ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media  (43)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • American Meteorological Society (AMS)
  • 2020-2023  (47)
  • 1980-1984
  • 1935-1939
  • 2020  (47)
Collection
Years
Year
  • 1
    Publication Date: 2022-01-07
    Description: Marine macroalgae, seaweeds, are exceptionally prolific producers of halogenated natural products. Biosynthesis of halogenated molecules in seaweeds is inextricably linked to reactive oxygen species (ROS) signaling as hydrogen peroxide serves as a substrate for haloperoxidase enzymes that participate in the construction these halogenated molecules. Here, using red macroalga Asparagopsis taxiformis, a prolific producer of the ozone depleting molecule bromoform, we provide the discovery and biochemical characterization of a ROS-producing NAD(P)H oxidase from seaweeds. This discovery was enabled by our sequencing of Asparagopsis genomes, in which we find the gene encoding the ROS-producing enzyme to be clustered with genes encoding bromoform-producing haloperoxidases. Biochemical reconstitution of haloperoxidase activities establishes that fatty acid biosynthesis can provide viable hydrocarbon substrates for bromoform production. The ROS production haloperoxidase enzymology that we describe here advances seaweed biology and biochemistry by providing the molecular basis for decades worth of physiological observations in ROS and halogenated natural product biosyntheses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-07
    Description: Fusarium oxysporum is a destructive root-infecting plant pathogen that causes significant yield losses in many economically important crop species. Hence, a deeper understanding of pathogen infection strategies is needed. With liquid chromatography-tandem mass spectrometry and gas chromatography-time of flight mass spectrometry platforms, we analyzed the metabolic changes in a time-course experiment with Arabidopsis accessions either resistant (Col-0) or susceptible (Ler-0) to isolates of Fusarium oxysporum forma specialis matthioli infection. We showed a concurrent effect of Fusarium-derived polyols and the mycotoxin beauvericin in the suppression of the immune response of susceptible hosts. A significant increase in oxidized glutathione in the resistant host was probably associated with effective reactive oxygen species-mediated resistance responses. Through a combination of targeted and untargeted metabolomics, we demonstrated the concurrent action of several Arabidopsis defense systems as well as the concurrent action of several virulence systems in the fungal attack of susceptible Arabidopsis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yoshii, A., & Green, W. N. Editorial: role of protein palmitoylation in synaptic plasticity and neuronal differentiation. Frontiers in Synaptic Neuroscience, 12(27), (2020), doi:10.3389/fnsyn.2020.00027.
    Description: Protein palmitoylation, the reversible addition of palmitate to proteins, is a dynamic post-translational modification. Both membrane (e.g., channels, transporters, and receptors) and cytoplasmic proteins (e.g., cell adhesion, scaffolding, cytoskeletal, and signaling molecules) are substrates. In mammals, palmitoylation is mediated by 23-24 palmitoyl acyltransferases (PATs), also called ZDHHCs for their catalytic aspartate-histidine-histidine-cysteine (DHCC) domain. PATs are integral membrane proteins found in cellular membranes. In the palmitoylation cycle, palmitate is removed by the depalmitoylation enzymes, acyl palmitoyl transferases (APT1 and 2), and α/β Hydrolase domain-containing protein 17 (ABHD17A-C). These are cytoplasmic proteins that are targeted to membranes where they are substrates for PATs. The second class of depalmitoylating enzymes are palmitoyl thioesterases, PPT1 and 2, discovered through their association with infantile neuronal ceroid lipofuscinosis. These are secreted proteins found in the lumen of intracellular organelles, primarily lysosomes, where their function as depalmitoylating enzymes is unclear.
    Description: This work was supported by University of Illinois start-up fund (to AY) and NIH/NIDA (grant DA044760 to WG).
    Keywords: palmitoylation and depalmitoylation ; synaptic plasticity ; axonal growth ; lysosome ; neurodegenerative disease ; neuronal ceroid lipofuscinoses (NCL) ; Huntington disease
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, (2020): 1848, doi:10.3389/fmicb.2020.01848.
    Description: Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell–cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
    Description: This work was funded by the USA National Science Foundation grants 1441717, 1826734, and 1335810 (to RS); and 1460861 (REU site at Bigelow Laboratory for Ocean Sciences). RS was also supported by the Simons Foundation grant 510023. TW, FS, and JJ were funded by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231. NR group was funded by the Russian Science Foundation (grant 19-14-00245). SS was funded by USA National Science Foundation grants OCE-0452333 and OCE-1136727. BH was funded by NASA Exobiology grant 80NSSC17K0548.
    Keywords: Bacteria ; Archaea ; evolution ; genomics fermentation ; respiration ; oxidoreductases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coenen, A. R., Hu, S. K., Luo, E., Muratore, D., & Weitz, J. S. A primer for microbiome time-series analysis. Frontiers in Genetics, 11, (2020): 310, doi:10.3389/fgene.2020.00310.
    Description: Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.
    Description: This work was supported by the Simons Foundation (SCOPE award ID 329108) and the National Science Foundation (NSF Bio Oc 1829636).
    Keywords: Microbial ecology ; Time-series analysis ; Marine microbiology ; Inference ; Clustering ; Periodicity ; Code:R ; Code:matlab
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ciarletta, D. J., Lorenzo-Trueba, J., & Ashton, A. D. Interaction of sea-level pulses with periodically retreating barrier islands. Frontiers in Earth Science, 7, (2019): 279, doi: 10.3389/feart.2019.00279.
    Description: Submerged barrier deposits preserved on continental shelf seabeds provide a record of paleocoastal environmental change from the last glacial maximum through the Holocene. The formation of these offshore deposits is often attributed to intermittent periods of rapidly rising sea levels, especially glacial meltwater pulses, which are expected to lead to partial or complete drowning – overstepping – of migrating barrier islands. However, recent cross-shore modeling and field evidence suggests that even for constant sea-level rise and shelf slope, the internal dynamics of migrating barriers could plausibly drive periodic retreat accompanied by autogenic partial overstepping and deposition of barrier sediment. We hypothesize that the interaction of periodic retreat with changes in external (allogenic) forcing from sea-level rise may create novel retreat responses and corresponding relict barrier deposits. Specifically, we posit that autogenic deposits can be amplified by an increased rate of relative sea-level rise, while in other cases internal dynamics can disrupt or mask the production of allogenic deposits. Here, we model barriers through a range of autogenic–allogenic interactions, exploring how barriers with different inherent autogenic periods respond to discrete, centennial-scale sea-level-rise pulses of variable magnitude and timing within the autogenic transgressive barrier cycle. Our results demonstrate a diversity of depositional signals, where production of relict sands is amplified or suppressed depending on both the barrier’s internal dynamic state and the pulse magnitude. We also show that millennial-scale autogenic periodicity renders barriers vulnerable to complete drowning for relatively low pulse rates of rise (〈15 mm/year).
    Description: This material is based upon work supported by the National Science Foundation under Grant No. 1518503, and the American Chemical Society Petroleum Research Fund under Grant No. 58817-DNI8 awarded to JL-T; the views presented herein are solely those of the authors and not of the NSF or the ACS PRF.
    Keywords: Barrier island ; Autogenic ; Modeling ; Sea level ; Holocene ; Meltwater pulse ; Overstepping
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kharbush, J. J., Close, H. G., Van Mooy, B. A. S., Arnosti, C., Smittenberg, R. H., Le Moigne, F. A. C., Mollenhauer, G., Scholz-Boettcher, B., Obreht, I., Koch, B. P., Becker, K. W., Iversen, M. H., & Mohr, W. Particulate organic carbon deconstructed: molecular and chemical composition of particulate organic carbon in the ocean. Frontiers in Marine Science, 7, (2020): 518, doi:10.3389/fmars.2020.00518.
    Description: The dynamics of the particulate organic carbon (POC) pool in the ocean are central to the marine carbon cycle. POC is the link between surface primary production, the deep ocean, and sediments. The rate at which POC is degraded in the dark ocean can impact atmospheric CO2 concentration. Therefore, a central focus of marine organic geochemistry studies is to improve our understanding of POC distribution, composition, and cycling. The last few decades have seen improvements in analytical techniques that have greatly expanded what we can measure, both in terms of organic compound structural diversity and isotopic composition, and complementary molecular omics studies. Here we provide a brief overview of the autochthonous, allochthonous, and anthropogenic components comprising POC in the ocean. In addition, we highlight key needs for future research that will enable us to more effectively connect diverse data sources and link the identity and structural diversity of POC to its sources and transformation processes.
    Description: We thank the Hanse Institute for Advanced Studies (HWK) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 422798570, as well as the Geochemical Society, for funding which made the workshop possible. CA was additionally supported by OCE-1736772. BV was additionally supported by NSF OCE-1756254.
    Keywords: Marine particles ; Water column ; Phytoplankton ; Marine microbes ; Structural analysis ; Organic matter characterization ; Biomarkers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bond, R. J., Hansel, C. M., & Voelker, B. M. Heterotrophic bacteria exhibit a wide range of rates of extracellular production and decay of hydrogen peroxide. Frontiers in Marine Science, 7, (2020): 72, doi:10.3389/fmars.2020.00072.
    Description: Bacteria have been implicated as both a source and sink of hydrogen peroxide (H2O2), a reactive oxygen species which can both impact microbial growth and participate in the geochemical cycling of trace metals and carbon in natural waters. In this study, simultaneous H2O2 production and decay by twelve species of heterotrophic bacteria were evaluated in both batch and flow-through incubations. While wide species-to-species variability of cell-normalized H2O2 decay rate coefficients [2 × 10–8 to 5 × 10–6 hr–1 (cell mL–1)–1] was observed, these rate coefficients were relatively consistent for a given bacterial species. By contrast, observed production rates (below detection limit to 3 × 102 amol cell–1 hr–1) were more variable even for the same species. Variations based on incubation conditions in some bacterial strains suggest that external conditions may impact extracellular H2O2 levels either through increased extracellular production or leakage of intracellular H2O2. Comparison of H2O2 production rates to previously determined superoxide (O2–) production rates suggests that O2– and H2O2 production are not necessarily linked. Rates measured in this study indicate that bacteria could account for a majority of H2O2 decay observed in aqueous systems but likely only make a modest contribution to dark H2O2 production.
    Description: This research was supported by NSF grant OCE-1131734/1246174 to BV and CH.
    Keywords: Reactive oxygen species ; Hydrogen peroxide ; Heterotrophic bacteria ; H2O2 production ; H2O2 decomposition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bejannin, S., Tamborski, J. J., van Beek, P., Souhaut, M., Stieglitz, T., Radakovitch, O., Claude, C., Conan, P., Pujo-Pay, M., Crispi, O., Le Roy, E., & Estournel, C. Nutrient fluxes associated with submarine groundwater discharge from karstic coastal aquifers (Côte Bleue, French Mediterranean coastline). Frontiers in Environmental Science, 7, (2020): 205, doi: 10.3389/fenvs.2019.00205.
