ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (108,661)
  • American Chemical Society (ACS)  (66,957)
  • American Geophysical Union  (60,910)
  • American Association for the Advancement of Science (AAAS)
  • 2015-2019  (172,029)
  • 2000-2004  (96,473)
Collection
Publisher
Language
Years
Year
  • 101
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):863-881, doi:10.1029/2018JC014604.
    Description: Pacific Winter Water (PWW) enters the western Arctic Ocean from the Chukchi Sea; however, the physical mechanisms that regulate its circulation within the deep basin are still not clear. Here, we investigate the interannual variability of PWW with a comprehensive data set over a decade. We quantify the thickening and expansion of the PWW layer during 2002–2016, as well as its changing pathway. The total volume of PWW in the Beaufort Gyre (BG) region is estimated to have increased from 3.48 ± 0.04 × 1014 m3 during 2002–2006 to 4.11 ± 0.02 × 1014 m3 during 2011–2016, an increase of 18%. We find that the deepening rate of the lower bound of PWW is almost double that of its upper bound in the northern Canada Basin, a result of lateral flux convergence of PWW (via lateral advection of PWW from the Chukchi Borderland) in addition to the Ekman pumping. In particular, of the 70‐m deepening of PWW at its lower bound observed over 2003–2011 in the northwestern basin, 43% resulted from lateral flux convergence. We also find a redistribution of PWW in recent years toward the Chukchi Borderland associated with the wind‐driven spin‐up and westward shift of the BG. Finally, we hypothesize that a recently observed increase of lower halocline eddies in the BG might be explained by this redistribution, through a compression mechanism over the Chukchi Borderland.
    Description: Three anonymous reviewers provided helpful comments and suggestions, which greatly improved this manuscript. We thank John Marshall (MIT) and Georgy Manucharyan (Caltech) for valuable discussions and inputs. We thank Peigen Lin (WHOI), Qinyu Liu, and Jinping Zhao (OUC) for helpful discussions. The Matlab wind rose toolbox is written by Daniel Pereira. This study is supported by the National Key Basic Research Program of China (Program 973) (2015CB953900; 2018YFA0605901), the Key Project of Chinese Natural Science Foundation (41330960), and the National Natural Science Foundation of China (41706211 and 41776192), the Office of Naval Research (grant N00014‐12‐1‐0112), the NSF Office of Polar Programs (PLR‐1416920, PLR‐1503298, PLR‐1602985, PLR‐1603259, ARC‐1203425, and NSF‐1602926). Wenli Zhong (201606335011) is supported by the China Scholarship Council for his studies in APL. We appreciate Andrey Proshutinsky and Rick Krishfield (WHOI) for providing the Beaufort Gyre Exploration Project data publicly at http://www.whoi.edu/website/beaufortgyre/. The Ice‐Tethered Profiler data were collected and made available by the Ice‐Tethered Profiler Program (Krishfield et al., 2008; Toole et al., 2011) based at the Woods Hole Oceanographic Institution (http://www.whoi.edu/itp). The Monthly Isopycnal/Mixed‐layer Ocean Climatology (MIMOC) data are available at https://www.pmel.noaa.gov/mimoc/. The monthly Arctic Dynamic Ocean Topography data are distributed by CPOM (http://www.cpom.ucl.ac.uk/dynamic_topography/). The IBCAO Bathymetry data are available from NASA (http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html). The Data‐Interpolating Variational Analysis method is publicly available at http://modb.oce.ulg.ac.be/mediawiki/index.php/DIVA.
    Description: 2019-07-16
    Keywords: Beaufort Gyre ; Pacific Winter Water ; PWW pathway ; lower halocline eddies ; western Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):821-843, doi:10.1029/2018JC014568.
    Description: Shifting baselines in the Arctic atmosphere‐sea ice‐ocean system have significant potential to alter biogeochemical cycling and ecosystem dynamics. In particular, the impact of increased open water duration on lower trophic level productivity and biological CO2 sequestration is poorly understood. Using high‐resolution observations of surface seawater dissolved O2/Ar and pCO2 collected in the Pacific Arctic in October 2011 and 2012, we evaluate spatial variability in biological metabolic status (autotrophy vs heterotrophy) as constrained by O2/Ar saturation (∆O2/Ar) as well as the relationship between net biological production and the sea‐air gradient of pCO2 (∆pCO2). We find a robust relationship between ∆pCO2 and ∆O2/Ar (correlation coefficient of −0.74 and −0.61 for 2011 and 2012, respectively), which suggests that biological production in the late open water season is an important determinant of the air‐sea CO2 gradient at a timeframe of maximal ocean uptake for CO2 in this region. Patchiness in biological production as indicated by ∆O2/Ar suggests spatially variable nutrient supply mechanisms supporting late season growth amidst a generally strongly stratified and nutrient‐limited condition.
    Description: We thank the Captain, crew, and marine technicians of the USCGC Healy for their shipboard support. We also thank anonymous reviewers for providing useful feedback that improved this manuscript. This work was supported by NSF awards 1232856 and 1504394 to L.W.J. T.T. was supported by a grant NA150AR4320064 from Climate Program Office/NOAA and R.P. by NSF PLR‐1504333 and OPP‐1702371. All O2 and O2/Ar data and metadata are available at Arcticdata.io, doi:10.18739/A21G22, and pCO2 data are available at www.ldeo.columbia.edu/CO2 as well as from the NOAA National Centers for Environmental Information Ocean Carbon Data System at https://www.nodc.noaa.gov/ocads/.
    Description: 2019-07-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 33(2), (2019): 181-199. doi:10.1029/2018GB005983.
    Description: One pathway of the biological pump that remains largely unquantified in many export models is the active transport of carbon from the surface ocean to the mesopelagic by zooplankton diel vertical migration (DVM). Here, we develop a simple representation of zooplankton DVM and implement it in a global export model as a thought experiment to illustrate the effects of DVM on carbon export and mesopelagic biogeochemistry. The model is driven by diagnostic satellite measurements of net primary production, algal biomass, and phytoplankton size structure. Due to constraints on available satellite data, the results are restricted to the latitude range from 60°N to 60°S. The modeled global export flux from the base of the euphotic zone was 6.5 PgC/year, which represents a 14% increase over the export flux in model runs without DVM. The mean (± standard deviation, SD) proportional contribution of the DVM‐mediated export flux to total carbon export, averaged over the global domain and the climatological seasonal cycle, was 0.16 ± 0.04 and the proportional contribution of DVM activity to total respiration within the twilight zone was 0.16 ± 0.06. Adding DVM activity to the model also resulted in a deep local maximum in the oxygen utilization profile. The model results were most sensitive to the assumptions for the fraction of individuals participating in DVM, the fraction of fecal pellets produced in the euphotic zone, and the fraction of grazed carbon that is metabolized.
    Description: Support for this work came from the National Science Foundation (OCE‐1434000 and OCE‐1657803) and the National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) field campaign (grant 80NSSC17K0692) and the North Atlantic Aerosol and Marine Ecosystems Study (NAAMES, grants NNX15AE72G and 80NSSC18K0018). The satellite data used as drivers for the model are available as supporting information. The World Ocean Atlas data (World Ocean Atlas 2009, Annual Climatology, 1 degree, Temperature, Salinity, Oxygen) containing temperature and oxygen measurements can be downloaded from the ERDAPP data server (https://coastwatch.pfeg.noaa.gov/erddap/index.html).
    Description: 2019-07-19
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(4), (2019): 3320-3334, doi:10.1029/2018JB017236.
    Description: We present a method to calculate landslide hazard curves along offshore margins based on size distributions of submarine landslides. The method utilizes 10 different continental margins that were mapped by high‐resolution multibeam sonar with landslide scar areas measured by a consistent Geographic Information System procedure. Statistical tests of several different probability distribution models indicate that the lognormal model is most appropriate for these siliciclastic environments, consistent with an earlier study of the U.S. Atlantic margin (Chaytor et al., 2009, https://doi.org/10.1016/j.margeo.2008.08.007). Parameter estimation is performed using the maximum likelihood technique, and confidence intervals are determined using likelihood profiles. Pairwise comparison of size distributions for the 10 margins indicates that the U.S. Atlantic and Queen Charlotte margins are different than most other margins. These margins represent end‐members, with the U.S. Atlantic margin having the highest mean scar area and the Queen Charlotte margin the lowest. We demonstrate that empirical, offshore landslide hazard curves can be developed from the landslide size distributions, if the duration of mapped landslide activity is known. This study indicates that the shape parameter of the size distribution is similar among all 10 margins, and thus, the shape of the hazard curves is also similar. Significant differences in hazard curves among the margins are therefore related to differences in mean sizes and, potentially, differences in the duration of landslide activity.
    Description: The authors gratefully acknowledge the constructive comments of this manuscript by Joshu Mountjoy, Tom Parsons, and anonymous reviewer. We also thank Yehuda Ben Zion for managing this manuscript and the scientists who provided the bathymetry data. Margin and landslide polygon shape files and information on bathymetry data sources are available at GSA Repository item number 2016187.
    Description: 2019-10-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(9), (2019):4664-4673, doi:10.1029/2019GL082201.
    Description: Accretion of the lower crust at mid‐ocean ridges is a debated topic, with modern seismic observations pointing to a complex magmatic system that includes an axial multisill system of middle‐ and lower‐crustal melt lenses and near‐ and off‐axis melt bodies. Here we revisit the hot spot‐influenced section of the western Galápagos Spreading Centre and reprocess multichannel seismic reflection data using a wide‐angle seismic tomography model. Our new images show that the magma reservoir in the lower crust at this ridge section is intruded with partially molten melt lenses. The images also show evidence for off‐axis melt lenses, magmatic‐hydrothermal interactions and Moho reflections in this region. We conclude that the similarities between the axial crustal structure of this hot spot‐influenced mid‐ocean ridge and the multisill magmatic structure imaged at the East Pacific Rise indicate that these features are common along the global mid‐ocean ridge system where seafloor spreading is dominated by magmatic accretion.
    Description: Seismic data used in this study are available at https://doi.org/10.1594/IEDA/314480 (Detrick & Sinton, 2014). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program. B. B. is funded by the Graduate School of the National Oceanography Centre Southampton UK. We thank two anonymous reviewers for their constructive and insightful comments that helped us in improving the manuscript and A. S. Soule for fruitful discussions.
    Description: 2019-10-29
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(10), (2019): 5369-5377, doi: 10.1029/2019GL082078.
    Description: Seasonal evolution of the barrier layer (BL) and temperature inversion in the northern Bay of Bengal and their role on the mixed layer temperature (MLT) is examined using observations from a single Argo during December 2013 to July 2017. During fall, low salinity at surface generates BL in this region. It thickens to almost 80 m in winter enhanced by deepening of isothermal layer depth due to remote forcing. During winter, surface cooling lowers near‐surface temperature, and thus, the subsurface BL experiences a significant temperature inversion (~2.5 °C). This temperature inversion diffuses to distribute heat within ML and surface heating begins deep penetration of shortwave radiation through ML during spring. Hence, the ML becomes thermally well stratified, resulting in the warmest MLT. The Monin‐Obukhov length attains its highest value during summer indicating wind dominance in the ML. During spring and fall, upper ocean gains heat allowing buoyancy to dominate over wind mixing.
