materials. Electrical Conductivity (ranging between 7 µS cm-1 and 396 µS cm-1) was inversely correlated with the amount of rainfall measured in the two areas. Concentrations of major ionic species followed the sequence Cl- 〉 Na+ 〉 SO42- ≃ HCO3- 〉 ≃ Ca2+ 〉 NO3- 〉 Mg2+ 〉 K+ 〉 F-. High loads of Na+ and Cl- (with a calculated R2 = 0.99) reflected proximity to the sea. Calcium, potassium, and non-sea-salt magnesium had a prevalent crustal origin. Non-sea salt sulphate, nitrate, and fluoride can be attributed mainly to anthropogenic sources. Mt. Etna, during eruptive periods, may be also considered, on a regional scale, a significant source for fluoride, non-sea salt sulphate, and even chloride.
    Description: Published
    Description: 3898
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: acidity neutralization ; anthropogenic source ; atmospheric deposition ; major ions ; marine source ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-08-29
    Description: The concentrations of trace elements in atmospheric bulk depositions (wet plus dry) were investigated from two highly industrialised areas of Sicily (southern Italy) from June 2018 to July 2019, in order to recognise the main natural and anthropogenic sources. A side objective of this study was to improve the common sampling procedures and analytical methods used for monitoring trace elements in atmospheric deposition. The trace element VWM (Volume-Weighted Mean) concentrations ranged from less than 0.01 µg L-1 for trace elements such as Cs, Tl, and U, up to 24 µg L-1 for minor elements (Al, Zn, Sr), in the filtered aliquot, while they reached concentrations up to 144 µg L-1 for the same elements, in the unfiltered aliquot. Therefore, significant differences in concentrations between these two aliquots were found, particularly for Al, Fe, Ti, Zn, Cr, Pb, Se, Cs, and U. This implies that filtering operations may produce a consistent underestimation of concentrations of certain ‘constituents’ of the atmospheric deposition. Natural (marine spray, local and regional geogenic input, volcanic emanations) and anthropogenic sources (industrial emissions, auto vehicular traffic, and diffuse background pollution) which influence rainwater chemistry were identified. Enrichment factors (EFs), with respect to the upper crust composition, provided clear evidence of the different sources above mentioned: Ti, Fe, Al, Cs, Cr, Rb, and Co have low EFs (〈1), and are referable to the (local and/or regional) geogenic input, while Se, Sb, Zn, B, Cd, Cu, Mo, Sr, As, with high EFs (〉10), highlight the influence of marine and/or industrial sources. The study produced a novel dataset on the atmospheric deposition rate of several trace elements, which had never been studied in the investigated areas. Finally, a comparison of trace element deposition rates in the studied areas with the atmospheric deposition reported for 53 different sites, belonging to 20 different European nations, was made. The comparison showed that some elements, such as Al, V, Zn, and Mo had higher median deposition fluxes in the Sicilian sites than in European monitoring sites.
    Description: Published
    Description: 737
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: atmospheric deposition ; rainwater ; industrial pollution ; trace elements ; anthropogenic contribution ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-29
    Description: Natural thermal and mineral waters are widely distributed along the Hellenic region and are related to the geodynamic regime of the country. The diverse lithological and tectonic settings they are found in reflect the great variability in their chemical and isotopic composition. The current study presents 276 (published and unpublished) trace element water data and discusses the sources and processes affecting the water by taking into consideration the framework of their geographic distribution. The dataset is divided in groups using temperature- and pH-related criteria. Results yield a wide range of concentrations, often related to the solubility properties of the individual elements and the factors impacting them (i.e. temperature, acidity, redox conditions and salinity). Many elements (e.g. alkalis, Ti, Sr, As and Tl) present a good correlation with temperature, which is in cases impacted by water rock interactions, while others (e.g. Be, Al, Cu, Se, Cd) exhibit either no relation or an inverse correlation with T possibly because they become oversaturated at higher temperatures in solid phases. A moderately constant inverse correlation is noticed for the vast majority of trace elements and pH, whereas no relationship between trace element concentrations and Eh was found. Seawater contamination and water-rock interaction seem to be the main natural processes that influence both salinity and elemental content. All in all, Greek thermomineral waters exceed occasionally the accepted limits representing in such cases serious harm to the environment and probably indirectly (through the water cycle) to human health.
    Description: Published
    Description: 78376–78393
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Greece ; Hydrogeochemistry ; Mineral waters ; Natural contaminants ; Trace elements ; Water-rock interaction ; Thermal waters ; 03.04. Chemical and biological
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-29
    Description: Karst hydrosystems represent one of the largest global drinking water resources, but they are extremely vulnerable to pollution. Climate change, high population density, intensive industrial, and agricultural activities are the principal causes of deterioration, both in terms of quality and quantity, of these resources. Samples from 172 natural karst springs were collected in the whole territory of Greece. To identify any geogenic contamination and/or anthropogenic pollution, analyses of their chemical compositions, in terms of major ions and trace elements, were performed and compared to the EU limits for drinking water. Based on chloride content, the collected karst springs were divided into two groups: low-chloride (〈 100 mg L-1) and high-chloride content (〉 100 mg L-1). An additional group of springs with calcium-sulfate composition was recognised. Nitrate concentrations were always below the EU limit (50 mg L-1), although some springs presented elevated concentrations. High contents in terms of trace elements, such as B, Sr, As, and Pb, sometimes exceeding the limits, were rarely found. The Greek karst waters can still be considered a good quality resource both for human consumption and for agriculture. The main issues derive from seawater intrusion in the aquifers along the coasts. Moreover, the main anthropogenic pollutant is nitrate, found in higher concentrations mostly in the same coastal areas where human activities are concentrated. Finally, high levels of potentially harmful trace elements (e.g. As, Se) are very limited and of natural origin (geothermal activity, ore deposits, etc.).
    Description: Published
    Description: 11191
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Greece ; Hydrogeochemistry ; trace elements ; water quality ; karst springs ; 03.04. Chemical and biological
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...