    Description: Determination of submarine groundwater discharge (SGD) from karstic coastal aquifers is important to constrain hydrological and biogeochemical cycles. However, SGD quantification using commonly employed geochemical methods can be difficult to constrain under the presence of large riverine inputs, and is further complicated by the determination of the karstic groundwater endmember. Here, we investigated a coastal region where groundwater discharges from a karstic aquifer system using airborne thermal infrared mapping and geochemical sampling conducted along offshore transects. We report radium data (223Ra, 224Ra, 228Ra) that we used to derive fluxes (water, nutrients) associated with terrestrial groundwater discharge and/or seawater circulation through the nearshore permeable sediments and coastal aquifer. Field work was conducted at different periods of the year to study the temporal variability of the chemical fluxes. Offshore transects of 223Ra and 224Ra were used to derive horizontal eddy diffusivity coefficients that were subsequently combined with surface water nutrient gradients (NO2− + NO3−, DSi) to determine the net nutrient fluxes from SGD. The estimated DSi and (NO2− + NO3−) fluxes are 6.2 ± 5.0 *103 and 4.0 ± 2.0 *103 mol d−1 per km of coastline, respectively. We attempted to further constrain these SGD fluxes by combining horizontal eddy diffusivity and 228Ra gradients. However, SGD endmember selection in this area (terrestrial groundwater discharge vs. porewater) adds further uncertainty to the flux calculation and thus prevented us from calculating a reliable flux using this latter method. Additionally, the relatively long half-life of 228Ra (5.75 y) makes it sensitive to specific circulation patterns in this coastal region, including sporadic intrusions of Rhône river waters that impact both the 228Ra and nutrient surface water distributions. We show that SGD nutrient fluxes locally reach up to 20 times the nutrient fluxes from a small river (Huveaune River). On a regional scale, DSi fluxes driven by SGD vary between 0.1 and 1.4% of the DSi inputs of the Rhône River, while the (NO2− + NO3−) fluxes driven by SGD on this 22 km long coastline are between 0.1 and 0.3% of the Rhône River inputs, the largest river that discharges into the Mediterranean Sea. Interestingly, the nutrient fluxes reported here are similar in magnitude compared with the fluxes quantified along the sandy beach of La Franqui, in the western Gulf of Lions (Tamborski et al., 2018), despite the different lithology of the two areas (karst systems vs. unconsolidated sediment).
    Description: The Ph.D. thesis fellowship of SB and the postdoctoral fellowship of JT were supported by FEDER funded by Europe and Région Occitanie Pyrénées-Méditerranée (SELECT project). This project was funded by (i) ANR-MED-SGD (ANR-15-CE01-0004; PB) and (ii) CNES for funding the airborne TIR images acquired in 2012 as part of the Geomether project (PI: Pascal Allemand, PB being responsible for the acquisition of TIR images in that project).
    Keywords: Submarine groundwater discharge ; Mediterranean sea ; Radium isotopes ; Thermal infrared remote sensing ; Nutrient fluxes ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gawarkiewicz, G., Chen, K., Forsyth, J., Bahr, F., Mercer, A. M., Ellertson, A., Fratantoni, P., Seim, H., Haines, S., & Han, L. Characteristics of an advective Marine Heatwave in the Middle Atlantic Bight in early 2017. Frontiers in Marine Science, 6, (2019): 712, doi: 10.3389/fmars.2019.00712.
    Description: There has been wide interest in Marine Heatwaves and their ecological consequences in recent years. Most analyses have focused on remotely sensed sea surface temperature data due to the temporal and spatial coverage it provides in order to establish the presence and duration of Heatwaves. Using hydrographic data from a variety of sources, we show that an advective Marine Heatwave was initiated by an event in late December of 2016 south of New England, with temperature anomalies measuring up to 6°C and salinity anomalies exceeding 1 PSU. Similar features were observed off of New Jersey in February 2017, and are associated with the Shelfbreak Front migrating from its normal position to mid-shelf or further onshore. Shelf water of 34 PSU was observed just north of Cape Hatteras at the 30 m isobath and across the continental shelf in late April 2017. These observations reveal that the 2017 Marine Heatwave was associated with a strong positive salinity anomaly, that its total duration was approximately 4 months, and its advective path extended roughly 850 km along the length of the continental shelf in the Middle Atlantic Bight. The southward advective velocity implied by the arrival north of Cape Hatteras is consistent with previous estimates of alongshelf velocity for the region. The origin of this Marine Heatwave is likely related to cross-shelf advection driven by the presence of a Warm Core Ring adjacent to the shelfbreak south of New England.
    Description: GG was supported by the van Beuren Charitable Foundation, the National Science Foundation under grants OCE-1657853 and OCE-1558521 as well as a Senior Scientist Chair from the Woods Hole Oceanographic Institution. KC was supported by the National Science Foundation under grants OCE-1558960 and OCE-1634094. JF was supported by the National Science Foundation OCE-1634094. AM and AE were supported by the van Beuren Charitable Foundation. HS, SH, and LH were supported by the National Science Foundation OCE-1558920.
    Keywords: Heatwave ; Middle Atlantic Bight ; Shelfbreak front ; Warm core ring ; Coastal ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J., Brown, C., Bokuniewicz, H., Cochran, J. K., & Rasbury, E. T. Investigating boron isotopes for identifying nitrogen sources supplied by submarine groundwater discharge to coastal waters. Frontiers in Environmental Science, 8, (2020): 126, doi:10.3389/fenvs.2020.00126.
    Description: Stable isotopes of oxygen, nitrogen, and boron were used to identify the sources of nitrate (NO3–) in submarine groundwater discharge (SGD) into a large tidal estuary (Long Island Sound, NY, United States). Potential contaminants such as manure, septic waste and fertilizer overlap in δ15N and δ18O but have been shown to have distinctive δ11B in non-coastal settings. Two distinct subterranean estuaries were studied with different land-use up gradient, representative of (1) mixed medium-density residential housing and (2) agriculture. These sites have overlapping δ15N and δ18O measurements in NO3– and are unable to discriminate between different N sources. Boron isotopes and concentrations are measurably different between the two sites, with little overlap. The subterranean estuary impacted by mixed medium-density residential housing shows little correlation between δ11B and [B] or between δ11B and salinity, demonstrating that direct mixing relationships between fresh groundwater and seawater were unlikely to account for the variability. No two sources could adequately characterize the δ11B of this subterranean estuary. Groundwater N at this location should be derived from individual homeowner cesspools, although measured septic waste has much lower δ11B compared to the coastal groundwaters. This observation, with no trend in δ11B with [B] indicates multiple sources supply B to the coastal groundwaters. The agricultural subterranean estuary displayed a positive correlation between δ11B and [B] without any relationship with salinity. Binary mixing between sea spray and fertilizer can reasonably explain the distribution of B in the agricultural subterranean estuary. Results from this study demonstrate that δ11B can be used in combination with δ15N to trace sources of NO3– to the subterranean estuary if source endmember isotopic signatures are well-constrained, and if the influence of seawater on δ11B signatures can be minimized or easily quantified.
    Description: This research was funded by New York Sea Grant projects R/CMC-13 and R/CMC-13-NYCT. The MC-ICP-MS used for this work was funded through NSF-MRI 0959524.
    Keywords: Submarine groundwater discharge ; Boron ; Nitrogen ; Nitrate ; Fertilizer ; Wastewater ; Septic waste
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J., Cochran, J. K., Bokuniewicz, H., Heilbrun, C., Garcia-Orellana, J., Rodellas, V., & Wilson, R. Radium mass balance sensitivity analysis for submarine groundwater discharge estimation in semi-enclosed basins: the case study of Long Island Sound. Frontiers in Environmental Science, 8, (2020): 108, doi:10.3389/fenvs.2020.00108.
    Description: Estimation of submarine groundwater discharge (SGD) to semi-enclosed basins by Ra isotope mass balance is herein assessed. We evaluate 224Ra, 226Ra, and 228Ra distributions in surface and bottom waters of Long Island Sound (CT-NY, United States) collected during spring 2009 and summer 2010. Surface water and bottom water Ra activities display an apparent seasonality, with greater activities during the summer. Long-lived Ra isotope mass balances are highly sensitive to boundary fluxes (water flux and Ra activity). Variation (50%) in the 224Ra, 226Ra, and 228Ra offshore seawater activity results in a 63–74% change in the basin-wide 226Ra SGD flux and a 58–60% change in the 228Ra SGD flux, but only a 4–9% change in the 224Ra SGD flux. This highlights the need to accurately constrain long-lived Ra activities in the inflowing and outflowing water, as well as water fluxes across boundaries. Short-lived Ra isotope mass balances are sensitive to internal Ra fluxes, including desorption from resuspended particles and inputs from sediment diffusion and bioturbation. A 50% increase in the sediment diffusive flux of 224Ra, 226Ra, and 228Ra results in a ∼30% decrease in the 224Ra SGD flux, but only a ∼6–10% decrease in the 226Ra and 228Ra SGD flux. When boundary mixing is uncertain, 224Ra is the preferred tracer of SGD if sediment contributions are adequately constrained. When boundary mixing is well-constrained, 226Ra and 228Ra are the preferred tracers of SGD, as sediment contributions become less important. A three-dimensional numerical model is used to constrain boundary mixing in Long Island Sound (LIS), with mean SGD fluxes of 1.2 ± 0.9 × 1013 L y–1 during spring 2009 and 3.3 ± 0.7 × 1013 L y–1 during summer 2010. The SGD flux to LIS during summer 2010 was one order of magnitude greater than the freshwater inflow from the Connecticut River. The maximum marine SGD-driven N flux is 14 ± 11 × 108 mol N y–1 and rivals the N load of the Connecticut River.
    Description: This project has been funded by New York Sea Grant projects (R/CCP-16 and R/CMC-12). This research is contributing to the ICTA-UAB Unit of Excellence “María de Maeztu” (MDM-2015-0552) and MERS (2017 SGR – 1588, Generalitat de Catalunya). VR acknowledges financial support from the Beatriu de Pinós postdoctoral program of the Catalan Government (2017-BP-00334).
    Keywords: Radium isotopes ; Submarine groundwater discharge ; Porewater exchange ; Nitrogen ; Long Island Sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Steen, A. D., Kusch, S., Abdulla, H. A., Cakic, N., Coffinet, S., Dittmar, T., Fulton, J. M., Galy, V., Hinrichs, K., Ingalls, A. E., Koch, B. P., Kujawinski, E., Liu, Z., Osterholz, H., Rush, D., Seidel, M., Sepulveda, J., & Wakeham, S. G. Analytical and computational advances, opportunities, and challenges in marine organic biogeochemistry in an era of "Omics". Frontiers in Marine Science, 7, (2020): 718, doi:10.3389/fmars.2020.00718.
    Description: Advances in sampling tools, analytical methods, and data handling capabilities have been fundamental to the growth of marine organic biogeochemistry over the past four decades. There has always been a strong feedback between analytical advances and scientific advances. However, whereas advances in analytical technology were often the driving force that made possible progress in elucidating the sources and fate of organic matter in the ocean in the first decades of marine organic biogeochemistry, today process-based scientific questions should drive analytical developments. Several paradigm shifts and challenges for the future are related to the intersection between analytical progress and scientific evolution. Untargeted “molecular headhunting” for its own sake is now being subsumed into process-driven targeted investigations that ask new questions and thus require new analytical capabilities. However, there are still major gaps in characterizing the chemical composition and biochemical behavior of macromolecules, as well as in generating reference standards for relevant types of organic matter. Field-based measurements are now routinely complemented by controlled laboratory experiments and in situ rate measurements of key biogeochemical processes. And finally, the multidisciplinary investigations that are becoming more common generate large and diverse datasets, requiring innovative computational tools to integrate often disparate data sets, including better global coverage and mapping. Here, we compile examples of developments in analytical methods that have enabled transformative scientific advances since 2004, and we project some challenges and opportunities in the near future. We believe that addressing these challenges and capitalizing on these opportunities will ensure continued progress in understanding the cycling of organic carbon in the ocean.
    Description: The Hanse-Wissenschaftskolleg Delmenhorst, Germany, sponsored the “Marine Organic Biogeochemistry” workshop in April 2019, of which this working group report was a part. The workshop was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number: 422798570. The Geochemical Society provided additional funding for the conference. AS was supported by DOE grant DE-SC0020369.
    Keywords: Chemometrics ; Natural marine organic matter ; FT-ICR-MS ; Analytical challenges ; HR-NMR ; Marine organic biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bracco, A., Paris, C. B., Esbaugh, A. J., Frasier, K., Joye, S. B., Liu, G., Polzin, K. L., & Vaz, A. C. Transport, fate and impacts of the deep plume of petroleum hydrocarbons formed during the Macondo blowout. Frontiers in Marine Science, 7, (2020): 542147, doi:10.3389/fmars.2020.542147.