    Description: A. S. and S. S. thank financial support from Space Application Centre (SAC), Indian Space Research Organization (ISRO), Government of India (Grant: SAC/EPSA/4.19/2016). This study was also supported by the first phase of Ministry of Earth Sciences (MoES), Government of India grant to establish a Bay of Bengal Coastal Observatory (BOBCO) at IITBBS (Grant: RP088). Authors acknowledged NCPOR Contribution number J ‐ 03/2019‐20 for this work. The authors are grateful to the reviewers and the Editor for constructive suggestions. The figures are generated using Matlab. The data source and availability are given in the Text S1.
    Description: 2019-10-24
    Keywords: Argo ; Bay of Bengal ; mixed layer ; temperature inversion ; barrier layer ; Monin‐Obukhov length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4696-4709, doi: 10.1029/2019JC015022.
    Description: The Beaufort Gyre is a key feature of the Arctic Ocean, acting as a reservoir for freshwater in the region. Depending on whether the prevailing atmospheric circulation in the Arctic is anticyclonic or cyclonic, either a net accumulation or release of freshwater occurs. The sources of freshwater to the Arctic Ocean are well established and include contributions from the North American and Eurasian Rivers, the Bering Strait Pacific water inflow, sea ice meltwater, and precipitation, but their contribution to the Beaufort Gyre freshwater accumulation varies with changes in the atmospheric circulation. Here we use a Lagrangian backward tracking technique in conjunction with the 1/12‐degree resolution Nucleus for European Modelling of the Ocean model to investigate how sources of freshwater to the Beaufort Gyre have changed in recent decades, focusing on increase in the Pacific water content in the gyre between the late 1980s and early 2000s. Using empirical orthogonal functions we analyze the change in the Arctic oceanic circulation that occurred between the 1980s and 2000s. We highlight a “waiting room” advective pathway that was present in the 1980s and provide evidence that this pathway was caused by a shift in the center of Ekman transport convergence in the Arctic. We discuss the role of these changes as a contributing factor to changes in the stratification, and hence potentially the biology, of the Beaufort Gyre region.
    Description: The underpinning high‐resolution NEMO simulation was performed using the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). ARIANE simulations were performed using the JASMIN data analysis environment (http://www.jasmin.ac.uk). Lagrangian analysis was carried out using computational tool ARIANE developed by B. Blanke and N. Grima. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al., 2016). The funding for A. Proshutinsky was provided by the NSF under grants supporting the Beaufort Gyre Observing System since 2003 (1845877, 1719280, 1604085) and by the Woods Hole Oceanographic Institution. Y. Aksenov was supported from the NERC Program “The North Atlantic Climate System Integrated Study (ACSIS), NE/N018044/1 and from the project “Advective pathways of nutrients and key ecological substances in the Arctic (APEAR)” NE/R012865/1, as a part of the joint UK/Germany “Changing Arctic Ocean” Programme. A. Yool and E. Popova were supported by NERC grants CLASS NE/R015953/1, and National Capability in Ocean Modelling. We acknowledge the FAMOS (http://web.whoi.edu/famos/) program for providing a framework for many fruitful discussions which thoroughly enhanced this work. Finally, we thank the two anonymous reviewers who greatly improved this work with their insightful input.
    Description: 2019-12-26
    Keywords: Beaufort Gyre ; Lagrangian modeling ; NEMO ; particle tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4433-4448, doi: 10.1029/2018JC014508.
    Description: Yu et al. (2017, https://doi.org/10.1002/2017GL075772) reported that the annual mean sea surface salinity maximum (SSS‐max) in the North Atlantic expanded northward by 0.35 ± 0.11° per decade over the 34‐year data record (1979–2012). The expansion shifted and expanded the ventilation zone northward and increased the production of the Subtropical Underwater (STUW). As a result, the STUW became deeper, thicker, and saltier. In this study, the seasonal characteristics of the poleward expansion of the North Atlantic SSS‐max and their effects on the STUW are examined. The results show that the SSS‐max expansion occurred primarily during boreal spring (April, May, and June) and expanded northward by 0.43 ± 0.21° per decade over the 34‐year period. The annual volume of the STUW increased by 0.21 ± 0.09 1014 m3 per decade over the same period, and the spring (April, May, and June) volume increased by 0.31 ± 0.02 1014 m3 per decade (a relative increase of 48 ± 1%). The characteristics of the decadal changes in STUW were attributable to the increased subduction rate associated with the northward expansion of the SSS‐max. The annual subduction rate increased by 0.29 ± 0.07 Sv per decade over the 34 years, and the greatest increase of 1.73 ± 0.61 Sv per decade occurred in April. The change in subduction associated with the expansion of the SSS‐max appeared to be consistent with the Atlantic Multidecadal Oscillation.
    Description: Most of the work was conducted at the Woods Hole Oceanographic Institution, while H. Liu was a guest student sponsored by the China Scholarship Council (201506330001). H. Liu thanks Drs. Ruixin Huang and Xiangze Jin for discussions on the computation of the STUW formation and subduction rates. The Ishii subsurface salinity and temperature analysis data sets were downloaded from https://rda.ucar.edu/datasets/ds285.3/. The EN4 data set is available at https://www.metoffice.gov.uk/hadobs/en4/download‐en4‐2‐1.html. The LEGOS SSS is accessible from http://www.legos.obs‐mip.fr/observations/sss/datadelivery/products.The OAFlux vector wind analysis is available at http://oaflux.whoi.edu. The NAO index was downloaded from https://www.ncdc.noaa.gov/teleconnections/nao/. The AMO index is available at https://www.esrl.noaa.gov/psd/data/timeseries/AMO/. X. Lin is supported by China's National Key Research and Development Projects (2016YFA0601803) in addition to the National Natural Science Foundation of China (41521091 and U1606402) and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01).
    Description: 2019-12-11
    Keywords: Subtropical Underwater ; salinity maximum ; decadal variability ; subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Umling, N. E., Oppo, D. W., Chen, P., Yu, J., Liu, Z., Yan, M., Gebbie, G., Lund, D. C., Pietro, K. R., Jin, Z. D., Huang, K., Costa, K. B., & Toledo, F. A. L. Atlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation. Paleoceanography and Paleoclimatology, 34(6), (2019): 990-1005, doi:10.1029/2019PA003558.
    Description: Atlantic Meridional Overturning Circulation (AMOC) disruption during the last deglaciation is hypothesized to have caused large subsurface ocean temperature anomalies, but records from key regions are not available to test this hypothesis, and other possible drivers of warming have not been fully considered. Here, we present the first reliable evidence for subsurface warming in the South Atlantic during Heinrich Stadial 1, confirming the link between large‐scale heat redistribution and AMOC. Warming extends across the Bølling‐Allerød despite predicted cooling at this time, thus spanning intervals of both weak and strong AMOC indicating another forcing mechanism that may have been previously overlooked. Transient model simulations and quasi‐conservative water mass tracers suggest that reduced northward upper ocean heat transport was responsible for the early deglacial (Heinrich Stadial 1) accumulation of heat at our shallower (~1,100 m) site. In contrast, the results suggest that warming at our deeper site (~1,900 m) site was dominated by southward advection of North Atlantic middepth heat anomalies. During the Bølling‐Allerød, the demise of ice sheets resulted in oceanographic changes in the North Atlantic that reduced convective heat loss to the atmosphere, causing subsurface warming that overwhelmed the cooling expected from an AMOC reinvigoration. The data and simulations suggest that rising atmospheric CO2 did not contribute significantly to deglacial subsurface warming at our sites.
    Description: We thank H. Abrams, G. Swarr, and J. Watson for technical assistance. This work was funded by the U.S. National Science Foundation grant OCE15‐558341, the Investment in Science Fund at the Woods Hole Oceanographic Institution, and an Australian Research Council Future Fellowship (FT140100993). The data are included in the supporting information and are available online (https://www.ncdc.noaa.gov/paleo/study/26530).
    Keywords: Brazil margin ; Atlantic Meridional Overturning Circulation ; deglacial ; South Atlantic temperatures ; Mg/Li ; Cd/Ca
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences 124(5), (2019): 1265-1277, doi:10.1029/2018JG004920.
    Description: Tidal wetland fluxes of particulate organic matter and carbon (POM, POC) are important terms in global budgets but remain poorly constrained. Given the link between sediment fluxes and wetland stability, POM and POC fluxes should also be related to stability. We measured POM and POC fluxes in eight microtidal salt marsh channels, with net POM fluxes ranging between −121 ± 33 (export) and 102 ± 28 (import) g OM·m−2·year−1 and net POC fluxes ranging between −52 ± 14 and 43 ± 12 g C·m−2·year−1. A regression employing two measures of stability, the unvegetated‐vegetated marsh ratio (UVVR) and elevation, explained 〉95% of the variation in net fluxes. The regression indicates that marshes with lower elevation and UVVR import POM and POC while higher elevation marshes with high UVVR export POM and POC. We applied these relationships to marsh units within Barnegat Bay, New Jersey, USA, finding a net POM import of 2,355 ± 1,570 Mg OM/year (15 ± 10 g OM·m−2·year−1) and a net POC import of 1,263 ± 632 Mg C/year (8 ± 4 g C·m−2·year−1). The magnitude of this import was similar to an estimate of POM and POC export due to edge erosion (−2,535 Mg OM/year and − 1,291 Mg C/year), suggesting that this system may be neutral from a POM and POC perspective. In terms of a net budget, a disintegrating wetland should release organic material, while a stable wetland should trap material. This study quantifies that concept and demonstrates a linkage between POM/POC flux and geomorphic stability.
    Description: Use of brand names is for identification purposes only and does not constitute endorsement by the U.S. Government. This study was supported by the USGS Coastal and Marine Geology Program, the Department of the Interior Hurricane Sandy Recovery program (GS2‐2D), and the USGS Mendenhall Post‐doctoral Research Program. Viktoria Unger and Paula Zelanko are acknowledged for field and lab assistance. Core collection was funded under NJ SeaGrant/NOAA Grant 6210‐0011. Gil Pontius provided helpful feedback on statistical measures. Kevin Kroeger and two anonymous reviewers provided constructive reviews of the manuscript. All time series and water sample data are available at the U.S. Geological Survey's Oceanographic Time‐Series Data Collection (at https://stellwagen.er.usgs.gov/).
    Description: 2019-10-23
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Centennial Fall Meeting, San Francisco, CA, USA, 2019-12-09-2019-12-13American Geophysical Union
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(8), (2019): 5313-5335, doi:10.1029/2019JC015014.
    Description: The Lagrangian method—where current location and intensity are determined by tracking the movement of flow along its path—is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid‐20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice‐free oceans and begin to construct basin‐scale, and eventually global‐scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Description: The authors extend their thanks to Xiaobiao Xu for valuable comments on the first draft of this manuscript. A. B. (WHOI), H. F., M. S. L., N. F., and K. D. were supported by Overturning in the Subpolar North Atlantic Program grants OCE‐1259618, OCE‐1259013, and OCE‐1259102 from the U.S. National Science Foundation. S. Z. was supported by the Climate Program Office of the National Oceanic and Atmospheric Administration under award NA16OAR4310168. M. L. was supported through the MOVE project, funded by NOAA's Global Ocean Monitoring and Observing Program under award NA15OAR4320071. A. B. (GEOMAR) and S. R. received funding from the Cluster of Excellence 80 “The Future Ocean” within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments (grant CP1412) and by the German Federal Ministry of Education and Research (BMBF) for the SPACES projects AGULHAS (grant 03F0750A) and CASISAC (grant 03F0796A). No new data are reported in this project. The data mentioned in the text may be found in repositories cited in each previously published paper cited in this review manuscript.