    Description: The 2010 Macondo oil well blowout consisted in a localized, intense infusion of petroleum hydrocarbons to the deep waters of the Gulf of Mexico. A substantial amount of these hydrocarbons did not reach the ocean surface but remained confined at depth within subsurface plumes, the largest and deepest of which was found at ∼ 1000–1200 m of depth, along the continental slope (the deep plume). This review outlines the challenges the science community overcame since 2010, the discoveries and the remaining open questions in interpreting and predicting the distribution, fate and impact of the Macondo oil entrained in the deep plume. In the past 10 years, the scientific community supported by the Gulf of Mexico Research Initiative (GoMRI) and others, has achieved key milestones in observing, conceptualizing and understanding the physical oceanography of the Gulf of Mexico along its northern continental shelf and slope. Major progress has been made in modeling the transport, evolution and degradation of hydrocarbons. Here we review this new knowledge and modeling tools, how our understanding of the deep plume formation and evolution has evolved, and how research in the past decade may help preparing the scientific community in the event of a future spill in the Gulf or elsewhere. We also summarize briefly current knowledge of the plume fate – in terms of microbial degradation and geochemistry – and impacts on fish, deep corals and mammals. Finally, we discuss observational, theoretical, and modeling limitations that constrain our ability to predict the three-dimensional movement of waters in this basin and the fate and impacts of the hydrocarbons they may carry, and we discuss research priorities to overcome them.
    Description: This review was made possible by funding from the Gulf of Mexico Research Initiative (GoMRI) and is a product of the Core Area 1 Synthesis workshop. The authors have contributed research on the Gulf deep circulation and the deep plume through GoMRI-funded consortia (ECOGIG for AB, SJ and GL, C-IMAGE for CP, AV and KF, and RECOVER for AE) and one of the RFP-5 grant (KP). KP was partially supported also by NSF OCE-1536779.
    Keywords: Deepwater Horizon ; Deepwater plume ; Ocean modeling ; Oil modeling ; Transport and mixing processes ; Active tracer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Martinez-Ruiz, F., Paytan, A., Gonzalez-Munoz, M. T., Jroundi, F., Abad, M. M., Lam, P. J., Horner, T. J., & Kastner, M. Barite precipitation on suspended organic matter in the mesopelagic zone. Frontiers in Earth Science, 8, (2020): 567714, doi:10.3389/feart.2020.567714.
    Description: Mechanisms underlying barite precipitation in seawater and the precise depths of barite precipitation in the water column have been debated for decades. Here we present a detailed study of water column barite distribution in the mesopelagic zone at diverse stations in the open ocean by analyzing samples collected using multiple unit large volume in-situ filtration systems in the Pacific, Atlantic and Indian oceans. Our results demonstrate that barite is an organo-mineral particularly abundant at intermediate depths throughout the world’s ocean regardless of saturation state with respect to barite. This is confirming the notion of precipitation at depths of intense organic matter mineralization. Our observations further support the link between barite formation and microbial activity, demonstrated by the association of barite particles with organic matter aggregates and with extracellular polymeric substances. Evidence for microbial mediation is consistent with previous experimental work showing that in bacterial biofilms Ba binds to phosphate groups on cell surfaces and within extracellular polymeric substances. This organo-accumulation promotes high concentrations of Ba leading to saturated microenvironments and nucleation sites favoring precipitation. The distribution of Ba isotopes in the water column and in particulate matter is also consistent with the proposed precipitation mechanism.
    Description: This study was supported by the European Regional Development Fund (ERDF) co-financed grants CGL2017-92600-EXP and PID2019-104624RB-I00 (Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain), Research Groups RNM-179 and BIO 103, and Excellence Projects P18-RT-3804 and P18-RT-4074 (Junta de Andalucía), Unidad Científica de Excelencia UCE-PP2016-05 (University of Granada) and grant OCE-1443577.
    Keywords: Pelagic barite ; Organo-mineralization ; Barite saturation state ; Extracellular polymeric substances ; Bioaccumulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Faull, L. M., Mara, P., Taylor, G. T., & Edgcomb, V. P. Imprint of trace dissolved oxygen on prokaryoplankton community structure in an oxygen minimum zone. Frontiers in Marine Science, 7, (2020): 360, doi:10.3389/fmars.2020.00360.
    Description: The Eastern Tropical North Pacific (ETNP) is a large, persistent, and intensifying oxygen minimum zone (OMZ) that accounts for almost half of the total area of global OMZs. Within the OMZ core (∼350–700 m depth), dissolved oxygen is typically near or below the analytical detection limit of modern sensors (∼10 nM). Steep oxygen gradients above and below the OMZ core lead to vertical structuring of microbial communities that also vary between particle-associated (PA) and free-living (FL) size fractions. Here, we use 16S amplicon sequencing (iTags) to analyze the diversity and distribution of prokaryotic populations between FL and PA size fractions and among the range of ambient redox conditions. The hydrographic conditions at our study area were distinct from those previously reported in the ETNP and other OMZs, such as the ETSP. Trace oxygen concentrations (∼0.35 μM) were present throughout the OMZ core at our sampling location. Consequently, nitrite accumulations typically reported for OMZ cores were absent as were sequences for anammox bacteria (Brocadiales genus Candidatus Scalindua), which are commonly found across oxic-anoxic boundaries in other systems. However, ammonia-oxidizing bacteria (AOB) and archaea (AOA) distributions and maximal autotrophic carbon assimilation rates (1.4 μM C d–1) coincided with a pronounced ammonium concentration maximum near the top of the OMZ core. In addition, members of the genus Nitrospina, a dominant nitrite-oxidizing bacterial (NOB) clade were present suggesting that both ammonia and nitrite oxidation occur at trace oxygen concentrations. Analysis of similarity test (ANOSIM) and Non-metric Dimensional Scaling (nMDS) revealed that bacterial and archaeal phylogenetic representations were significantly different between size fractions. Based on ANOSIM and iTag profiles, composition of PA assemblages was less influenced by the prevailing depth-dependent biogeochemical regime than the FL fraction. Based on the presence of AOA, NOB and trace oxygen in the OMZ core we suggest that nitrification is an active process in the nitrogen cycle of this region of the ETNP OMZ.
    Description: This project resulted from a cruise of opportunity and was not expressly funded by any particular project. Projects which contributed to travel and sequencing costs had no funds allocated to publication costs and expired over a year ago. As I am a very active member of the Frontiers in Marine Science Editorial Board. I was granted one free submission and now request a waiver of the Article Processing Charges for this article.
    Keywords: Eastern tropical north pacific ; Oxygen minimum zones ; Prokaryoplankton community structure ; Oxygen gradients ; Nitrification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mao, X., Augyte, S., Huang, M., Hare, M. P., Bailey, D., Umanzor, S., Marty-Rivera, M., Robbins, K. R., Yarish, C., Lindell, S., & Jannink, J. Population genetics of sugar kelp throughout the Northeastern United States genome-wide markers. Frontiers in Marine Science, 7, (2020): 694, doi:10.3389/fmars.2020.00694.
    Description: An assessment of genetic diversity of marine populations is critical not only for the understanding and preserving natural biodiversity but also for its commercial potential. As commercial demand rises for marine resources, it is critical to generate baseline information for monitoring wild populations. Furthermore, anthropogenic stressors on the coastal environment, such as warming sea temperatures and overharvesting of wild populations, are leading to the destruction of keystone marine species such as kelps. In this study, we conducted a fine-scale genetic analysis using genome-wide high-density markers on Northwest Atlantic sugar kelp. The population structure for a total of 149 samples from the Gulf of Maine (GOM) and Southern New England (SNE) was investigated using AMOVA, FST, admixture, and PCoA. Genome-wide association analyses were conducted for six morphological traits, and the extended Lewontin and Krakauer (FLK) test was used to detect selection signatures. Our results indicate that the GOM region is more heterogeneous than SNE. These two regions have large genetic difference (between-location FST ranged from 0.21 to 0.32) and were separated by Cape Cod, which is known to be the biogeographic barrier for other taxa. We detected one significant SNP (P = 2.03 × 10–7) associated with stipe length, and 248 SNPs with higher-than-neutral differentiation. The findings of this study provide baseline knowledge on sugar kelp population genetics for future monitoring, managing and potentially restoring wild populations, as well as assisting in selective breeding to improve desirable traits for future commercialization opportunities.
    Description: We acknowledge funding support from the U.S. Depaertment of Energy ARPA-E (DE-AR0000915), and the Massachusetts Clean Energy Center (AmplifyMass).
    Keywords: Saccharina latissima ; Population structure ; Genome-wide analysis ; Cultivation ; Northeastern United States
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scalpone, C. R., Jarvis, J. C., Vasslides, J. M., Testa, J. M., & Ganju, N. K. Simulated estuary-wide response of seagrass (Zostera marina) to future scenarios of temperature and sea level. Frontiers in Marine Science, 7, (2020): 539946, doi:10.3389/fmars.2020.539946.
    Description: Seagrass communities are a vital component of estuarine ecosystems, but are threatened by projected sea level rise (SLR) and temperature increases with climate change. To understand these potential effects, we developed a spatially explicit model that represents seagrass (Zostera marina) habitat and estuary-wide productivity for Barnegat Bay-Little Egg Harbor (BB-LEH) in New Jersey, United States. Our modeling approach included an offline coupling of a numerical seagrass biomass model with the spatially variable environmental conditions from a hydrodynamic model to calculate above and belowground biomass at each grid cell of the hydrodynamic model domain. Once calibrated to represent present day seagrass habitat and estuary-wide annual productivity, we applied combinations of increasing air temperature and sea level following regionally specific climate change projections, enabling analysis of the individual and combined impacts of these variables on seagrass biomass and spatial coverage. Under the SLR scenarios, the current model domain boundaries were maintained, as the land surrounding BB-LEH is unlikely to shift significantly in the future. SLR caused habitat extent to decrease dramatically, pushing seagrass beds toward the coastline with increasing depth, with a 100% loss of habitat by the maximum SLR scenario. The dramatic loss of seagrass habitat under SLR was in part due to the assumption that surrounding land would not be inundated, as the model did not allow for habitat expansion outside the current boundaries of the bay. Temperature increases slightly elevated the rate of summer die-off and decreased habitat area only under the highest temperature increase scenarios. In combined scenarios, the effects of SLR far outweighed the effects of temperature increase. Sensitivity analysis of the model revealed the greatest sensitivity to changes in parameters affecting light limitation and seagrass mortality, but no sensitivity to changes in nutrient limitation constants. The high vulnerability of seagrass in the bay to SLR exceeded that demonstrated for other systems, highlighting the importance of site- and region-specific assessments of estuaries under climate change.
    Description: This research was supported by the National Science Foundation Research Experience for Undergraduates Program (OCE-1659463), the Woods Hole Oceanographic Institution Summer Student Fellowship Program, the Barnegat Bay Partnership (through a US EPA Clean Water Act grant to Ocean County College; CE98212313), and the USGS Coastal and Marine Hazards/Resources Program. Although this project has been funded in part by the United States Environmental Protection Agency pursuant to a grant agreement with Ocean County College, it has not gone through the Agency’s publications review process and may not necessarily reflect the views of the Agency; therefore, no official endorsement should be assumed. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Seagrass (Zostera) ; Climate change ; Spatial model ; Sea level rise ; Temperature ; North American Atlantic Coast ; Regional ; Eelgrass (Zostera marina)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., Andre, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbeoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouet, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourles, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P., Rannou, J., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P., Velez-Belchi, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S., & Park, H. Argo data 1999-2019: two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Frontiers in Marine Science, 7, (2020): 700, doi:10.3389/fmars.2020.00700.
    Description: In the past two decades, the Argo Program has collected, processed, and distributed over two million vertical profiles of temperature and salinity from the upper two kilometers of the global ocean. A similar number of subsurface velocity observations near 1,000 dbar have also been collected. This paper recounts the history of the global Argo Program, from its aspiration arising out of the World Ocean Circulation Experiment, to the development and implementation of its instrumentation and telecommunication systems, and the various technical problems encountered. We describe the Argo data system and its quality control procedures, and the gradual changes in the vertical resolution and spatial coverage of Argo data from 1999 to 2019. The accuracies of the float data have been assessed by comparison with high-quality shipboard measurements, and are concluded to be 0.002°C for temperature, 2.4 dbar for pressure, and 0.01 PSS-78 for salinity, after delayed-mode adjustments. Finally, the challenges faced by the vision of an expanding Argo Program beyond 2020 are discussed.
    Description: AW, SR, and other scientists at the University of Washington (UW) were supported by the US Argo Program through the NOAA Grant NA15OAR4320063 to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) at the UW. SW and other scientists at the Woods Hole Oceanographic Institution (WHOI) were supported by the US Argo Program through the NOAA Grant NA19OAR4320074 (CINAR/WHOI Argo). The Scripps Institution of Oceanography's role in Argo was supported by the US Argo Program through the NOAA Grant NA15OAR4320071 (CIMEC). Euro-Argo scientists were supported by the Monitoring the Oceans and Climate Change with Argo (MOCCA) project, under the Grant Agreement EASME/EMFF/2015/1.2.1.1/SI2.709624 for the European Commission.
    Keywords: global ; ocean ; pressure ; temperature ; salinity ; Argo ; profiling ; floats
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marian, J. E. A. R., Apostólico, L. H., Chiao, C. C., Hanlon, R. T., Hirohashi, N., Iwata, Y., Mather, J., Sato, N., & Shaw, P. W. Male alternative reproductive tactics and associated evolution of anatomical characteristics in loliginid squid. Frontiers in Physiology, 10, (2019): 1281, doi: 10.3389/fphys.2019.01281.
    Description: Loliginid squids provide a unique model system to explore male alternative reproductive tactics (ARTs) and their linkage to size, behavioral decision making, and possibly age. Large individuals fight one another and the winners form temporary consortships with females, while smaller individuals do not engage in male-male agonistic bouts but use various sneaker tactics to obtain matings, each with varying mating and fertilization success. There is substantial behavioral flexibility in most species, as smaller males can facultatively switch to the alternative consort behaviors as the behavioral context changes. These forms of ARTs can involve different: mating posture; site of spermatophore deposition; fertilization success; and sperm traits. Most of the traits of male dimorphism (both anatomical and behavioral) are consistent with traditional sexual selection theory, while others have unique features that may have evolved in response to the fertilization environment faced by each temporary or permanent male morph.
    Description: JM acknowledges the funding provided by FAPESP (São Paulo Research Foundation – proc. 2013/02653-1, 2014/11008-5, 2015/15447-6, 2017/16182-1, and 2018/19180-2), CNPq (National Council for Scientific and Technological Development – proc. 477233/2013–9), and CAPES (Coordination for the Improvement of Higher Education Personnel – Finance Code 001).
    Keywords: Sexual selection ; Alternative phenotypes ; ARTs ; ale dimorphism ; Consort ; Sneaker ; Cephalopoda ; Loliginidae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Soll, L. G., Eisen, J. N., Vargas, K. J., Medeiros, A. T., Hammar, K. M., & Morgan, J. R. α-Synuclein-112 impairs synaptic vesicle recycling consistent with its enhanced membrane binding properties. Frontiers in Cell and Developmental Biology, 8, (2020): 405, doi:10.3389/fcell.2020.00405.
    Description: Synucleinopathies are neurological disorders associated with α-synuclein overexpression and aggregation. While it is well-established that overexpression of wild type α-synuclein (α-syn-140) leads to cellular toxicity and neurodegeneration, much less is known about other naturally occurring α-synuclein splice isoforms. In this study we provide the first detailed examination of the synaptic effects caused by one of these splice isoforms, α-synuclein-112 (α-syn-112). α-Syn-112 is produced by an in-frame excision of exon 5, resulting in deletion of amino acids 103–130 in the C-terminal region. α-Syn-112 is upregulated in the substantia nigra, frontal cortex, and cerebellum of parkinsonian brains and higher expression levels are correlated with susceptibility to Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). We report here that α-syn-112 binds strongly to anionic phospholipids when presented in highly curved liposomes, similar to α-syn-140. However, α-syn-112 bound significantly stronger to all phospholipids tested, including the phosphoinositides. α-Syn-112 also dimerized and trimerized on isolated synaptic membranes, while α-syn-140 remained largely monomeric. When introduced acutely to lamprey synapses, α-syn-112 robustly inhibited synaptic vesicle recycling. Interestingly, α-syn-112 produced effects on the plasma membrane and clathrin-mediated synaptic vesicle endocytosis that were phenotypically intermediate between those caused by monomeric and dimeric α-syn-140. These findings indicate that α-syn-112 exhibits enhanced phospholipid binding and oligomerization in vitro and consequently interferes with synaptic vesicle recycling in vivo in ways that are consistent with its biochemical properties. This study provides additional evidence suggesting that impaired vesicle endocytosis is a cellular target of excess α-synuclein and advances our understanding of potential mechanisms underlying disease pathogenesis in the synucleinopathies.
    Description: This study was supported by a research grant from the National Institutes of Health (NIH NINDS/NIA R01 NS078165 to JM), as well as research funds from the Marine Biological Laboratory (to JM).
    Keywords: Clathrin ; Endocytosis ; Lamprey ; Phosphoinositide ; Synapse ; Synuclein ; Synaptic vesicle recycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Samson, J. E., Ghisalberti, M., Adams, M. P., Reidenbach, M. A., Long, M. H., Shavit, U., & Pasour, V. B. Editorial: Canopies in aquatic ecosystems: integrating form, function, and biophysical processes. Frontiers in Marine Science, 6, (2019): 697, doi: 10.3389/fmars.2019.00697.
    Description: This Research Topic presents new research investigating the coupling between physical (fluid dynamics, mass transport, and light availability) and biological (nutrient cycling, particle transport, ecosystem structure, and biodiversity) processes in aquatic canopies. The starting point for this topic was the observation that our notion of “canopy” in the aquatic sciences, in contrast to that of our terrestrially-focused colleagues, remains underdeveloped. Forest canopy studies have been considered a new field of science (Nadkarni et al., 2011) and the concept of forest canopy research is clearly documented in the literature (Barker and Pinard, 2001; Nadkarni, 2001; Lowman, 2009); we have not found similar mentions of the canopy concept in aquatic studies. Over the past decade, however, there has been an increase in the number of studies on underwater canopies, as well as a shift toward more multidisciplinary studies that consider more than just the physical impacts of the canopy's presence (Ackerman, 2007; Nepf et al., 2007; O'Brien et al., 2014).
    Description: MA acknowledges funding support from Australian Research Council (ARC) Linkage Grant LP160100496 and the National Environmental Science Programme (NESP) Tropical Water Quality Hub. Funding to MR provided by the National Science Foundation (DEB-1237733 and DEB-1832221) and by a NSF CAREER grant (OCE-1151314). ML was supported by NSF OCE grant 1633951.
    Keywords: Fluid dynamics ; Ecosystem engineering ; Coral ; Algae ; Canopy ; Mass transport ; Light availability ; Nutrient cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cresswell, T., Metian, M., Fisher, N. S., Charmasson, S., Hansman, R. L., Bam, W., Bock, C., & Swarzenski, P. W. Exploring new frontiers in marine radioisotope tracing - adapting to new opportunities and challenges. Frontiers in Marine Science, 7, (2020): 406, doi:10.3389/fmars.2020.00406.
    Description: Radioisotopes have been used in earth and environmental sciences for over 150 years and provide unique tools to study environmental processes in great detail from a cellular level through to an oceanic basin scale. These nuclear techniques have been employed to understand coastal and marine ecosystems via laboratory and field studies in terms of how aquatic organisms respond to environmental stressors, including temperature, pH, nutrients, metals, organic anthropogenic contaminants, and biological toxins. Global marine issues, such as ocean warming, deoxygenation, plastic pollution, ocean acidification, increased duration, and intensity of toxic harmful algal blooms (HABs), and coastal contamination are all impacting marine environments, thereby imposing various environmental and economic risks. Being able to reliably assess the condition of coastal and marine ecosystems, and how they may respond to future disturbances, can provide vital information for society in the sustainable management of their marine environments. This paper summarizes the historical use of radiotracers in these systems, describes how existing techniques of radioecological tracing can be developed for specific current environmental issues and provides information on emerging issues that would benefit from current and new radiotracer methods. Current challenges with using radioecological tracers and opportunities are highlighted, as well as opportunities to maximize the application of these methods to greatly increase the ability of environmental managers to conduct evidence-based management of coastal and marine ecosystems.
    Description: The IAEA is grateful for the support provided to its Environment Laboratories by the Government of the Principality of Monaco. This contribution was made within the framework of the IAEA CRP on “Applied radioecological tracers to assess coastal and marine ecosystem health” (K41019).
    Keywords: Radionuclides ; Radiotracers ; Radioecology ; Ecosystem condition ; Marine ; Coastal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hoagland, P., Kirkpatrick, B., Jin, D., Kirkpatrick, G., Fleming, L. E., Ullmann, S. G., Beet, A., Hitchcock, G., Harrison, K. K., Li, Z. C., Garrison, B., Diaz, R. E., & Lovko, V. Lessening the hazards of Florida red tides: a common sense approach. Frontiers in Marine Science, 7, (2020): 538, doi:10.3389/fmars.2020.00538.
    Description: In the Gulf of Mexico, especially along the southwest Florida coast, blooms of the dinoflagellate Karenia brevis are a coastal natural hazard. The organism produces a potent class of toxins, known as brevetoxins, which are released following cell lysis into ocean or estuarine waters or, upon aerosolization, into the atmosphere. When exposed to sufficient levels of brevetoxins, humans may suffer from respiratory, gastrointestinal, or neurological illnesses. The hazard has been exacerbated by the geometric growth of human populations, including both residents and tourists, along Florida’s southwest coast. Impacts to marine organisms or ecosystems also may occur, such as fish kills or deaths of protected mammals, turtles, or birds. Since the occurrence of a severe Karenia brevis bloom off the southwest Florida coast three-quarters of a century ago, there has been an ongoing debate about the best way for humans to mitigate the impacts of this hazard. Because of the importance of tourism to coastal Florida, there are incentives for businesses and governments alike to obfuscate descriptions of these blooms, leading to the social amplification of risk. We argue that policies to improve the public’s ability to understand the physical attributes of blooms, specifically risk communication policies, are to be preferred over physical, chemical, or biological controls. In particular, we argue that responses to this type of hazard must emphasize maintaining the continuity of programs of scientific research, environmental monitoring, public education, and notification. We propose a common-sense approach to risk communication, comprising a simplification of the public provision of existing sources of information to be made available on a mobile website.
    Description: The research leading to these results was supported by the US National Science Foundation (NSF) under NSF Grant No. CNH 1009106. PH and DJ acknowledge the complementary support under NSF Grant No. PFI/BIC 1534054.