    Keywords: Floats ; Drifters ; Lagrangian methods ; AMOC ; Atlantic Ocean ; Numerical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(3), (2019):1702-1708. doi:10.1029/2018GL081087.
    Description: After leaving the U.S. East Coast, the northward flowing Gulf Stream (GS) becomes a zonal jet and carries along its frontal characteristics of strong flow and sea surface temperature gradients into the North Atlantic at midlatitudes. The separation location where it leaves the coast is also an anchor point for the wintertime synoptic storm track across North America to continue to develop and head across the ocean. We examine the meridional variability of the separated GS path on interannual to decadal time scales as an agent for similar changes in the storm track and blocking variability at midtroposphere from 1979 to 2012. We find that periods of northerly (southerly) GS path are associated with increased (suppressed) excursions of the synoptic storm track to the northeast over the Labrador Sea and reduced (enhanced) Greenland blocking. In both instances, GS shifts lead those in the midtroposphere by a few months.
    Description: Our research has been conducted with the support of NSF (AGS‐1355339, OCE‐1419235, and OCE‐1242989), NASA (NNX13AM59G), and NOAA CPO Climate Variability and Predictability Program (NA13OAR4310139) grants to the Woods Hole Oceanographic Institution. We also thank three reviewers for their insightful comments on an earlier draft of this manuscript. Quarterly estimates of our Gulf Stream Index are available as a data file in the supporting information.
    Description: 2019-07-29
    Keywords: Gulf Stream path changes ; Wintertime atmospheric storm track ; Greenland blocking ; Intrerannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(5), (2019):2704-2714, doi:10.1029/2019GL081919.
    Description: Seismic images and glider sections of the Gulf Stream front along the U.S. eastern seaboard capture deep, lens‐shaped submesoscale features. These features have radii of 5–20 km, thicknesses of 150–300 m, and are located at depths greater than 500 m. These are typical signatures of anticyclonic submesoscale coherent vortices. A submesoscale‐resolving realistic simulation, which reproduces submesoscale coherent vortices with the same characteristics, is used to analyze their generation mechanism. Submesoscale coherent vortices are primarily generated where the Gulf Stream meets the Charleston Bump, a deep topographic feature, due to the frictional effects and intense mixing in the wake of the topography. These submesoscale coherent vortices can transport waters from the Charleston Bump's thick bottom mixed layer over long distances and spread them within the subtropical gyre. Their net effect on heat and salt distribution remains to be quantified.
    Description: J. G. gratefully acknowledges support from the French government, managed by the French National Agency for Research (ANR), through programs ISblue (ANR‐17‐EURE‐0015) and LabexMER (ANR‐10‐LABX‐19) and from LEFE/IMAGO through the project AO2017‐994457‐RADII. Simulations were performed using HPC resources from GENCI‐TGCC (grant 2017‐A0010107638). Simulations output is available upon request. Seismic data were processed using the Echos software package by Paradigm, Matlab, and Generic Mapping Tools. The Eastern North America Margin Community Seismic Experiment was funded by the National Science Foundation under grant OCE‐1347498 and UNOLS; cruise data are freely available via the Marine Geoscience Data System Academic Seismic Portal at Lamont‐Doherty Earth Observatory (http://www.marine-geo.org/portals/seismic/). Spray glider observations in the Gulf Stream are available from http://spraydata.ucsd.edu and should be cited using the following DOI (10.21238/S8SPRAY2675; Todd & Owens, 2016). Spray glider operations were funded by the National Science Foundation (OCE‐1633911) and the Office of Naval Research (N000141713040).
    Description: 2019-08-27
    Keywords: Submesoscale coherent vortices ; Glider ; Seismic observations ; Gulf Stream ; Topographic interactions ; Charleston Bump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2022-10-26
    Description: A© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cedarholm, E. R., Rypina, I. I., Macdonald, A. M., & Yoshida, S. Investigating subsurface pathways of Fukushima cesium in the Northwest Pacific. Geophysical Research Letters, 46(12), (2019): 6821-6829, doi:10.1029/2019GL082500.
    Description: Advective pathways for Fukushima Daiichi Nuclear Power Plant (FDNPP)‐derived cesium observed in 2013 at 166°E south of the Kuroshio Extension (KE) at 〉500 m on the 26.5σθ isopycnal are investigated. Attention is paid to the KE's role in shaping these pathways. Using a high‐resolution model, particle trajectories were simulated backward and forward in time on 26.5σθ between the 2013 observations and the 2011 source. A large fraction of backtracked trajectories interacted with the mixed layer just offshore of the FDNPP. The likeliest pathway reaching the deepest 2013 observed cesium location runs along the KE out to ~165°E, where it turns sharply southward. Forward trajectory statistics suggest that for 26.5σθ waters originating north of the KE, this current acted as a permeable barrier west of 155–160°E. The deepest 2011 model mixed layers suggest that FDNPP‐derived radionuclides may have been present at 30°N in 2013 at greater depths and densities (700 m; 26.8σθ).
    Description: We would like to thank our two anonymous reviewers for their insightful suggestions that improved this paper. Work by Cedarholm on this project was supported by the WHOI Summer Student Fellowship program and was her UNH senior Capstone project. Rypina, Macdonald, and Yoshida acknowledge salary and project support from the National Science Foundation (NSF) grant OCE‐1356630. Additionally, Rypina would like to acknowledge support from NSF grant OCE‐1558806. CLIVAR PO2 and P10 observations, data sets 318M20130321 and 49NZ2012011, were obtained from the CCHDO (https://cchdo.ucsd.edu/) and the HYCOM output, data set GLBa0.08 expt_90.0v, from https://www.hycom.org/. Argo profiles were obtained from http://www.argodatamgt.org, the ISAS‐15 0.5°gridded Argo‐data‐alone product from https://www.seanoe.org, and delayed‐time allsat AVISO gridded surface velocity estimates from http://marine.copernicus.eu. Extended acknowledgements in Text S4.
    Keywords: Fukushima tracer ; Transport across Kuroshio Extension current ; Subsurface pathways and barriers ; Mode waters ; Particle tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3987-4002, doi:10.1029/2019JC015134.
    Description: Mooring data from September 2011 to July 2013 on the Iceland slope north of Denmark Strait are analyzed to better understand the structure and variability of the North Icelandic Jet (NIJ). Three basic configurations of the flow were identified: (1) a strong separated East Greenland Current (EGC) on the mid‐Iceland slope coincident with a weak NIJ on the upper slope, (2) a merged separated EGC and NIJ, and (3) a strong NIJ located at its climatological mean position, coincident with a weak signature of the separated EGC at the base of the Iceland slope. Our study reveals that the NIJ‐dominant scenario was present during different times of the year for the two successive mooring deployments—appearing mainly from September to February the first year and from January to July the second year. Furthermore, when this scenario was active it varied on short timescales. An energetics analysis demonstrates that the high‐frequency variability is driven by mean‐to‐eddy baroclinic conversion at the shoreward edge of the NIJ, consistent with previous modeling work. The seasonal timing of the NIJ dominant scenario is investigated in relation to the atmospheric forcing upstream of Denmark Strait. The resulting lagged correlations imply that strong turbulent heat fluxes in a localized region on the continental slope of Iceland, south of the Spar Fracture zone, lead to a stronger NIJ dominant state with a two‐month lag. This can be explained dynamically in terms of previous modeling work addressing the circulation response to dense water formation near an island.
    Description: The authors thank the crew members of the R/V Knorr, RRS James Clark Ross, and R/V Bjarni Sæmundsson for the deployment and recovery of the moorings. D. Torres and F. Bahr processed the second year of mooring data. We thank K. Våge, B. Harden, Z. Song, J. Li, and M. Li for helpful discussions regarding the work. Funding was provided by the National Science Foundation under grants OCE‐1558742 (J. H., R. P., P. L., and M. S.) and OCE‐1534618 (M. S.). The mooring data are available at http://kogur.whoi.edu/php/index.php.
    Description: 2019-12-04
    Keywords: North Icelandic Jet ; Denmark Strait Overflow Water ; Baroclinic instability ; Island flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Earth and Space Science, 6(7), (2019): 1220-1233, doi:10.1029/2018EA000436.
    Description: Ocean evaporative fluxes are a critical component of the Earth's energy and water cycle, but their estimation remains uncertain. Near‐surface humidity is a required input to bulk flux algorithms that relate mean surface values to the turbulent fluxes. Several satellite‐derived turbulent flux products have been developed over the last decade that utilize passive microwave imager observations to estimate the surface humidity. It is known, however, that these estimates tend to diverge from one another and from in situ observations. Analysis of current state‐of‐the‐art satellite estimates provided herein reveals that regional‐scale biases in these products remain significant. Investigations reveal a link between the spatial coherency of the observed biases to atmospheric dynamical controls of water vapor vertical stratification, cloud liquid water, and sea surface temperature. This information is used to develop a simple state‐dependent bias correction that results in more consistent ocean surface humidity estimates. A principal conclusion is that further improvements to ocean near‐surface humidity estimation using microwave radiometers requires incorporation of prior information on water vapor stratification and sea surface temperature.
    Description: Data products used in this study are made publicly available via multiple repositories hosted by individual data product producers. JOFUROv2 and JOFUROv3 data are available online (https://j‐ofuro.scc.u‐tokai.ac.jp/en/). IFREMERv4 and NOCS surface data are available through the OceanHeatFlux project (https://www.ifremer.fr/oceanheatflux/Data). GSSTFv3 (doi:10.5067/MEASURES/GSSTF/DATA301) and MERRA‐2 data are obtained from the Goddard Earth Sciences Data and Information Services Center. HOAPSv3.2 data are available from Satellite Application Facility on Climate Monitoring (https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V001). SEAFLUXv2 data are accessed through the National Centers for Environmental Information (http://doi.org/10.7289/V59K4885). Daily surface observations were provided by David Berry and Elizabeth Kent. This work is supported under the NASA Physical Oceanography Program Grant NNX14AK48A.
    Keywords: Humidity ; Passive microwave ; Ocean ; Turbulent fluxes ; Evaporation ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 20XX. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6435-6442, doi:10.1029/2019GL082523.
    Description: Acoustic Doppler current profiler and conductivity‐temperature‐depth data acquired in Yellowstone Lake reveal the presence of a buoyant plume above the “Deep Hole” hydrothermal system, located southeast of Stevenson Island. Distributed venting in the ~200 × 200‐m hydrothermal field creates a plume with vertical velocities of ~10 cm/s in the mid‐water column. Salinity profiles indicate that during the period of strong summer stratification the plume rises to a neutral buoyancy horizon at ~45‐m depth, corresponding to a ~70‐m rise height, where it generates an anomaly of ~5% (−0.0014 psu) relative to background lake water. We simulate the plume with a numerical model and find that a heat flux of 28 MW reproduces the salinity and vertical velocity observations, corresponding to a mass flux of 1.4 × 103 kg/s. When observational uncertainties are considered, the heat flux could range between 20 to 50 MW.
    Description: The authors thank Yellowstone National Park Fisheries and Aquatic Sciences, The Global Foundation for Ocean Exploration, and Paul Fucile for logistical support. This research was supported by the National Science Foundation grants EAR‐1516361 to R. S., EAR‐1514865 to K. L., and EAR‐1515283 to R. H. and J. F. All work in Yellowstone National Park was completed under an authorized Yellowstone research permit (YELL‐2018‐SCI‐7018). CTD and ADCP profiles reported in this paper are available through the Marine Geoscience Data System (doi:10.1594/IEDA/324713 and doi:10.1594/IEDA/324712, accessed last on 17 April 2019, respectively).
    Description: 2019-11-09
    Keywords: Hydrothermal plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1759-1775, doi:10.1029/2018GB006026.
    Description: Karst subterranean estuaries (KSEs) extend into carbonate platforms along 12% of all coastlines. A recent study has shown that microbial methane (CH4) consumption is an important component of the carbon cycle and food web dynamics within flooded caves that permeate KSEs. In this study, we obtained high‐resolution (~2.5‐day) temporal records of dissolved methane concentrations and its stable isotopic content (δ13C) to evaluate how regional meteorology and hydrology control methane dynamics in KSEs. Our records show that less methane was present in the anoxic fresh water during the wet season (4,361 ± 89 nM) than during the dry season (5,949 ± 132 nM), suggesting that the wet season hydrologic regime enhances mixing of methane and other constituents into the underlying brackish water. The δ13C of the methane (−38.1 ± 1.7‰) in the brackish water was consistently more 13C‐enriched than fresh water methane (−65.4 ± 0.4‰), implying persistent methane oxidation in the cave. Using a hydrologically based mass balance model, we calculate that methane consumption in the KSE was 21–28 mg CH4·m−2·year−1 during the 6‐month dry period, which equates to ~1.4 t of methane consumed within the 102‐ to 138‐km2 catchment basin for the cave. Unless wet season methane consumption is much greater, the magnitude of methane oxidized within KSEs is not likely to affect the global methane budget. However, our estimates constrain the contribution of a critical resource for this widely distributed subterranean ecosystem.
    Description: Funding for T. M. I. and D. B. was provided by TAMU‐CONACYT (project 2015‐049). D. B. was supported by the Research‐in‐Residence program (NSF award 1137336, Inter‐university Training in Continental‐scale Ecology), the Boost Fellowship (Texas A&M University at Galveston), and the Postdoctoral Scholar Program by Woods Hole Oceanographic Institution and U.S. Geological Survey. We thank Jacob Pohlman and István Brankovits for assistance with field expeditions. Special thanks to the late Bil Phillips (Speleotech) for the support and expertise provided us during field operations. We also thank Pete van Hengstum for productive discussions and guidance during the development of the manuscript. Michael Casso and Adrian Green helped with laboratory analyses. The manuscript was greatly improved by helpful comments from an anonymus reviewer, Jeff Chanton, and Meagan Gonneea. This work is contribution number UMCES 5541. Any use of trade names is for descriptive purposes and does not imply endorsement by the U.S. Government. The authors declare no competing financial interests. Archival data are available through the USGS ScienceBase‐Catalog at https://doi.org/10.5066/P9U0KRVM.
    Keywords: Subterranean estuary ; Coastal aquifer ; Carbon cycling ; Methane ; Hydrobiogeochemistry ; Anchialine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(7) (2019): 3927-3935, doi: 10.1029/2018GL081593.
    Description: Climate model simulations of the summer South Asian monsoon predict increased rainfall in response to anthropogenic warming. However, instrumental data show a decline in Indian rainfall in recent decades, underscoring the critical need for additional, independent records of past monsoon variability. Here, we present new reconstructions of annual summer South Asian Monsoon circulation over the past 250 years, based on the geochemical barium‐calcium signature of dust present in Red Sea corals. These records reveal how monsoon circulation has evolved with warming climate and indicate a significant multi‐century long monsoon intensification, with decreased multidecadal variance. Stronger monsoon circulation would have increased the moisture transport from the Arabian Sea and Bay of Bengal over the Indian subcontinent. If these trends continue, the monsoon circulation and associated moisture transport and precipitation will remain strong and stable for several decades.
    Description: We thank Editor Valerie Trouet and two anonymous reviewers for their constructive comments. We gratefully acknowledge Justin Ossolinski for assistance during core drilling; Maureen Auro, Laura Robinson, and Tom Marchitto for use of lab space and for technical advice; Margaret Sulanowska for providing XRD analysis of dust samples; and Sujata Murty and Ryan Davis for assistance in the lab. We thank Falmouth Hospital for use of X‐ray equipment. We acknowledge the use of the NSF‐supported WHOI ICP‐MS facility and thank Scot Birdwhistell for his assistance. This research was supported by grants to K. A. H. from NSF award OCE‐1031288 and KAUST award USA00002, and by a WHOI Postdoctoral Fellowship awarded to S. P. B. All data presented in this manuscript will be made publicly available online through the NOAA NCDC Paleoclimatology data archive (https://www.ncdc.noaa.gov/data‐access/paleoclimatology‐data/).
    Description: 2019-09-28
    Keywords: Paleoclimatology ; Climate variability ; Aerosols and particles ; Major and trace element geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(6), (2019):3398-3407, doi:10.1029/2018GL080890.
    Description: The hazards posed by infrequent major floods to communities along the Susquehanna River and the ecological health of Chesapeake Bay remain largely unconstrained due to the short length of streamgage records. Here we develop a history of high‐flow events on the Susquehanna River during the late Holocene from flood deposits contained in MD99‐2209, a sediment core recovered in 26 m of water from Chesapeake Bay near Annapolis, Maryland, United States. We identify coarse‐grained deposits left by Hurricane Agnes (1972) and the Great Flood of 1936, as well as during three intervals that predate instrumental flood records (~1800–1500, 1300–1100, and 400–0 CE). Comparison to sedimentary proxy data (pollen and ostracode Mg/Ca ratios) from the same core site indicates that prehistoric flooding on the Susquehanna often accompanied cooler‐than‐usual winter/spring temperatures near Chesapeake Bay—typical of negative phases of the North Atlantic Oscillation and conditions thought to foster hurricane landfalls along the East Coast.
    Description: This work was supported by the USGS Land Change Science Program and Northeast Region. We appreciated the assistance of Brian Buczkowski, Andrew Zimmerman, and John Bratton in locating archived core materials and data sets. We thank John Jackson and Bryan Landacre for assistance with XRD and pollen analysis, respectively. We thank two anonymous reviewers, Lynn Wingard (USGS), and Rob Stamm (USGS) for their helpful feedback on earlier versions of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Data generated for this report can be found in the accompanying supporting information.
    Description: 2019-08-19
    Keywords: Hurricane ; Flood ; Holocene ; East coast ; River ; Chesapeake
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1738-1758, doi:10.1029/2018GB005994.
    Description: Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and 232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th ;210Pb:210Po; 228Ra:228Th; and 234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and 232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.
    Description: This study grew out of a synthesis workshop at the Lamont‐Doherty Earth Observatory of Columbia University in August 2016. This workshop was sponsored by the U.S. GEOTRACES Project Office (NSF 1536294) and the Ocean Carbon and Biogeochemistry (OCP) Project Office (NSF 1558412 and NASA NNX17AB17G). The U.S. National Science Foundation supported all of the analytical work on GA03. Kuanbo Zhou measured 228Th in the large size class particles (NSF 0925158 to WHOI). NSF 1061128 to Stony Brook University supported the BaRFlux project, for which Chistina Heilbrun is acknowledged for laboratory and field work. The lead author acknowledges support from a start‐up grant from the University of Southern Mississippi. Two anonymous reviewers are thanked for their constructive comments. All GEOTRACES GA03 data used in this study are accessible through the Biological and Chemical Oceanography Data Management Office (http://data.bco‐dmo.org/jg/dir/BCO/GEOTRACES/NorthAtlanticTransect/), and derived parameters are reported in the supporting information.
    Description: 2019-05-22
    Keywords: Biological carbon pump ; Trace metals ; North Atlantic ; Export ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bodini, N., Lundquist, J. K., & Kirincich, A. US East Coast lidar measurements show offshore wind turbines will encounter very low atmospheric turbulence. Geophysical Research Letters, 46(10), (2019):5582-5591, doi:10.1029/2019GL082636.
    Description: The rapid growth of offshore wind energy requires accurate modeling of the wind resource, which can be depleted by wind farm wakes. Turbulence dissipation rate (ϵ) governs the accuracy of model predictions of hub‐height wind speed and the development and erosion of wakes. Here we assess the variability of turbulence kinetic energy and ϵ using 13 months of observations from a profiling lidar deployed on a platform off the Massachusetts coast. Offshore, ϵ is 2 orders of magnitude smaller than onshore, with a subtle diurnal cycle. Wind direction influences the annual cycle of turbulence, with larger values in winter when the wind flows from the land, and smaller values in summer, when the wind flows from open ocean. Because of the weak turbulence, wind plant wakes will be stronger and persist farther downwind in summer.
    Description: Collection of the wind data was funded by the Massachusetts Clean Energy Center through agreements with WHOI and AWS Truepower. The authors appreciate the efforts of the MVCO/ASIT technicians and AWS staff who collected the data. This analysis was supported by the National Science Foundation CAREER Award (AGS‐1554055) to J. K. L. and N. B., and by internal funds from WHOI for A. K. This work was authored (in part) by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract DE‐AC36‐08GO28308. Funding was provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid‐up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. The lidar observations used here are described at https://www.masscec.com/masscec-metocean-data-initiative, and available at https://doi.org/10.26025/1912/24050. The postprocessed data and the scripts used for the Figures of the present paper can be found at https://github.com/nicolabodini/GRL_OffshoreTurbulence.
    Description: 2019-11-01
    Keywords: Turbulence ; Offshore wind energy ; Lidar ; Wakes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(4), (2019):2750-2768, doi: 10.1029/2018JC014635.
    Description: The advances in the modern sea level observing system have allowed for a new level of knowledge of regional and global sea level in recent years. The combination of data from satellite altimeters, Gravity Recovery and Climate Experiment (GRACE) satellites, and Argo profiling floats has provided a clearer picture of the different contributors to sea level change, leading to an improved understanding of how sea level has changed in the present and, by extension, may change in the future. As the overlap between these records has recently extended past a decade in length, it is worth examining the extent to which internal variability on timescales from intraseasonal to decadal can be separated from long‐term trends that may be expected to continue into the future. To do so, a combined modal decomposition based on cyclostationary empirical orthogonal functions is performed simultaneously on the three data sets, and the dominant shared modes of variability are analyzed. Modes associated with the trend, seasonal signal, El Niño–Southern Oscillation, and Pacific decadal oscillation are extracted and discussed, and the relationship between regional patterns of sea level change and their associated global signature is highlighted.