    Keywords: Harmful algal bloom ; Florida red tide ; Karenia brevis ; Economic effect ; Policy response ; Social amplification of risk ; Risk communication
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sandifer, P., Knapp, L., Lichtveld, M., Manley, R., Abramson, D., Caffey, R., Cochran, D., Collier, T., Ebi, K., Engel, L., Farrington, J., Finucane, M., Hale, C., Halpern, D., Harville, E., Hart, L., Hswen, Y., Kirkpatrick, B., McEwen, B., Morris, G., Orbach, R., Palinkas, L., Partyka, M., Porter, D., Prather, A. A., Rowles, T., Scott, G., Seeman, T., Solo-Gabriele, H., Svendsen, E., Tincher, T., Trtanj, J., Walker, A. H., Yehuda, R., Yip, F., Yoskowitz, D., & Singer, B. Framework for a community health observing system for the Gulf of Mexico Region: preparing for future disasters. Frontiers in Public Health, 8, (2020): 578463, doi:10.3389/fpubh.2020.578463.
    Description: The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop.
    Description: This project was supported in part by contract # C-231826 between the Gulf of Mexico Alliance, on behalf of the Gulf of Mexico Research Initiative, and the College of Charleston. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf of Mexico Alliance, the Gulf of Mexico Research Initiative, the College of Charleston, or the Centers for Disease Control and Prevention. Mention of private companies, trade names, or products does not imply endorsement of any kind.
    Keywords: Health observing system ; Disasters ; Gulf of Mexico ; Cohort studies ; Stress ; COVID-19 ; Allostatic load ; Health surveillance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hernandez-Fernandez, L., Gonzalez de Zayas, R., Weber, L., Apprill, A., & Armenteros, M. Small-scale variability dominates benthic coverage and diversity across the Jardines de la Reina, Cuba coral reef system. Frontiers in Marine Science, 6, (2019): 747, doi: 10.3389/fmars.2019.00747.
    Description: Coral reefs are complex and biodiverse ecosystems that are undergoing significant change. Understanding reef composition and biodiversity at multiple spatial scales is necessary to track both large-scale and more subtle ecosystem changes. The Jardines de la Reina (JR) archipelago, located offshore of the island of Cuba, contains the largest marine protected area (MPA) in the Caribbean Sea but lacks multi-scale studies. In this contribution, we documented the diversity of scleractinian corals, octocorals, algae, and sponges across nested spatial scales spanning four orders of magnitude (101–105 m). In addition, we tested the hypothesis that species diversity followed a gradient along the ca. 200 km of reef tract. Across the archipelago, we examined benthic cover and species diversity within 255 photo-quadrats (25 × 25 cm) at 13 fore reef sites (two sampling locations per site, and 10 photo-quadrats per location). Small-scale (101 m) variability between photo-quadrats characterized the coral reef community structure in JR compared with local- (102 m) and mesoscale (104–105 m) variability. This finding suggests that biological processes (e.g., recruitment, competition) had primacy over hydrodynamics for driving the differences in reef community composition. However, the dominance of algae and low cover and diversity of scleractinian corals suggests the pervasive effects of global change on coral communities despite potential benefits provided by the MPA (e.g., oligotrophy and abundance of herbivores). There was no gradient of benthic community structure along the fore reef tract of JR; instead, a patchy distribution occurred in response to more subtle drivers acting at local scales. Overall, our multi-scale comparison was useful for differentiating the impacts of processes potentially impacting the JR reefs, thus providing important information to understand how reef communities are impacted by different environmental and anthropogenic stressors, and the potential benefits of MPAs.
    Description: This work was supported by the Dalio Foundation’s Dalio Ocean Initiative (now “OceanX”).
    Keywords: Coral reef ; Caribbean Sea ; Protected area ; Species richness ; β-diversity ; Spatial scale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P. E., Hansmann, R., Elvert, M., Middelburg, J. J., Engel, A., Blattmann, T. M., Catala, T. S., Lennartz, S. T., Gomez-Saez, G., V., Pantoja-Gutierrez, S., Bao, R., & Galy, V. Soothsaying DOM: A current perspective on the future of oceanic dissolved organic carbon. Frontiers in Marine Science, 7, (2020): 341, doi:10.3389/fmars.2020.00341.
    Description: The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models.
    Description: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 422798570. The Hanse-Wissenschaftskolleg and the Geochemical Society provided funding for the conference. Additional support was provided by the National Science Foundation OCE #1756812 to SW. TB acknowledges funding from ETH Zürich and JAMSTEC. JM was supported by the Netherlands Earth System Science Centre. SP-G was funded by COPAS Sur-Austral (CONICYT PIA APOYO CCTE AFB170006). GG-S acknowledges funding from DFG, DI 842/6-1.
    Keywords: Dissolved organic carbon ; Global carbon cycle ; Recalcitrance ; Isotopic probing ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benthuysen, J. A., Oliver, E. C. J., Chen, K., & Wernberg, T. Editorial: advances in understanding marine heatwaves and their impacts. Frontiers in Marine Science, 7, (2020): 147, doi:10.3389/fmars.2020.00147.
    Description: Editorial on the Research Topic Advances in Understanding Marine Heatwaves and Their Impacts In recent years, prolonged, extremely warm water events, known as marine heatwaves, have featured prominently around the globe with their disruptive consequences for marine ecosystems. Over the past decade, marine heatwaves have occurred from the open ocean to marginal seas and coastal regions, including the unprecedented 2011 Western Australia marine heatwave (Ningaloo Niño) in the eastern Indian Ocean (e.g., Pearce et al., 2011), the 2012 northwest Atlantic marine heatwave (Chen et al., 2014), the 2012 and 2015 Mediterranean Sea marine heatwaves (Darmaraki et al., 2019), the 2013/14 western South Atlantic (Rodrigues et al., 2019) and 2017 southwestern Atlantic marine heatwave (Manta et al., 2018), the persistent 2014–2016 “Blob” in the North Pacific (Bond et al., 2015; Di Lorenzo and Mantua, 2016), the 2015/16 marine heatwave spanning the southeastern tropical Indian Ocean to the Coral Sea (Benthuysen et al., 2018), and the Tasman Sea marine heatwaves in 2015/16 (Oliver et al., 2017) and 2017/18 (Salinger et al., 2019). These events have set new records for marine heatwave intensity, the temperature anomaly exceeding a climatology, and duration, the sustained period of extreme temperatures. We have witnessed the profound consequences of these thermal disturbances from acute changes to marine life to enduring impacts on species, populations, and communities (Smale et al., 2019). These marine heatwaves have spurred a diversity of research spanning the methodology of identifying and quantifying the events (e.g., Hobday et al., 2016) and their historical trends (Oliver et al., 2018), understanding their physical mechanisms and relationships with climate modes (e.g., Holbrook et al., 2019), climate projections (Frölicher et al., 2018), and understanding the biological impacts for organisms and ecosystem function and services (e.g., Smale et al., 2019). By using sea surface temperature percentiles, temperature anomalies can be quantified based on their local variability and account for the broad range of temperature regimes in different marine environments. For temperatures exceeding a 90th-percentile threshold beyond a period of 5-days, marine heatwaves can be classified into categories based on their intensity (Hobday et al., 2018). While these recent advances have provided the framework for understanding key aspects of marine heatwaves, a challenge lies ahead for effective integration of physical and biological knowledge for prediction of marine heatwaves and their ecological impacts. This Research Topic is motivated by the need to understand the mechanisms for how marine heatwaves develop and the biological responses to thermal stress events. This Research Topic is a collection of 18 research articles and three review articles aimed at advancing our knowledge of marine heatwaves within four themes. These themes include methods for detecting marine heatwaves, understanding their physical mechanisms, seasonal forecasting and climate projections, and ecological impacts.
    Description: We thank the contributing authors, reviewers, and the editorial staff at Frontiers in Marine Science for their support in producing this issue. We thank the Marine Heatwaves Working Group (http://www.marineheatwaves.org/) for inspiration and discussions. This special issue stemmed from the session on Advances in Understanding Marine Heat Waves and Their Impacts at the 2018 Ocean Sciences meeting (Portland, USA).
    Keywords: Marine heatwaves ; Extreme events ; Ocean and atmosphere interactions ; Marine ecosystems ; Marine resources ; Climate change ; Climate variability ; Climate prediction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gorsky, G., Bourdin, G., Lombard, F., Pedrotti, M. L., Audrain, S., Bin, N., Boss, E., Bowler, C., Cassar, N., Caudan, L., Chabot, G., Cohen, N. R., Cron, D., De Vargas, C., Dolan, J. R., Douville, E., Elineau, A., Flores, J. M., Ghiglione, J. F., Haentjens, N., Hertau, M., John, S. G., Kelly, R. L., Koren, I., Lin, Y., Marie, D., Moulin, C., Moucherie, Y., Pesant, S., Picheral, M., Poulain, J., Pujo-Pay, M., Reverdin, G., Romac, S., Sullivan, M. B., Trainic, M., Tressol, M., Trouble, R., Vardi, A., Voolstra, C. R., Wincker, P., Agostini, S., Banaigs, B., Boissin, E., Forcioli, D., Furla, P., Galand, P. E., Gilson, E., Reynaud, S., Sunagawa, S., Thomas, O. P., Thurber, R. L. V., Zoccola, D., Planes, S., Allemand, D., Karsenti, E. Expanding Tara oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016-2018). Frontiers in Marine Science, 6, (2019): 750, doi: 10.3389/fmars.2019.00750.
    Description: Interactions between the ocean and the atmosphere occur at the air-sea interface through the transfer of momentum, heat, gases and particulate matter, and through the impact of the upper-ocean biology on the composition and radiative properties of this boundary layer. The Tara Pacific expedition, launched in May 2016 aboard the schooner Tara, was a 29-month exploration with the dual goals to study the ecology of reef ecosystems along ecological gradients in the Pacific Ocean and to assess inter-island and open ocean surface plankton and neuston community structures. In addition, key atmospheric properties were measured to study links between the two boundary layer properties. A major challenge for the open ocean sampling was the lack of ship-time available for work at “stations”. The time constraint led us to develop new underway sampling approaches to optimize physical, chemical, optical, and genomic methods to capture the entire community structure of the surface layers, from viruses to metazoans in their oceanographic and atmospheric physicochemical context. An international scientific consortium was put together to analyze the samples, generate data, and develop datasets in coherence with the existing Tara Oceans database. Beyond adapting the extensive Tara Oceans sampling protocols for high-resolution underway sampling, the key novelties compared to Tara Oceans’ global assessment of plankton include the measurement of (i) surface plankton and neuston biogeography and functional diversity; (ii) bioactive trace metals distribution at the ocean surface and metal-dependent ecosystem structures; (iii) marine aerosols, including biological entities; (iv) geography, nature and colonization of microplastic; and (v) high-resolution underway assessment of net community production via equilibrator inlet mass spectrometry. We are committed to share the data collected during this expedition, making it an important resource important resource to address a variety of scientific questions.
    Description: We are thankful for the commitment of the people and the following institutions, for their financial and scientific support that made this singular expedition possible: CNRS, PSL, CSM, EPHE, Genoscope/CEA, Inserm, Université Cote d’Azur, ANR, the Tara Ocean Foundation and its partners agnès b., UNESCO-IOC, the Veolia Environment Foundation, Région Bretagne, Serge Ferrari, Billerudkorsnas, Amerisource Bergen Company, Altran, Lorient Agglomeration, Oceans by Disney, the Prince Albert II de Monaco Foundation, L’Oréal, Biotherm, France Collectivités, Kankyo Station, Fonds Français pour l’Environnement Mondial (FFEM), Etienne Bourgois, the Tara Ocean Foundation teams and crew. Tara Pacific would not exist without the continuous support of the participating institutes. This study has been conducted using E.U. Copernicus Marine Service Information and Mercator Ocean products. We acknowledge funding from the Investissement d’avenir project France Génomique (ANR-10-INBS-09). FL is supported by Sorbonne Université, Institut Universitaire de France and the Fondation CA-PCA. The in-line and atmospheric optics dataset was collected and analyzed with support from NASA Ocean Biology and Biogeochemistry program under grants NNX13AE58G and NNX15AC08G to University of Maine. MF, IK, and AV are supported by a research grant from Scott Jordan and Gina Valdez, the De Botton for Marine Science, the Yeda-Sela center for Basic research, and the Sustainability and Energy Research Initiative (SAERI). NCo was supported by a grant from the Simons Foundation/SFARI (544236). NCa and YL were supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d’Avenir.” The support of Pr. Alan Fuchs, President of CNRS, was crucial for the success of the surface sampling undertaken during the Tara Pacific expedition. We thank A. Gavilli from TECA Inc. France, and E. Tanguy and D. Delhommeau from the Institut de la Mer, Villefranche-sur-Mer for the helpful collaboration in the conception of the High Speed Net and the Dolphin systems. This publication is number 2 of the Tara Pacific Consortium.