    Description: The satellite altimetry grids are available from NASA JPL/PO.DAAC at the following location: https://podaac.jpl.nasa.gov/dataset. GRACE land water storage data are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program. The gridded fields based on Argo data used to compute the steric sea level data are available at http://www.argo.ucsd.edu/Gridded_fields.html. The gridded fields based on Argo data used to compute the steric sea level data are available at http://www.argo.ucsd.edu/Gridded_fields.html. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. B. D. H., F. W. L., J. T. R., and P. R. T. acknowledge support from NASA grant 80NSSC17K0564 (NASA Sea Level Change Team). C. G. P. acknowledges support from NSF awards OCE‐1558966 and OCE‐1834739. K. Y. K. was partially supported for this research by the National Science Foundation of Korea under the grant NRF‐ 2017R1A2B4003930.
    Description: 2019-09-21
    Keywords: Sea level ; Regional ; Global ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(4), (2019):2861-2875, doi: 10.1029/2018JC014175.
    Description: Strong variability in sea surface salinity (SSS) in the Eastern Tropical Pacific (ETPac) on intraseasonal to interannual timescales was studied using data from the Soil Moisture and Ocean Salinity, Soil Moisture Active Passive, and Aquarius satellite missions. A zonal wave number‐frequency spectral analysis of SSS reveals a dominant timescale of 50–180 days and spatial scale of 8°–20° of longitude with a distinct seasonal cycle and interannual variability. This intraseasonal SSS signal is detailed in the study of 19 individual ETPac eddies over 2010–2016 identified by their sea level anomalies, propagating westward at a speed of about 17 cm/s. ETPac eddies trap and advect water in their core westward up to 40° of longitude away from the coast. The SSS signatures of these eddies, with an average anomaly of 0.5‐pss magnitude difference from ambient values, enable the study of their dynamics and the mixing of their core waters with the surroundings. Three categories of eddies were identified according to the location where they were first tracked: (1) in the Gulf of Tehuantepec, (2) in the Gulf of Papagayo, and (3) in the open ocean near 100°W–12°N. They all traveled westward near 10°N latitude. Category 3 is of particular interest, as eddies seeded in the Gulf of Tehuantepec grew substantially in the vicinity of the Clipperton Fracture Zone rise and in a region where the mean zonal currents have anticyclonic shear. The evolution of the SSS signature associated with the eddies indicates the importance of mixing to their dissipation.
    Description: This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA and part at LOCEAN (Sorbonne Université, CNRS, IRD, MNHN) under a CNES Postdoctoral fellowship. This work is supported by NASA Grants NNX11AE83G and NNX14AH38G and is a contribution to the TOSCA/SMOS‐Ocean proposal supported by CNES. We thank the reviewers for their thoughtfully comments that lead to a much‐improved manuscript. We benefited from numerous data sets made freely available and are listed here: The SMOS debias_v2 SSS have been produced by LOCEAN laboratory and ACRI‐st company that participate to the Ocean Salinity Expertise Center (CEC‐OS) of Centre Aval de Traitement des Donnees SMOS (CATDS). of CATDS at IFREMER, Plouzane, France (http://www.catds.fr/Products, see documentation: http://www.catds.fr/Products/Available‐products‐from‐CEC‐OS/L3‐Debiased‐Locean‐v2); the Aquarius/SAC‐D and SMAP data was produced by Remote Sensing Systems and distributed by PODAAC (https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_SMI_7DAY_V4; https://podaac.jpl.nasa.gov/dataset/SMAP_RSS_L3_SSS_SMI_8DAY‐RUNNINGMEAN_V2); the SLA product is processed and distributed by CMEMS (http://marine.copernicus.eu); the global atlas of eddies is produced by AVISO (https://www.aviso.altimetry.fr/en/data/products/value‐added‐products/global‐mesoscale‐eddy‐trajectory‐product.html); the GPCP precipitation data set (http://eagle1.umd.edu/GPCP_CDR/Monthly_Data) is described in the project technical report (http://eagle1.umd.edu/GPCP_ICDR/GPCPmonthlyV2.3.pdf); Woods Hole Oceanographic Institution OAFlux evaporation data set (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3); UCAR high‐resolution terrain data set (High res terrain data set https://rda.ucar.edu/datasets/ds759.2/#!description); Chelton et al. (1998) Global Atlas of the First‐Baroclinic Rossby Radius of Deformation and Gravity‐Wave Phase Speed (http://www‐po.coas.oregonstate.edu/research/po/research/rossby_radius/).
    Description: 2019-09-28
    Keywords: Eddies ; Mesoscale ; Salinity ; Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(8), (2019):4346-4355, doi:10.1029/2018GL081577.
    Description: A yearlong record from moored current, temperature, conductivity, and four mixing meters (χpods) in the northernmost international waters of the Bay of Bengal quantifies upper‐ocean turbulent diffusivity of heat (Kt) and its response to the Indian monsoon. Data indicate (1) pronounced intermittency in turbulence at semidiurnal, diurnal, and near‐inertial timescales, (2) strong turbulence above 25‐m depth during the SW (summer) and NE (winter) monsoon relative to the transition periods (compare Kt 〉 10−4 m2/s to Kt  ∼ 10−5 m2/s, and (3) persistent suppression of turbulence (Kt 〈 10−5 m2/s) for 3 to 5 months in the latter half of the SW monsoon coincident with enhanced near‐surface stratification postarrival of low‐salinity water from the Brahmaputra‐Ganga‐Meghna delta and monsoonal precipitation. This suppression promotes maintenance of the low‐salinity surface waters within the interior of the bay preconditioning the upper northern Indian Ocean for the next year's monsoon.
    Description: This work was supported by the U.S. Office of Naval Research (ONR) Grants N00014‐14‐1‐0236 and N00014‐17‐1‐2472, and the Ocean Mixing and Monsoon program of the Indian Ministry of Earth Sciences. The deployment of the Woods Hole Oceanographic Institution mooring and RW and JTF were supported by ONR Grant N00014‐13‐1‐0453. The deployment and recovery of the mooring were carried out by RV Sagar Nidhi and RV Sagar Kanya, respectively, with the help of the crew and science parties. Thanks to National Institute of Ocean Technology (India) for buoy support. The authors acknowledge invaluable discussions with Johannes Becherer, Deepak Cherian, and Sally Warner at CEOAS, OSU, and Dipanjan Chaudhuri, J Sree Lekha, and Debasis Sengupta at CAOS, IISc. The authors thank two anonymous reviewers for their detailed reviews, which have helped sharpen many aspects of this paper. Data can be accessed as described in section S2.
    Description: 2019-10-08
    Keywords: Ocean turbulence ; Turbulence suppression ; Indian Monsoon ; Bay of Bengal ; Turbulent Mixing ; Chipod
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(5), (2019): 4710-4727, doi:10.1029/2018JB017080.
    Description: The southernmost Mariana margin lacks a mature island arc and thus differs significantly from the central‐north Mariana and Izu‐Bonin margins. This paper presents a new P wave velocity model of the crust and uppermost mantle structure based on a 349‐km‐long profile of wide‐angle reflection/refraction data. The active source seismic experiment was conducted from the subducting Pacific plate to the overriding Philippine plate, passing through the Challenger Deep. The subducting plate has an average crustal thickness of ~6.0 km with Vp of 7.0 ± 0.2 km/s at the base of the crust and low values of only 5.5–6.9 km/s near the trench axis. The uppermost mantle of the subducting plate is characterized by low velocities of 7.0–7.3 km/s. The overriding plate has a maximum crustal thickness of ~18 km beneath the forearc with Vp of ~7.4 km/s at the crustal bottom and 7.5–7.8 km/s in the uppermost mantle. A zone of slight velocity reduction is imaged beneath the Southwest Mariana Rift that is undergoing active rifting. The observed significant velocity reduction in a near‐trench crustal zone of ~20–30 km in the subducting plate is interpreted as a result of faulting‐induced porosity changes and fracture‐filling fluids. The velocity reduction in the uppermost mantle of both subducting and overriding plates is interpreted as mantle serpentinization with fluid sources from dehydration of the subducting plate and/or fluid penetration along faults.
    Description: Data acquisition and sample collections were supported by the Mariana Trench Initiative of the Chinese Academy of Sciences (CAS). We are grateful to the science parties and crews of R/V Shiyan 3 of the South China Sea Institute of Oceanology, CAS, for contributions to data acquisition. Constructive reviews by Robert Stern, Martha Savage, and anonymous reviewers significantly improved the manuscript. We thank Gaohua Zhu, Fan Zhang, Chunfeng Li, Zhen Sun, Zhi Wang, and Minghui Zhao for helpful discussion. The bathymetric maps were plotted using GMT (Wessel & Smith, 1995). Digital files of the velocity models and selected raw data are deposited and accessible online (at https://pan.baidu.com/s/1AbDJOgLZhYn1C‐3sg7S9Xw). This work was supported by the Strategic Priority Program of CAS (XDA13010101), CAS (Y4SL021001, QYZDY‐SSW‐DQC005, and 133244KYSB20180029), Key Laboratory of Ocean and Marginal Sea Geology, CAS (OMG18‐03), National Natural Science Foundation of China (41890813, 41676042, U1701641, 91628301, 41576041, and U1606401), and HKSAR Research Grant Council grants (14313816).
    Description: 2019-10-05
    Keywords: Arc rifting ; Plate hydration ; Southernmost Mariana Trench ; Seismic tomography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M. D., Lai, C., Timmermans, M., Krishfield, R. A., Proshutinsky, A., & Torres, D. Inorganic carbon and pCO(2) variability during ice formation in the Beaufort Gyre of the Canada Basin. Journal of Geophysical Research-Oceans, 124(6), (2019): 4017-4028, doi:10.1029/2019JC015109.
    Description: Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC and AT to deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 year pCO2 mooring time series where a ~35‐μatm increase in pCO2 was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resulting pCO2 is sensitive to the ratio of AT and DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derived AT and DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing the pCO2 at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC and pCO2 in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.
    Description: Research Associate Cory Beatty (University of Montana) prepared the CO2 instruments and helped with the mooring deployments and data processing. Pierce Fix (undergraduate intern, University of Montana) helped with the mass balance modeling. The moorings were designed and deployed by personnel at Woods Hole Oceanographic Institution. Michiyo Yamamoto‐Kawai (University of Tokyo) and Marty Davelaar (Institute of Ocean Sciences; IOS) provided the alkalinity and dissolved inorganic carbon data. We thank the captain, officers, crew, and chief scientists (Bill Williams and Sarah Zimmerman, IOS) of the CCGS Louis S. St. Laurent. The data used in this study are available through the U.S. National Science Foundation (NSF) Arctic Data Center (https://arcticdata.io). This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and PLR‐1723308).
    Keywords: Sea ice ; Dissolved inorganic carbon ; Carbon cycle ; Solute exclusion ; Partial pressure of CO2 ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology, 34(7), (2019): 1218-1233, doi:10.1029/2018PA003537.
    Description: The last deglaciation (~20–10 kyr BP) was characterized by a major shift in Earth's climate state, when the global mean surface temperature rose ~4 °C and the concentration of atmospheric CO2 increased ~80 ppmv. Model simulations suggest that the initial 30 ppmv rise in atmospheric CO2 may have been driven by reduced efficiency of the biological pump or enhanced upwelling of carbon‐rich waters from the abyssal ocean. Here we evaluate these hypotheses using benthic foraminiferal B/Ca (a proxy for deep water [CO32−]) from a core collected at 1,100‐m water depth in the Southwest Atlantic. Our results imply that [CO32−] increased by 22 ± 2 μmol/kg early in Heinrich Stadial 1, or a decrease in ΣCO2 of approximately 40 μmol/kg, assuming there were no significant changes in alkalinity. Our data imply that remineralized phosphate declined by approximately 0.3 μmol/kg during Heinrich Stadial 1, equivalent to 40% of the modern remineralized signal at this location. Because tracer inversion results indicate remineralized phosphate at the core site reflects the integrated effect of export production in the sub‐Antarctic, our results imply that biological productivity in the Atlantic sector of the Southern Ocean was reduced early in the deglaciation, contributing to the initial rise in atmospheric CO2.
    Description: We would like to thank Bärbel Hönisch at Lamont‐Doherty Earth Observatory of Columbia University for help with methods development and Sarah McCart for technical assistance with ICP‐MS analyses. We would also like to give special thanks to Anna lisa Mudahy, who was responsible for picking a substantial portion of the benthic foraminifera used in this study. We are grateful to the WHOI core lab for sample collection and archiving. This work was supported by NSF grant OCE‐1702231 to D. L.
    Description: 2020-01-24
    Keywords: B/Ca ; Last deglaciation ; Carbon cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6745-6754, doi:10.1029/2019GL082867.
    Description: Although photochemical oxidation is an environmental process that drives organic carbon (OC) cycling, its quantitative detection remains analytically challenging. Here, we use samples from the Deepwater Horizon oil spill to test the hypothesis that the stable oxygen isotope composition of oil (δ18OOil) is a sensitive marker for photochemical oxidation. In less than one‐week, δ18OOil increased from −0.6 to 7.2‰, a shift representing ~25% of the δ18OOC dynamic range observed in nature. By accounting for different oxygen sources (H2O or O2) and kinetic isotopic fractionation of photochemically incorporated O2, which was −9‰ for a wide range of OC sources, a mass balance was established for the surface oil's elemental oxygen content and δ18O. This δ18O‐based approach provides novel insights into the sources and pathways of hydrocarbon photo‐oxidation, thereby improving our understanding of the fate and transport of petroleum hydrocarbons in sunlit waters, and our capacity to respond effectively to future spills.
    Description: We thank Robert Ricker and Greg Baker (NOAA) for helping secure the oil residues, James Payne (Payne Environmental Consultants, Inc.) for collecting many of the surface oil residues, Joy Matthews (UC Davis) for exceptional assistance in preparing and analyzing the oil residues for oxygen content and isotopes, Hank Levi and Art Gatenby at CSC Scientific Company for assistance with the water content measurements, Robyn Comny (US EPA) for providing the Alaska North Slope oil, and Rose Cory (UMich) for discussions about our findings. Special thanks to John Hayes who provided constructive feedback on a preliminary version of this dataset prior to his passing in February of 2017. We thank Alex Sessions (CalTech) for his constructive feedback during the review process. This work was supported, in part, by National Science Foundation grants RAPID OCE‐1043976 (CMR), OCE‐1333148 (CMR), OCE‐1333026 (CMS), OCE‐1333162 (DLV), OCE‐1841092 (CPW), NASA NESSF NNX15AR62H (KMS), the Gulf of Mexico Research Initiative grants ‐ 015, SA 16‐30, and DEEP‐C consortium, a fellowship through the Hansewissenschaftskolleg (Institute for Advanced Studies) to SDW, and assistant scientist salary support from the Frank and Lisina Hoch Endowed Fund (CPW).
    Description: 2019-11-30
    Keywords: Petroleum hydrocarbons ; Photochemical oxidation ; Deepwater Horizon ; Stable oxygen isotopes ; Organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Selden, C. R., Mulholland, M. R., Bernhardt, P. W., Widner, B., Macias-Tapia, A., Ji, Q., & Jayakumar, A. Dinitrogen fixation across physico-chemical gradients of the Eastern Tropical North Pacific oxygen deficient zone. Global Biogeochemical Cycles, 33, (2019): 1187-1202, doi:10.1029/2019GB006242.
    Description: The Eastern Tropical North Pacific Ocean hosts one of the world's largest oceanic oxygen deficient zones (ODZs). Hot spots for reactive nitrogen (Nr) removal processes, ODZs generate conditions proposed to promote Nr inputs via dinitrogen (N2) fixation. In this study, we quantified N2 fixation rates by 15N tracer bioassay across oxygen, nutrient, and light gradients within and adjacent to the ODZ. Within subeuphotic oxygen‐deplete waters, N2 fixation was largely undetectable; however, addition of dissolved organic carbon stimulated N2 fixation in suboxic (〈20 μmol/kg O2) waters, suggesting that diazotroph communities are likely energy limited or carbon limited and able to fix N2 despite high ambient concentrations of dissolved inorganic nitrogen. Elevated rates (〉9 nmol N·L−1·day−1) were also observed in suboxic waters near volcanic islands where N2 fixation was quantifiable to 3,000 m. Within the overlying euphotic waters, N2 fixation rates were highest near the continent, exceeding 500 μmol N·m−2·day−1 at one third of inshore stations. These findings support the expansion of the known range of diazotrophs to deep, cold, and dissolved inorganic nitrogen‐replete waters. Additionally, this work bolsters calls for the reconsideration of ocean margins as important sources of Nr. Despite high rates at some inshore stations, regional N2 fixation appears insufficient to compensate for Nr loss locally as observed previously in the Eastern Tropical South Pacific ODZ.
    Description: We gratefully acknowledge the efforts of the captain and crew of the NOAA vessel Ronald H. Brown and the scientists who participated in the collection and analysis of the data presented here, particularly Shannon Cofield, Wei Yan, Nicole Travis, and Matt Forbes. We thank the Monterey Bay Aquatic Research Institute for the use of their pump profiling system and Margeurite Blum for her expertise in its use. Finally, we thank Bess Ward for the use of her facilities at Princeton University. This work was supported by the National Science Foundation Division of Ocean Sciences (NSF‐OCE) Grant OCE‐1356056 to M. R. M. and A. J. Data will be made available at the website (https://www.bco‐dmo.org/project/472492). The authors declare no conflicts of interest.
    Keywords: Nitrogen fixation ; Oxygen deficient zone ; Eastern tropical pacific ; Diazotroph ; Oxygen minimum zone ; Aphotic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124 (2019): 9980– 9998, doi:10.1029/2019JB017584.
    Description: Macrostructures preserved in deformed rocks are essential for the understanding of their evolution, especially when the deformation is weak and hard to discriminate in regional scale or purely through geophysical data. In order to resolve the inconsistency between NS trending fracture zones and NE oriented spreading fabrics of the South China Sea during the latest spreading stage, we analyzed macrostructures identifiable from the basalt and consolidated sediment samples of the Integrated Ocean Drilling Program (IODP) Sites U1431 and U1433. These two sites are close to the East and Southwest relict spreading ridges and provide critical information on the latest spreading stages. The structures in the basalt of both sites suggest two dominant orientations of NS and NE. At U1431, sediments show mainly WNW trending slickensides, different from that of basalt. At U1433, no structures were found in postspreading sediment. Thus, NE and NS trending structures in basalt are most possibly formed by seafloor spreading. Crosscutting relationship suggests that NE trending structures formed first, followed by NS and finally WNW trending structures. These observations are consistent with geophysical features. Magnetic anomalies and ocean bottom seismometer velocity suggest that the latest relict ridge of the East Subbasin coincides with the EW trending seamount chain. Located between the relict ridges of East and Southwest Subbasins, NS trending Zhongnan‐Liyue Fracture Zone had acted as the latest transform fault. Based on the above evidences, we proposed that the South China Sea may have experienced a short period of NS oriented spreading after earlier SE spreading. These results resolve the previous inconsistencies.
    Description: We appreciate Anne Replumaz and other anonymous reviewers for the constructive suggestions, which improve this paper to a great extent. This research was supported by Guangdong NSF research team project (2017A030312002), K. C. Wong Education Foundation (GJTD‐2018‐13), the IODP‐China Foundation, the NSFC Projects (91628301, 41376027, 41576070, 41576068, 41430962, 41674069, 91528302, and 20153410), U.S. National Science Foundation through Grant EAR‐1250444, the Guangdong Province Foundation (41576068), and the Joint Foundation of the Natural Science Foundation of China (NSFC) and Guangdong Province (U1301233). Fucheng Li is thanked for helping with the earthquake epicenter figure for the study area. All the sample photos can be accessed via web address (http://www.iodp.tamu.edu). The archive halves of samples are kept in the Kochi repository. The paleomag data will be published by Xixi Zhao separately. All the other geophysical data have been published; for example, the multichannel seismic could be referenced to Li et al. (2015a), and the gravity data and magnetic anomaly data are from Sandwell et al. (2014) and Ishihara and Kisimoto (1996).
    Description: 2020-02-29
    Keywords: Macrostructure analysis ; Marine gravity anomaly ; Marine magnetic anomaly ; Latest spreading history ; IODP Expedition 349 ; South China Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(7), (2019): 3347-3374, doi:10.1029/2019GC008374.
    Description: Subduction is a key component of Earth's long‐term sulfur cycle; however, the mechanisms that drive sulfur from subducting slabs remain elusive. Isotopes are a sensitive indicator of the speciation of sulfur in fluids, sulfide dissolution‐precipitation reactions, and inferring fluid sources. To investigate these processes, we report δ34S values determined by secondary ion mass spectroscopy in sulfides from a global suite of exhumed high‐pressure rocks. Sulfides are classified into two petrogenetic groups: (1) metamorphic, which represent closed‐system (re)crystallization from protolith‐inherited sulfur, and (2) metasomatic, which formed during open system processes, such as an influx of oxidized sulfur. The δ34S values for metamorphic sulfides tend to reflect their precursor compositions: −4.3 ‰ to +13.5 ‰ for metabasic rocks, and −32.4 ‰ to −11.0 ‰ for metasediments. Metasomatic sulfides exhibit a range of δ34S from −21.7 ‰ to +13.9 ‰. We suggest that sluggish sulfur self‐diffusion prevents isotopic fractionation during sulfide breakdown and that slab fluids inherit the isotopic composition of their source. We estimate a composition of −11 ‰ to +8 ‰ for slab fluids, a significantly smaller range than observed for metasomatic sulfides. Large fractionations during metasomatic sulfide precipitation from sulfate‐bearing fluids, and an evolving fluid composition during reactive transport may account for the entire ~36 ‰ range of metasomatic sulfide compositions. Thus, we suggest that sulfates are likely the dominant sulfur species in slab‐derived fluids.
    Description: All isotopic data and analysis locations are detailed in the supporting information accompanying this article. The authors would like to thank B. Monteleone and M. Yates for assistance with SIMS and EPMA analyses, respectively. J. Selverstone is thanked for providing samples and D. Whitney for providing additional field context. The authors would also like to thank J. Alt, C. LaFlamme, and an anonymous reviewer for their thoughtful and thorough reviews, as well as careful editorial handling by J. Blichert‐Toft. This project was funded by National Science Foundation Grant EAR 1725301 awarded to A. M. C. and a Geological Society of America grant to J. B. W.
    Description: 2019-12-14
    Keywords: Sulfur isotopes ; Subduction ; Sulfur cycle ; Sulfur ; Volcanic arc ; Metamorphism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(14), (2019): 8572-8581, doi: 10.1029/2019GL083039.