    Keywords: Neuston/plankton genomics/taxonomy/imaging ; Aerosols ; NCP ; IOP ; Trace metals ; Microplastic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DiBenedetto, M. H. Non-breaking wave effects on buoyant particle distributions. Frontiers in Marine Science, 7, (2020): 148, doi:10.3389/fmars.2020.00148.
    Description: The dispersal of buoyant particles in the ocean mixed layer is influenced by a variety of physical factors including wind, waves, and turbulence. Microplastics observations are often made at the free surface, which is strongly forced by surface gravity waves. Many studies have used numerical simulations to examine how turbulence and wave effects (e.g., breaking waves, Langmuir circulation) control buoyant particle dispersal at the ocean surface. However these simulations are not wave phase-resolving. Therefore, the effects of an unsteady free surface due to surface gravity waves remain unknown in this context. To address this, we develop an analytical model for the distribution of buoyant particles as a function of wave-phase under wind-wave conditions in deep-water. Using this analytical model and complementary numerical simulations, we quantify the effects of a nonbreaking, monochromatic, progressive wave train on the equilibrium vertical and horizontal distributions of buoyant particles. We find that waves result in non-uniform horizontal distributions of particles with more particles under the wave crests than the troughs. We also find that the waves can stretch or compress the equilibrium vertical distribution. Finally, we consider the effects of waves on the sampling of microplastics with a towed net, and we show that waves have the ability to lower the measured concentrations relative to nets sampling without the influence of waves.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, and by the US National Science Foundation under grant no. CBET-1706586.
    Keywords: Ocean waves ; Microplastics ; Particle distributions ; Sampling error ; Particle-laden flows ; Neuston nets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Moore, M. J., Mitchell, G. H., Rowles, T. K., & Early, G. Dead cetacean? beach, bloat, float, sink. Frontiers in Marine Science, 7, (2020): 333, doi:10.3389/fmars.2020.00333.
    Description: Variably buoyant, dead Cetacea may float, or sink and later bloat to refloat if ambient temperature and pressure allow sufficient decomposition gas formation and expansion. Mortality can result from acute or chronic disease, fishery entanglement, vessel collision, noxious noises, or toxicant spills. Investigators often face the daunting task of elucidating a complex series of events, in reverse order, from when and where an animal is found, and to diagnose the cause of death. Various scenarios are possible: an animal could die at sea remaining there or floating ashore, or strand on a beach alive, where it dies and, if cast high enough, remain beached to be scavenged or decompose. An animal that rests low on a beach may refloat again, through increased buoyancy from decomposition gas and favorable tides, currents, and wind. Here we review the factors responsible for the different outcomes, and how to recognize the provenance of a cetacean mortality found beached, or floating at sea. In conclusion, only some carcasses strand, or remain floating. Negatively buoyant animals that die at depth, or on the surface, and sink, may never surface, even after decomposition gas accumulation, as in cold, deep waters gas may fail to adequately reduce the density of a carcass, precluding it from returning to the surface.
    Keywords: cadaver ; beach ; sink ; float ; fate ; cetacean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, M. L., Becraft, E. D., Pachiadaki, M., Brown, J. M., Jarett, J. K., Gasol, J. M., Ravin, N. V., Moser, D. P., Nunoura, T., Herndl, G. J., Woyke, T., & Stepanauskas, R. Hiding in plain sight: the globally distributed bacterial candidate phylum PAUC34f. Frontiers in Microbiology, 11, (2020): 376, doi: 10.3389/fmicb.2020.00376.
    Description: Bacterial candidate phylum PAUC34f was originally discovered in marine sponges and is widely considered to be composed of sponge symbionts. Here, we report 21 single amplified genomes (SAGs) of PAUC34f from a variety of environments, including the dark ocean, lake sediments, and a terrestrial aquifer. The diverse origins of the SAGs and the results of metagenome fragment recruitment suggest that some PAUC34f lineages represent relatively abundant, free-living cells in environments other than sponge microbiomes, including the deep ocean. Both phylogenetic and biogeographic patterns, as well as genome content analyses suggest that PAUC34f associations with hosts evolved independently multiple times, while free-living lineages of PAUC34f are distinct and relatively abundant in a wide range of environments.
    Description: This work was funded by the United States National Science Foundation grants 1460861 (REU site at Bigelow Laboratory for Ocean Sciences), 1441717, 1335810, and 1232982 to RS, and the Simons Foundation (Life Sciences Project Award ID 510023) to RS. NR was supported by the Ministry of Science and Higher Education of Russia. GH was supported by the Austrian Science Fund (FWF) project ARTEMIS (P28781-B21) and the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC (Grant Agreement No. 268595). JG was supported by Spanish project RTI2018-101025-B-I00. TW and JJ were funded by the U.S. Department of Energy, Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231.
    Keywords: microbial ecology ; uncultivated bacteria ; microbial genomics ; dark ocean ; host-association
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McLean, C., & Kujawinski, E. B. AutoTuner: high fidelity and robust parameter selection for metabolomics data processing. Analytical Chemistry, 92(8), (2020): 5724-5732, doi:10.1021/acs.analchem.9b04804.
    Description: Untargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-spectral peaks across samples. This step requires selection of dataset-specific parameters, as erroneous parameters can result in noise inflation. While several algorithms exist to automate parameter selection, each depends on gradient descent optimization functions. In contrast, our new parameter optimization algorithm, AutoTuner, obtains parameter estimates from raw data in a single step as opposed to many iterations. Here, we tested the accuracy and the run-time of AutoTuner in comparison to isotopologue parameter optimization (IPO), the most commonly used parameter selection tool, and compared the resulting parameters’ influence on the properties of feature tables after processing. We performed a Monte Carlo experiment to test the robustness of AutoTuner parameter selection and found that AutoTuner generated similar parameter estimates from random subsets of samples. We conclude that AutoTuner is a desirable alternative to existing tools, because it is scalable, highly robust, and very fast (∼100–1000× speed improvement from other algorithms going from days to minutes). AutoTuner is freely available as an R package through BioConductor.
    Description: We thank Titus Brown and Ben Temperton for advice on the algorithm validation, Arthur Eschenlauer for constructive feedback on the software design, Krista Longnecker for continuous support and discussions, Gabriel Leventhal for mathematics advice, the users of AutoTuner for debugging help through Github, and David Angeles-Albores and two anonymous reviewers for critical feedback on the manuscript. Funding support included the National GEM Consortium and NSF graduate research program fellowships (C.M.) and grants from the MIT Microbiome Center (Award 6936800, E.B.K.) and the Simons Foundation (Award ID #509034, E.B.K.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wassmer, T., Jensen, F. H., Fahlman, A., & Murray, D. L. Editorial: Ecology and behaviour of free-ranging animals studied by advanced data-logging and tracking techniques. Frontiers in Ecology and Evolution, 8, (2020): 113, doi:10.3389/fevo.2020.00113.
    Description: Many details of the behavior, life history and eco-physiology of animals, even among intensively-studied species, remain unknown. Direct observation is a laborious process only amenable for accessible and non-cryptic species, whereas traditional radio telemetry does not directly provide information on the diversity and complexity of animal physiology and behavior. Further, both methods are laborious and/or expensive, and may lead to biased data when physiology and/or behaviors are altered by marking or tracking (Boyer-Ontl and Pruetz, 2014; Nowak et al., 2014; Welch et al., 2018; see also Le Grand et al.). Ultimately, these methods provide only a fragmentary overview of animal behavior patterns during periods when individuals can be readily detected and surveyed while leaving activities during other times obscured. However, the ongoing miniaturization, sensor development, and increased affordability of data logging and advanced telemetric devices offers the potential for continuous and intensive data collection, thereby potentially allowing researchers to more rigorously investigate both physiology and behavior of animals that are difficult to study using traditional observational methods. Owing to these new technologies, we are at the cusp of a truly revolutionary opportunity to address important and longstanding knowledge gaps in animal eco-physiology. To that end, the special section entitled Ecology and Behaviour of Free-Ranging Animals Studied by Advanced Data-Logging and Tracking Techniques includes 22 papers that report on and quantify otherwise hidden aspects of the biology of a variety of mammals, birds, and even invertebrates, across diverse environments including land, water, and air. The highlighted studies focus on fields ranging from basic animal behavior and ecology to eco-physiology; several papers adopt an integrative approach, providing a rather comprehensive understanding of individual time budgets and their implications. Ultimately and collectively, these contributions serve as testament to the drastic improvement in the level of ecological inference that can be derived from research studies involving the use of data-logging and tracking devices that are currently available.
    Keywords: data logger ; eco physiology ; activity pattern ; foraging ; movement ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Muelbert, J. H., Nidzieko, N. J., Acosta, A. T. R., Beaulieu, S. E., Bernardino, A. F., Boikova, E., Bornman, T. G., Cataletto, B., Deneudt, K., Eliason, E., Kraberg, A., Nakaoka, M., Pugnetti, A., Ragueneau, O., Scharfe, M., Soltwedel, T., Sosik, H. M., Stanisci, A., Stefanova, K., Stephan, P., Stier, A., Wikner, J., & Zingone, A. ILTER - the International Long-Term Ecological Research Network as a platform for global coastal and ocean observation. Frontiers in Marine Science, 6, (2019): 527, doi: 10.3389/fmars.2019.00527.
    Description: Understanding the threats to global biodiversity and ecosystem services posed by human impacts on coastal and marine environments requires the establishment and maintenance of ecological observatories that integrate the biological, physical, geological, and biogeochemical aspects of ecosystems. This is crucial to provide scientists and stakeholders with the support and knowledge necessary to quantify environmental change and its impact on the sustainable use of the seas and coasts. In this paper, we explore the potential for the coastal and marine components of the International Long-Term Ecological Research Network (ILTER) to fill this need for integrated global observation, and highlight how ecological observations are necessary to address the challenges posed by climate change and evolving human needs and stressors within the coastal zone. The ILTER is a global network encompassing 44 countries and 700 research sites in a variety of ecosystems across the planet, more than 100 of which are located in coastal and marine environments (ILTER-CMS). While most of the ILTER-CMS were established after the year 2000, in some cases they date back to the early 1900s. At ILTER sites, a broad variety of abiotic and biotic variables are measured, which may feed into other global initiatives. The ILTER community has produced tools to harmonize and compare measurements and methods, allowing for data integration workflows and analyses between and within individual ILTER sites. After a brief historical overview of ILTER, with emphasis on the marine component, we analyze the potential contribution of the ILTER-CMS to global coastal and ocean observation, adopting the “Strength, Weakness, Opportunity and Threats (SWOT)” approach. We also identify ways in which the in situ parameters collected at ILTER sites currently fit within the Essential Ocean Variables framework (as proposed by the Framework for Ocean Observation recommendations) and provide insights on the use of new technology in long-term studies. Final recommendations point at the need to further develop observational activities at LTER sites and improve coordination among them and with external related initiatives in order to maximize their exploitation and address present and future challenges in ocean observations.