    Description: As Arctic temperatures rise at twice the global rate, sea ice is diminishing more quickly than models can predict. Processes that dictate Arctic cloud formation and impacts on the atmospheric energy budget are poorly understood, yet crucial for evaluating the rapidly changing Arctic. In parallel, warmer temperatures afford conditions favorable for productivity of microorganisms that can effectively serve as ice nucleating particles (INPs). Yet the sources of marine biologically derived INPs remain largely unknown due to limited observations. Here we show, for the first time, how biologically derived INPs were likely transported hundreds of kilometers from deep Bering Strait waters and upwelled to the Arctic Ocean surface to become airborne, a process dependent upon a summertime phytoplankton bloom, bacterial respiration, ocean dynamics, and wind‐driven mixing. Given projected enhancement in marine productivity, combined oceanic and atmospheric transport mechanisms may play a crucial role in provision of INPs from blooms to the Arctic atmosphere.
    Description: We sincerely thank the U.S. Coast Guard and crew of the Healy for assistance with equipment installation and guidance, operation of the underway and CTD systems, and general operation of the vessel during transit and at targeted sampling stations. We would also like to thank Allan Bertram, Meng Si, Victoria Irish, and Benjamin Murray for providing INP data from their previous studies. J. M. C., R. P., P. L., L. T., and E. B. were funded by the National Oceanic and Atmospheric Administration (NOAA)’s Arctic Research Program. J. C. was supported by the NOAA Experiential Research & Training Opportunities (NERTO) program. T. A. and N. C. were supported through the NOAA Earnest F. Hollings Scholarship program. A. P. was funded by the National Science Foundation under Grant PLR‐1303617. Russel C. Schnell and Michael Spall are acknowledged for insightful discussions during data analysis and interpretation. There are no financial conflicts of interest for any author. INP data are available in the supporting information, while remaining DBO‐NCIS data presented in the manuscript are available online (at https://www2.whoi.edu/site/dboncis/).
    Description: 2020-01-15
    Keywords: Arctic ; Ice nucleation ; Phytoplankton bloom ; Aerosol‐cloud interactions ; Arctic aerosol
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(8), (2019): 5723-5746, doi:10.1029/2018JC014453.
    Description: Estimates of the kinetic energy transfer from the wind to the ocean are often limited by the spatial and temporal resolution of surface currents and surface winds. Here we examine the wind work in a pair of global, very high‐resolution (1/48° and 1/24°) MIT general circulation model simulations in Latitude‐Longitude‐polar Cap (LLC) configuration that provide hourly output at spatial resolutions of a few kilometers and include tidal forcing. A cospectrum analysis of wind stress and ocean surface currents shows positive contribution at large scales (〉300 km) and near‐inertial frequency and negative contribution from mesoscales, tidal frequencies, and internal gravity waves. Larger surface kinetic energy fluxes are in the Kuroshio in winter at large scales (40 mW/m2) and mesoscales (−30 mW/m2). The Kerguelen region is dominated by large scale (∼20 mW/m2), followed by inertial oscillations in summer (13 mW/m2) and mesoscale in winter (−12 mW/m2). Kinetic energy fluxes from internal gravity waves (−0.1 to −9.9 mW/m2) are generally stronger in summer. Surface kinetic energy fluxes in the LLC simulations are 4.71 TW, which is 25–85% higher than previous global estimates from coarser (1/6–1/10°) general ocean circulation models; this is likely due to improved representation of wind variability (6‐hourly, 0.14°, operational European Center for Medium‐Range Weather Forecasts). However, the low wind power input to the near‐inertial frequency band obtained with LLC (0.16 TW) compared to global slab models suggests that wind variability on time scales less than 6 hr and spatial scales less than 15 km are critical to better representing the wind power input in ocean circulation models.
    Description: We thank three anonymous reviewers for their helpful comments that led to an improved manuscript. We are grateful to Jörn Callies and Laurie Padman for fruitful discussions. This work is funded by the National Aeronautics and Space Administration (NASA) through the project “Towards improved estimates of upper ocean energetics: Science motivation for the simultaneous measurement of ocean surface vector winds and currents” (Grant NNX15AG42G) and through NASA Grant NNX14AM71G and NNX16AH76G. Model output from global 1/48° and 1/24° ECCO2 MITgcm simulations is freely available to the community. For access of the full solutions, we recommend that users apply for an HEC account at NASA Ames. Data are provided online (∼dmenemen/llc/). Users without a NASA Ames account may explore what is available online (https://data.nas.nasa.gov/ecco/). This work was, in part, performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Color maps used in this contribution are from Thyng et al. (2016). To Teresa and Francesc, for their patience.
    Keywords: Surface fluxes ; Inertial oscillations ; Wind power ; Kinetic energy budget ; Global ocean model ; MITgcm
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2022-10-21
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4605-4617, doi: 10.1029/2018JC014928.
    Description: We report the significant impact of near‐inertial waves (NIWs) on vertical mixing and air‐sea carbon dioxide (CO2) fluxes in the Southern Ocean using a biogeochemical model coupled to an eddy‐rich ocean circulation model. The effects of high‐frequency processes are quantified by comparing the fully coupled solution (ONLINE) to two offline simulations based on 5‐day‐averaged output of the ONLINE simulation: one that uses vertical mixing archived from the ONLINE model (CTRL) and another in which vertical mixing is recomputed from the 5‐day average hydrodynamic fields (5dAVG). In this latter simulation, processes with temporal variabilities of a few days including NIWs are excluded in the biogeochemical simulation. Suppression of these processes reduces vertical shear and vertical mixing in the upper ocean, leading to decreased supply of carbon‐rich water from below, less CO2 outgassing in austral winter, and more uptake in summer. The net change amounts up to one third of the seasonal variability in Southern Ocean CO2 flux. Our results clearly demonstrate the importance of resolving high‐frequency processes such as NIWs to better estimate the carbon cycle in numerical model simulations.
    Description: The MITgcm can be obtained from http://mitgcm.org website. Resources supporting this work were provided by the NASA High‐End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center with the Award SMD‐15‐5752. H. S., J. M., and D. J. M. were supported by the NSF MOBY project (OCE‐1048926 and OCE‐1048897). H. S. acknowledges the support by National Research Foundation of Korea (NRF) grant (NRF‐2019R1C1C1003663) and Yonsei University Research Fund of 2018‐22‐0053. D. J. M. also gratefully acknowledges NASA support.
    Description: 2019-12-17
    Keywords: Southern Ocean ; near‐inertial waves ; CO2 ; vertical mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science and Technology, American Chemical Society (ACS), 53(15), pp. 8747-8756, ISSN: 0013-936X
    Publication Date: 2024-04-12
    Description: Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chemical information is still sparse. In the present study, INA and free glucose concentrations were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from −17.4 to −26.8 °C. Glucose concentrations varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A positive correlation was observed between free glucose concentration and INA in Arctic water samples (T50(°C) = (−25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment composition resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
  • 140
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
  • 142
  • 143
  • 144
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
  • 155
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-09-01
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019
    Description: 〈p〉The compatibility of free boronic acid building blocks in multicomponent reactions to readily create large libraries of diverse and complex small molecules was investigated. Traditionally, boronic acid synthesis is sequential, synthetically demanding, and time-consuming, which leads to high target synthesis times and low coverage of the boronic acid chemical space. We have performed the synthesis of large libraries of boronic acid derivatives based on multiple chemistries and building blocks using acoustic dispensing technology. The synthesis was performed on a nanomole scale with high synthesis success rates. The discovery of a protease inhibitor underscores the usefulness of the approach. Our acoustic dispensing–enabled chemistry paves the way to highly accelerated synthesis and miniaturized reaction scouting, allowing access to unprecedented boronic acid libraries.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019
    Description: 〈p〉Humans are adept in simultaneously following multiple goals, but the neural mechanisms for maintaining specific goals and distinguishing them from other goals are incompletely understood. For short time scales, working memory studies suggest that multiple mental contents are maintained by theta-coupled reactivation, but evidence for similar mechanisms during complex behaviors such as goal-directed navigation is scarce. We examined intracranial electroencephalography recordings of epilepsy patients performing an object-location memory task in a virtual environment. We report that large-scale electrophysiological representations of objects that cue for specific goal locations are dynamically reactivated during goal-directed navigation. Reactivation of different cue representations occurred at stimulus-specific hippocampal theta phases. Locking to more distinct theta phases predicted better memory performance, identifying hippocampal theta phase coding as a mechanism for separating competing goals. Our findings suggest shared neural mechanisms between working memory and goal-directed navigation and provide new insights into the functions of the hippocampal theta rhythm.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019
    Description: 〈p〉Voters may be unable to hold politicians to account if they lack basic information about their representatives’ performance. Civil society groups and international donors therefore advocate using voter information campaigns to improve democratic accountability. Yet, are these campaigns effective? Limited replication, measurement heterogeneity, and publication biases may undermine the reliability of published research. We implemented a new approach to cumulative learning, coordinating the design of seven randomized controlled trials to be fielded in six countries by independent research teams. Uncommon for multisite trials in the social sciences, we jointly preregistered a meta-analysis of results in advance of seeing the data. We find no evidence overall that typical, nonpartisan voter information campaigns shape voter behavior, although exploratory and subgroup analyses suggest conditions under which informational campaigns could be more effective. Such null estimated effects are too seldom published, yet they can be critical for scientific progress and cumulative, policy-relevant learning.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019
    Description: 〈p〉The canonical view is that touch is signaled by fast-conducting, thickly myelinated afferents, whereas pain is signaled by slow-conducting, thinly myelinated ("fast" pain) or unmyelinated ("slow" pain) afferents. While other mammals have thickly myelinated afferents signaling pain (ultrafast nociceptors), these have not been demonstrated in humans. Here, we performed single-unit axonal recordings (microneurography) from cutaneous mechanoreceptive afferents in healthy participants. We identified A-fiber high-threshold mechanoreceptors (A-HTMRs) that were insensitive to gentle touch, encoded noxious skin indentations, and displayed conduction velocities similar to A-fiber low-threshold mechanoreceptors. Intraneural electrical stimulation of single ultrafast A-HTMRs evoked painful percepts. Testing in patients with selective deafferentation revealed impaired pain judgments to graded mechanical stimuli only when thickly myelinated fibers were absent. This function was preserved in patients with a loss-of-function mutation in mechanotransduction channel PIEZO2. These findings demonstrate that human mechanical pain does not require PIEZO2 and can be signaled by fast-conducting, thickly myelinated afferents.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019
    Description: 〈p〉Mineralization is the most fundamental process in vertebrates. It is predominantly mediated by osteoblasts, which secrete mineral precursors, most likely through matrix vesicles (MVs). These vesicular structures are calcium and phosphate rich and contain organic material such as acidic proteins. However, it remains largely unknown how intracellular MVs are transported and secreted. Here, we use scanning electron-assisted dielectric microscopy and super-resolution microscopy for assessing live osteoblasts in mineralizing conditions at a nanolevel resolution. We found that the calcium-containing vesicles were multivesicular bodies containing MVs. They were transported via lysosome and secreted by exocytosis. Thus, we present proof that the lysosome transports amorphous calcium phosphate within mineralizing osteoblasts.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019
    Description: 〈p〉Over 140 Mha of restoration commitments have been pledged across the global tropics, yet guidance is needed to identify those landscapes where implementation is likely to provide the greatest potential benefits and cost-effective outcomes. By overlaying seven recent, peer-reviewed spatial datasets as proxies for socioenvironmental benefits and feasibility of restoration, we identified restoration opportunities (areas with higher potential return of benefits and feasibility) in lowland tropical rainforest landscapes. We found restoration opportunities throughout the tropics. Areas scoring in the top 10% (i.e., restoration hotspots) are located largely within conservation hotspots (88%) and in countries committed to the Bonn Challenge (73%), a global effort to restore 350 Mha by 2030. However, restoration hotspots represented only a small portion (19.1%) of the Key Biodiversity Area network. Concentrating restoration investments in landscapes with high benefits and feasibility would maximize the potential to mitigate anthropogenic impacts and improve human well-being.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019
    Description: 〈p〉In engineering, the "softness" of an object, as measured by an indenter, manifests as two measurable parameters: (i) indentation depth and (ii) contact area. For humans, softness is not well defined, although it is believed that perception depends on the same two parameters. Decoupling their relative contributions, however, has not been straightforward because most bulk—"off-the-shelf"—materials exhibit the same ratio between the indentation depth and contact area. Here, we decoupled indentation depth and contact area by fabricating elastomeric slabs with precise thicknesses and microstructured surfaces. Human subject experiments using two-alternative forced-choice and magnitude estimation tests showed that the indentation depth and contact area contributed independently to perceived softness. We found an explicit relationship between the perceived softness of an object and its geometric properties. Using this approach, it is possible to design objects for human interaction with a desired level of perceived softness.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019
    Description: 〈p〉The electronic energy and dynamics of solvated electrons, the simplest yet elusive chemical species, is of interest in chemistry, physics, and biology. Here, we present the electron binding energy distributions of solvated electrons in liquid water, methanol, and ethanol accurately measured using extreme ultraviolet (EUV) photoelectron spectroscopy of liquids with a single-order high harmonic. The distributions are Gaussian in all cases. Using the EUV and UV photoelectron spectra of solvated electrons, we succeeded in retrieving sharp electron kinetic energy distributions from the spectra broadened and energy shifted by inelastic scattering in liquids, overcoming an obstacle in ultrafast UV photoelectron spectroscopy of liquids. The method is demonstrated for the benchmark systems of charge transfer to solvent reaction and ultrafast internal conversion of hydrated electron from the first excited state.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019
    Description: 〈p〉Topological surface states (TSSs) in a topological insulator are expected to be able to produce a spin-orbit torque that can switch a neighboring ferromagnet. This effect may be absent if the ferromagnet is conductive because it can completely suppress the TSSs, but it should be present if the ferromagnet is insulating. This study reports TSS-induced switching in a bilayer consisting of a topological insulator Bi〈sub〉2〈/sub〉Se〈sub〉3〈/sub〉 and an insulating ferromagnet BaFe〈sub〉12〈/sub〉O〈sub〉19〈/sub〉. A charge current in Bi〈sub〉2〈/sub〉Se〈sub〉3〈/sub〉 can switch the magnetization in BaFe〈sub〉12〈/sub〉O〈sub〉19〈/sub〉 up and down. When the magnetization is switched by a field, a current in Bi〈sub〉2〈/sub〉Se〈sub〉3〈/sub〉 can reduce the switching field by ~4000 Oe. The switching efficiency at 3 K is 300 times higher than at room temperature; it is ~30 times higher than in Pt/BaFe〈sub〉12〈/sub〉O〈sub〉19〈/sub〉. These strong effects originate from the presence of more pronounced TSSs at low temperatures due to enhanced surface conductivity and reduced bulk conductivity.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019
    Description: 〈p〉The in situ two-dimensional (2D) and 3D imaging of the chemical speciation of organic fossils is an unsolved problem in paleontology and cultural heritage. Here, we use x-ray Raman scattering (XRS)–based imaging at the carbon K-edge to form 2D and 3D images of the carbon chemistry in two exceptionally preserved specimens, a fossil plant dating back from the Carboniferous and an ancient insect entrapped in 53-million-year-old amber. The 2D XRS imaging of the plant fossil reveals a homogeneous chemical composition with micrometric "pockets" of preservation, likely inherited from its geological history. The 3D XRS imaging of the insect cuticle displays an exceptionally well preserved remaining chemical signature typical of polysaccharides such as chitin around a largely hollowed-out inclusion. Our results open up new perspectives for in situ chemical speciation imaging of fossilized organic materials, with the potential to enhance our understanding of organic specimens and their paleobiology.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019
    Description: 〈p〉The regeneration of tooth enamel, the hardest biological tissue, remains a considerable challenge because its complicated and well-aligned apatite structure has not been duplicated artificially. We herein reveal that a rationally designed material composed of calcium phosphate ion clusters can be used to produce a precursor layer to induce the epitaxial crystal growth of enamel apatite, which mimics the biomineralization crystalline-amorphous frontier of hard tissue development in nature. After repair, the damaged enamel can be recovered completely because its hierarchical structure and mechanical properties are identical to those of natural enamel. The suggested phase transformation–based epitaxial growth follows a promising strategy for enamel regeneration and, more generally, for biomimetic reproduction of materials with complicated structure.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Description: 〈sec〉〈st〉Electron energy bands of crystalline solids generically exhibit degeneracies called band-structure nodes. Here, we introduce non-Abelian topological charges that characterize line nodes inside the momentum space of〈/st〉〈p〉〈b〉-symmetric crystalline metals with weak spin-orbit coupling. We show that these are quaternion charges, similar to those describing disclinations in biaxial nematics. Starting from two-band considerations, we develop the complete many-band description of nodes in the presence of 〈/b〉 〈b〉and mirror symmetries, which allows us to investigate the topological stability of nodal chains in metals. The non-Abelian charges put strict constraints on the possible nodal line configurations. Our analysis goes beyond the standard approach to band topology, and implies the existence of 1D topological phases not present in existing classifications.〈/b〉〈/p〉〈/sec〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019
    Description: 〈p〉Investigating slow earthquake activity in subduction zones provides insight into the slip behavior of megathrusts, which can provide important clues about the rupture extent of future great earthquakes. Using the S-net ocean-bottom seismograph network along the Japan Trench, we mapped a detailed distribution of tectonic tremors, which coincided with very-low-frequency earthquakes and a slow slip event. Compiling these and other related observations, including repeating earthquakes and earthquake swarms, we found that the slow earthquake distribution is complementary to the Tohoku-Oki earthquake rupture. We used our observations to divide the megathrust in the Japan Trench into three along-strike segments characterized by different slip behaviors. We found that the rupture of the Tohoku-Oki earthquake, which nucleated in the central segment, was terminated by the two adjacent segments.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019
    Description: 〈p〉Stimuli-responsive materials activated by biological signals play an increasingly important role in biotechnology applications. We exploit the programmability of CRISPR-associated nucleases to actuate hydrogels containing DNA as a structural element or as an anchor for pendant groups. After activation by guide RNA–defined inputs, Cas12a cleaves DNA in the gels, thereby converting biological information into changes in material properties. We report four applications: (i) branched poly(ethylene glycol) hydrogels releasing DNA-anchored compounds, (ii) degradable polyacrylamide-DNA hydrogels encapsulating nanoparticles and live cells, (iii) conductive carbon-black–DNA hydrogels acting as degradable electrical fuses, and (iv) a polyacrylamide-DNA hydrogel operating as a fluidic valve with an electrical readout for remote signaling. These materials allow for a range of in vitro applications in tissue engineering, bioelectronics, and diagnostics.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019
    Description: 〈p〉Understanding genomic variation and population structure of 〈i〉Plasmodium falciparum〈/i〉 across Africa is necessary to sustain progress toward malaria elimination. Genome clustering of 2263 〈i〉P. falciparum〈/i〉 isolates from 24 malaria-endemic settings in 15 African countries identified major western, central, and eastern ancestries, plus a highly divergent Ethiopian population. Ancestry aligned to these regional blocs, overlapping with both the parasite’s origin and with historical human migration. The parasite populations are interbred and shared genomic haplotypes, especially across drug resistance loci, which showed the strongest recent identity-by-descent between populations. A recent signature of selection on chromosome 12 with candidate resistance loci against artemisinin derivatives was evident in Ghana and Malawi. Such selection and the emerging substructure may affect treatment-based intervention strategies against 〈i〉P. falciparum〈/i〉 malaria.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019
    Description: 〈p〉In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest 〈i〉Ceratitis capitata〈/i〉 (Mediterranean fruit fly, Medfly) we identified a Y-linked gene, 〈i〉Maleness-on the-Y〈/i〉 (〈i〉MoY〈/i〉), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of 〈i〉MoY〈/i〉 in XY embryos causes feminization whereas overexpression of 〈i〉MoY〈/i〉 in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. 〈i〉MoY〈/i〉 is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019
    Description: 〈p〉Membraneless organelles involved in RNA processing are biomolecular condensates assembled by phase separation. Despite the important role of intrinsically disordered protein regions (IDRs), the specific interactions underlying IDR phase separation and its functional consequences remain elusive. To address these questions, we used minimal condensates formed from the C-terminal disordered regions of two interacting translational regulators, FMRP and CAPRIN1. Nuclear magnetic resonance spectroscopy of FMRP-CAPRIN1 condensates revealed interactions involving arginine-rich and aromatic-rich regions. We found that different FMRP serine/threonine and CAPRIN1 tyrosine phosphorylation patterns control phase separation propensity with RNA, including subcompartmentalization, and tune deadenylation and translation rates in vitro. The resulting evidence for residue-specific interactions underlying co–phase separation, phosphorylation-modulated condensate architecture, and enzymatic activity within condensates has implications for how the integration of signaling pathways controls RNA processing and translation.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019
    Description: 〈p〉SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD〈sup〉+〈/sup〉) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association–dependent NAD〈sup〉+〈/sup〉 cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP〈sup〉+〈/sup〉 (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD〈sup〉+〈/sup〉 cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019
    Description: 〈p〉The near-Earth asteroid (162173) Ryugu is a 900-m-diameter dark object expected to contain primordial material from the solar nebula. The Mobile Asteroid Surface Scout (MASCOT) landed on Ryugu’s surface on 3 October 2018. We present images from the MASCOT camera (MASCam) taken during the descent and while on the surface. The surface is covered by decimeter- to meter-sized rocks, with no deposits of fine-grained material. Rocks appear either bright, with smooth faces and sharp edges, or dark, with a cauliflower-like, crumbly surface. Close-up images of a rock of the latter type reveal a dark matrix with small, bright, spectrally different inclusions, implying that it did not experience extensive aqueous alteration. The inclusions appear similar to those in carbonaceous chondrite meteorites.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019
    Description: 〈p〉Van Meter 〈i〉et al〈/i〉. (Reports, 27 April 2018, p. 427) warn that achieving nitrogen reduction goals in the Gulf of Mexico will take decades as a result of legacy nitrogen effects. We discuss limitations of the modeling approach and demonstrate that legacy effects ranging from a few years to decades are equally consistent with observations. The presented time scales for system recovery are therefore highly uncertain.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019
    Description: 〈p〉Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. We profiled the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire 〈i〉Plasmodium berghei〈/i〉 life cycle. We then used our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access reference dataset for the study of malaria parasites.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...