    Description: JM was supported by a CNPq fellowship (Grant No. 310047/2016-1) and by PELD Estuário da Lagoa dos Patos e Costa Adjacente (CNPq/CAPES/FAPERGS). SB was supported by US NSF (Grant #OCE-1655686). AB was supported by CAPES/CNPq/FAPES grant no. 441243/2016-9 to PELD Coastal Habitats of Espírito Santo as part of the Brazilian LTER program. HS was supported by US NSF (Grant #CCF-1539256 and #OCE-1655686), Simons Foundation (Grant #561126) and US NOAA/CINAR (Cooperative Agreement NA14OAR4320158).
    Keywords: climate change ; marine ecosystems ; ecology ; EOVs ; SWOT ; DEIMS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gollner, S., Govenar, B., Arbizu, P. M., Mullineaux, L. S., Mills, S., Le Bris, N., Weinbauer, M., Shank, T. M., & Bright, M. Animal community dynamics at senescent and active vents at the 9° N East Pacific Rise after a volcanic eruption. Frontiers in Marine Science, 6, (2020): 832, doi:10.3389/fmars.2019.00832.
    Description: In 2005/2006, a major volcanic eruption buried faunal communities over a large area of the 9°N East Pacific Rise (EPR) vent field. In late 2006, we initiated colonization studies at several types of post eruption vent communities including those that either survived the eruption, re-established after the eruption, or arisen at new sites. Some of these vents were active whereas others appeared senescent. Although the spatial scale of non-paved (surviving) vent communities was small (several m2 compared to several km2 of total paved area), the remnant individuals at surviving active and senescent vent sites may be important for recolonization. A total of 46 meio- and macrofauna species were encountered at non-paved areas with 33 of those species detected were also present at new sites in 2006. The animals living at non-paved areas represent refuge populations that could act as source populations for new vent sites directly after disturbance. Remnants may be especially important for the meiofauna, where many taxa have limited or no larval dispersal. Meiofauna may reach new vent sites predominantly via migration from local refuge areas, where a reproductive and abundant meiofauna is thriving. These findings are important to consider in any potential future deep-sea mining scenario at deep-sea hydrothermal vents. Within our 4-year study period, we regularly observed vent habitats with tubeworm assemblages that became senescent and died, as vent fluid emissions locally stopped at patches within active vent sites. Senescent vents harbored a species rich mix of typical vent species as well as rare yet undescribed species. The senescent vents contributed significantly to diversity at the 9°N EPR with 55 macrofaunal species (11 singletons) and 74 meiofaunal species (19 singletons). Of these 129 species associated with senescent vents, 60 have not been reported from active vents. Tubeworms and other vent megafauna not only act as foundation species when alive but provide habitat also when dead, sustaining abundant and diverse small sized fauna.
    Description: We received funding from the Austrian FWF (GrantP20190-B17; MB), the U.S. National Science Foundation (OCE-0424953; to LM, D. McGillicuddy, A. Thurnherr, J. Ledwell, and W. Lavelle; and OCE-1356738 to LM), and the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, Grant Agreement No. 603418. Ifremer and CNRS (France) supported NL cruise participation and sensor developments. BG was supported by a postdoctoral fellowship from the Deep Ocean Exploration Institute at WHOI (United States). TS was supported by the U.S. National Science Foundation (OCE-0327261 to TS and OCE-0937395 to TS and BG).
    Keywords: senescent vent ; biodiversity ; volcanic eruption ; recovery ; meiofauna ; macrofaunal ; deep-sea mining
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Auscavitch, S. R., Deere, M. C., Keller, A. G., Rotjan, R. D., Shank, T. M., & Cordes, E. E. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands Protected Area. Frontiers in Marine Science, 7, (2020): 42, doi:10.3389/fmars.2020.00042.
    Description: The Phoenix Islands Protected Area, in the central Pacific waters of the Republic of Kiribati, is a model for large marine protected area (MPA) development and maintenance, but baseline records of the protected biodiversity in its largest environment, the deep sea (〉200 m), have not yet been determined. In general, the equatorial central Pacific lacks biogeographic perspective on deep-sea benthic communities compared to more well-studied regions of the North and South Pacific Ocean. In 2017, explorations by the NOAA ship Okeanos Explorer and R/V Falkor were among the first to document the diversity and distribution of deep-water benthic megafauna on numerous seamounts, islands, shallow coral reef banks, and atolls in the region. Here, we present baseline deep-sea coral species distribution and community assembly patterns within the Scleractinia, Octocorallia, Antipatharia, and Zoantharia with respect to different seafloor features and abiotic environmental variables across bathyal depths (200–2500 m). Remotely operated vehicle (ROV) transects were performed on 17 features throughout the Phoenix Islands and Tokelau Ridge Seamounts resulting in the observation of 12,828 deep-water corals and 167 identifiable morphospecies. Anthozoan assemblages were largely octocoral-dominated consisting of 78% of all observations with seamounts having a greater number of observed morphospecies compared to other feature types. Overlying water masses were observed to have significant effects on community assembly across bathyal depths. Revised species inventories further suggest that the protected area it is an area of biogeographic overlap for Pacific deep-water corals, containing species observed across bathyal provinces in the North Pacific, Southwest Pacific, and Western Pacific. These results underscore significant geographic and environmental complexity associated with deep-sea coral communities that remain in under-characterized in the equatorial central Pacific, but also highlight the additional efforts that need to be brought forth to effectively establish baseline ecological metrics in data deficient bathyal provinces.
    Description: Funding for this work was provided by NOAA Office of Ocean Exploration and Research (Grant No. NA17OAR0110083) to RR, EC, TS, and David Gruber.
    Keywords: deep sea coral ; seamounts ; marine protected area ; marine biogeography ; community structure ; equatorial central Pacific ; water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Amon, D. J., Kennedy, B. R. C., Cantwel, K., Suhre, K., Glickson, D., Shank, T. M., & Rotjan, R. D. Deep-sea debris in the central and western Pacific Ocean. Frontiers in Marine Science, 7, (2020): 369, doi:10.3389/fmars.2020.00369.
    Description: Marine debris is a growing problem in the world’s deep ocean. The naturally slow biological and chemical processes operating at depth, coupled with the types of materials that are used commercially, suggest that debris is likely to persist in the deep ocean for long periods of time, ranging from hundreds to thousands of years. However, the realized scale of marine debris accumulation in the deep ocean is unknown due to the logistical, technological, and financial constraints related to deep-ocean exploration. Coordinated deep-water exploration from 2015 to 2017 enabled new insights into the status of deep-sea marine debris throughout the central and western Pacific Basin via ROV expeditions conducted onboard NOAA Ship Okeanos Explorer and RV Falkor. These expeditions included sites in United States protected areas and monuments, other Exclusive Economic Zones, international protected areas, and areas beyond national jurisdiction. Metal, glass, plastic, rubber, cloth, fishing gear, and other marine debris were encountered during 17.5% of the 188 dives from 150 to 6,000 m depth. Correlations were observed between deep-sea debris densities and depth, geological features, and distance from human-settled land. The highest densities occurred off American Samoa and the main Hawaiian Islands. Debris, mostly consisting of fishing gear and plastic, were also observed in most of the large-scale marine protected areas, adding to the growing body of evidence that even deep, remote areas of the ocean are not immune from human impacts. Interactions with and impacts on biological communities were noted, though further study is required to understand the full extent of these impacts. We also discuss potential sources and long-term implications of this debris.
    Description: We wish to thank the Officers and crew of the NOAA Ship Okeanos Explorer for shipboard support, NOAA OER, and the Global Foundation for Ocean Exploration team for their tremendous support during the fieldwork in the Pacific Ocean. We appreciate NOAA’s support for CAPSTONE which was a collaboration between OER, Office of Marine and Aviation Operations, Pacific Island Fisheries Science Center, Pacific Islands Regional Office, Deep Sea Coral Research and Technology Program, Office of National Marine Sanctuaries, National Center for Environmental Information, National Ocean Service, National Environmental Satellite, Data, and Information Service, Oceanic and Atmospheric Research, and National Marine Fisheries Service. We also thank the Schmidt Ocean Institute, the Master and crew, the Master and crew of the RV Falkor, Kiribati Observer Arenteiti Tekiau, and Expedition Chief Scientist Erik Cordes, while working in the Phoenix Islands Protected Area under PIPA Research Permit #4/17, funded by NOAA OER (#NA17OAR0110083 awarded to RR, TS, and Erik Cordes). Further thanks to the scientists on board and on shore during all voyages. DA has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement number 747946. DA would also like to acknowledge TBA21-Academy for providing a space for peaceful writing. CAPSTONE was completed in accordance with all regulations regarding environmental compliance and local permitting including the following permits: Kiribati Phoenix Islands Protected Area permit #1/17, Commonwealth of the Northern Mariana Islands Department of Lands and Natural Resources permit #03345; Hawai‘i Department of Land and Natural Resources permit #SAP-2016-64; Cook Islands Marae Moana Permit #05/17, National Marine Sanctuary of American Samoa permit #NMAS-2017-001; American Samoa Department of Marine and Wildlife Resources permit #2017/001; U.S. Fish and Wildlife Convention on International Trade in Endangered Species (CITES) import permit #17US36207C/9; Papahānaumokuākea Marine National Monument permit #PMN-2015-018; and Marshall Islands Ministry of Foreign Affairs #US/98-15. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government.
    Keywords: remotely operated vehicle ; CAPSTONE ; litter ; anthropogenic ; plastics ; fishing gear ; marine protected area ; national marine monument
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.
    Description: The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
    Description: This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Choi, C. J., Jimenez, V., Needham, D. M., Poirier, C., Bachy, C., Alexander, H., Wilken, S., Chavez, F. P., Sudek, S., Giovannoni, S. J., & Worden, A. Z. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Frontiers in Microbiology, 11, (2020): 542372, doi:10.3389/fmicb.2020.542372.
    Description: Much is known about how broad eukaryotic phytoplankton groups vary according to nutrient availability in marine ecosystems. However, genus- and species-level dynamics are generally unknown, although important given that adaptation and acclimation processes differentiate at these levels. We examined phytoplankton communities across seasonal cycles in the North Atlantic (BATS) and under different trophic conditions in the eastern North Pacific (ENP), using phylogenetic classification of plastid-encoded 16S rRNA amplicon sequence variants (ASVs) and other methodologies, including flow cytometric cell sorting. Prasinophytes dominated eukaryotic phytoplankton amplicons during the nutrient-rich deep-mixing winter period at BATS. During stratification (‘summer’) uncultured dictyochophytes formed ∼35 ± 10% of all surface plastid amplicons and dominated those from stramenopile algae, whereas diatoms showed only minor, ephemeral contributions over the entire year. Uncultured dictyochophytes also comprised a major fraction of plastid amplicons in the oligotrophic ENP. Phylogenetic reconstructions of near-full length 16S rRNA sequences established 11 uncultured Dictyochophyte Environmental Clades (DEC). DEC-I and DEC-VI dominated surface dictyochophytes under stratification at BATS and in the ENP, and DEC-IV was also important in the latter. Additionally, although less common at BATS, Florenciella-related clades (FC) were prominent at depth in the ENP. In both ecosystems, pelagophytes contributed notably at depth, with PEC-VIII (Pelagophyte Environmental Clade) and (cultured) Pelagomonas calceolata being most important. Q-PCR confirmed the near absence of P. calceolata at the surface of the same oligotrophic sites where it reached ∼1,500 18S rRNA gene copies ml–1 at the DCM. To further characterize phytoplankton present in our samples, we performed staining and at-sea single-cell sorting experiments. Sequencing results from these indicated several uncultured dictyochophyte clades are comprised of predatory mixotrophs. From an evolutionary perspective, these cells showed both conserved and unique features in the chloroplast genome. In ENP metatranscriptomes we observed high expression of multiple chloroplast genes as well as expression of a selfish element (group II intron) in the psaA gene. Comparative analyses across the Pacific and Atlantic sites support the conclusion that predatory dictyochophytes thrive under low nutrient conditions. The observations that several uncultured dictyochophyte lineages are seemingly capable of photosynthesis and predation, raises questions about potential shifts in phytoplankton trophic roles associated with seasonality and long-term ocean change.
    Description: This research was funded by NSF Dimensions grants DEB-1639033 and DEB-1638928 to AZW and SJG, BIOSCOPE to SJG and the Gordon and Betty Moore Foundation GBMF3788 to AZW.
    Keywords: dictyochophytes ; phytoplankton diversity ; time-series ; single-cell genomics ; chloroplast genome
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castellan, G., Angeletti, L., Taviani, M., & Montagna, P. The yellow coral Dendrophyllia cornigera in a warming ocean. Frontiers in Marine Science, 6, (2019): 692, doi: 10.3389/fmars.2019.00692.
    Description: Ocean warming is expected to impinge detrimentally on marine ecosystems worldwide up to impose extreme environmental conditions capable to potentially jeopardize the good ecological status of scleractinian coral reefs at shallow and bathyal depths. The integration of literature records with newly acquired remotely operated vehicle (ROV) data provides an overview of the geographic distribution of the temperate coral Dendrophyllia cornigera spanning the eastern Atlantic Ocean to the whole Mediterranean Sea. In addition, we extracted temperature values at each occurrence site to define the natural range of this coral, known to maintain its physiological processes at 16°C. Our results document a living temperature range between ∼7°C and 17°C, suggesting that the natural thermal tolerance of this eurybathic coral may represent an advantage for its survival in a progressively warming ocean.
    Description: This work was partly supported by the EU F.P. VII Projects HERMIONE (contract no. 226354), CoCoNet (contract no. 287844), MISTRALS/PALEOMEX/COFIMED and Convenzione MATTM-CNR per i Programmi di Monitoraggio per la Direttiva sulla Strategia Marina (MSFD, Art. 11, Dir. 2008/56/CE), and is part of the DG Environment programme IDEM (grant agreement no. 11.0661/2017/750680/SUB/EN V.C2) and the MIUR-PRIN GLIDE.
    Keywords: coral ecosystems ; Dendrophyllia cornigera ; mesophotic zone ; global change ; coral survival ; future ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wagner, J. K. S., Smart, C., & German, C. R. Discovery and mapping of the Triton seep site, Redondo Knoll: fluid flow and microbial colonization within an oxygen minimum zone. Frontiers in Marine Science, 7, (2020): 108, doi:10.3389/fmars.2020.00108.
    Description: This paper examines a deep-water (∼900 m) cold-seep discovered in a low oxygen environment ∼30 km off the California coast in 2015 during an E/V Nautilus telepresence-enabled cruise. This Triton site was initially detected from bubble flares identified via shipboard multibeam sonar and was then confirmed visually using the remotely operated vehicle (ROV) Hercules. High resolution mapping (to 1 cm resolution) and co-registered imaging has provided us with a comprehensive site overview – both of the geologic setting and the extent of the associated microbial colonization. The Triton site represents an active cold-seep where microorganisms can act as primary producers at the base of a chemosynthesis-driven food chain. But it is also located near the core of a local oxygen minimum zone (OMZ), averaging 〈0.75 μM oxygen, which is significantly below average ocean levels (180–270 μM) and, indeed, extreme even among OMZs as a whole which are defined to occur at all oxygen concentrations 〈22 μM. Extensive microbial mats, extending for 〉100 m across the seafloor, dominate the site, while typical seep-endemic macro-fauna were noticeably absent from our co-registered photographic and high-resolution mapping surveys – especially when compared to all adjacent seep sites within the same California Borderlands region. While such absences of abundant macro-fauna could be attributable to variations in the availability of dissolved oxygen in the overlying water column this need not necessarily be the case. An alternate possibility is that the zonation in microbial activity that is readily observable at the seafloor at Triton reflects, instead, a concentric pattern of radially diminishing fluxes of reductants from the underlying seafloor. This unusual but readily accessible discovery, in close proximity to Los Angeles harbor, provides an intriguing new natural laboratory at which to examine biogeochemical and microbiological interactions associated with the functioning of cold seep ecosystems within an OMZ.
    Description: Ship time was funded by NOAA – Office of Exploration and Research and the Ocean Exploration Trust. This material is based upon work supported by a National Science Foundation Graduate Research Fellowship (to JW), the Office of Naval Research (to CS), and NASA’s Astrobiology program (to CG).
    Keywords: cold seep ; oxygen minimum zone ; California Borderlands ; microbial mats ; continental margin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in German, C. R., Resing, J. A., Xu, G., Yeo, I. A., Walker, S. L., Devey, C. W., Moffett, J. W., Cutter, G. A., Hyvernaud, O., & Reymond, D. Hydrothermal activity and seismicity at teahitia seamount: Reactivation of the society islands hotspot? Frontiers in Marine Science, 7, (2020): 73, doi:10.3389/fmars.2020.00073.
    Description: Along mid-ocean ridges, submarine venting has been found at all spreading rates and in every ocean basin. By contrast, intraplate hydrothermal activity has only been reported from five locations, worldwide. Here we extend the time series at one of those sites, Teahitia Seamount, which was first shown to be hydrothermally active in 1983 but had not been revisited since 1999. Previously, submersible investigations had led to the discovery of low-temperature (≤30°C) venting associated with the summit of Teahitia Seamount at ≤1500 m. In December 2013 we returned to the same site at the culmination of the US GEOTRACES Eastern South Tropical Pacific (GP16) transect and found evidence for ongoing venting in the form of a non-buoyant hydrothermal plume at a depth of 1400 m. Multi-beam mapping revealed the same composite volcano morphology described previously for Teahitia including four prominent cones. The plume overlying the summit showed distinct in situ optical backscatter and redox anomalies, coupled with high concentrations of total dissolvable Fe (≤186 nmol/L) and Mn (≤33 nmol/L) that are all diagnostic of venting at the underlying seafloor. Continuous seismic records from 1986-present reveal a ∼15 year period of quiescence at Teahitia, following the seismic crisis that first stimulated its submersible-led investigation. Since 2007, however, the frequency of seismicity at Teahitia, coupled with the low magnitude of those events, are suggestive of magmatic reactivation. Separately, distinct seismicity at the adjacent Rocard seamount has also been attributed to submarine extrusive volcanism in 2011 and in 2013. Theoretical modeling of the hydrothermal plume signals detected suggest a minimum heat flux of 10 MW at the summit of Teahitia. Those model simulations can only be sourced from an area of low-temperature venting such as that originally reported from Teahitia if the temperature of the fluids exiting the seabed has increased significantly, from ≤30°C to ∼70°C. These model seafloor temperatures and our direct plume observations are both consistent with reports from Loihi Seamount, Hawaii, ∼10 year following an episode of seafloor volcanism. We hypothesize that the Society Islands hotspot may be undergoing a similar episode of both magmatic and hydrothermal reactivation.
    Description: Field work for this project was funded through NSF Awards to CG (OCE-1130870), JR (OCE-1237011), GC (OCE-1130245), and JM (OCE-1131731). Post-cruise, additional support was provided through NOAA Cooperative Agreement NA15OAR432006 and funding from WHOI and GEOMAR Helmholtz Centre for Ocean Research Kiel. The Réseau Sismique Polynésie was supported at LDG by the Commissariat à l’Energie Atomique et aux Energies Renouvelables. Open Access publication charges for this paper were provided by the Schmidt Ocean Institute.
    Keywords: hydrothermal ; seamount ; hotspot ; Teahitia ; Tahiti ; Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Corkeron, P. J., Van Parijs, S. M., Hotchkin, C., Hodges, B. A., Thornton, J. B., Mensi, B. L., & Bruner, S. M. Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information. Frontiers in Marine Science, 7, (2020):100, doi:10.3389/fmars.2020.00100.
    Description: Mitigating the effects of human activities on marine mammals often depends on monitoring animal occurrence over long time scales, large spatial scales, and in real time. Passive acoustics, particularly from autonomous vehicles, is a promising approach to meeting this need. We have previously developed the capability to record, detect, classify, and transmit to shore information about the tonal sounds of baleen whales in near real time from long-endurance ocean gliders. We have recently developed a protocol by which a human analyst reviews this information to determine the presence of marine mammals, and the results of this review are automatically posted to a publicly accessible website, sent directly to interested parties via email or text, and made available to stakeholders via a number of public and private digital applications. We evaluated the performance of this system during two 3.75-month Slocum glider deployments in the southwestern Gulf of Maine during the spring seasons of 2015 and 2016. Near real-time detections of humpback, fin, sei, and North Atlantic right whales were compared to detections of these species from simultaneously recorded audio. Data from another 2016 glider deployment in the same area were also used to compare results between three different analysts to determine repeatability of results both among and within analysts. False detection (occurrence) rates on daily time scales were 0% for all species. Daily missed detection rates ranged from 17 to 24%. Agreement between two trained novice analysts and an experienced analyst was greater than 95% for fin, sei, and right whales, while agreement was 83–89% for humpback whales owing to the more subjective process for detecting this species. Our results indicate that the presence of baleen whales can be accurately determined using information about tonal sounds transmitted in near real-time from Slocum gliders. The system is being used operationally to monitor baleen whales in United States, Canadian, and Chilean waters, and has been particularly useful for monitoring the critically endangered North Atlantic right whale throughout the northwestern Atlantic Ocean.
    Description: Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy’s Living Marine Resources Program.
    Keywords: whale ; detection ; glider ; autonomous ; mitigation ; marine mammal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zakroff, C. J., & Mooney, T. A. Antagonistic interactions and clutch-dependent sensitivity induce variable responses to ocean acidification and warming in squid (Doryteuthis pealeii) embryos and paralarvae. Frontiers in Physiology, 11, (2020): 501, doi:10.3389/fphys.2020.00501.
    Description: Ocean acidification (OA) and warming seas are significant concerns for coastal systems and species. The Atlantic longfin squid, Doryteuthis pealeii, a core component of the Northwest Atlantic trophic web, has demonstrated impacts, such as reduced growth and delayed development, under high chronic exposure to acidification (2200 ppm), but the combined effects of OA and warming have not been explored in this species. In this study, D. pealeii egg capsules were reared under a combination of several acidification levels (400, 2200, and 3500 ppm) and temperatures (20 and 27°C). Hatchlings were measured for a range of metrics [dorsal mantle length (DML), yolk sac volume (YV), malformation, and hatching success] in three trials over the 2016 breeding season (May – October). Although notable resistance to stressors was seen, highlighting variability within and between clutches, reduced DML and malformation of the embryos occurred at the highest OA exposure. Surprisingly, increased temperatures did not appear to exacerbate OA impacts, although responses were variable. Time to hatching, which increased with acidification, decreased much more drastically under warming and, further, decreased or removed delays caused by acidification. Hatching success, while variable by clutch, showed consistent patterns of greater late stage loss of embryos under acidification and greater early stage loss under warming, highlighting the potential difference in timing between these stressors for this system, i.e., that acidification stress builds up and causes impacts over time within the egg capsule as the embryos grow and respire. High OA-exposed hatchlings from the warmer conditions often showed reduced impacts compared to those reared in ambient temperatures. This may be due to the increased developmental rate and subsequently reduced OA exposure time of embryos in the higher temperature treatment. These results indicate a substantive potential plasticity to multiple stressors during the embryonic development of this species of squid, but do not predict how this species would fare under these future ocean scenarios.
    Description: This research was supported by the National Science Foundation Grant No. 1220034 to TM and the National Science Foundation Graduate Research Fellowship under Grant No. 1122374 to CZ.
    Keywords: cephalopod ; hypercapnia ; Myopsida ; temperature ; stress ; multifactor ; malformation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bestley, S., Ropert-Coudert, Y., Bengtson Nash, S., Brooks, C. M., Cotte, C., Dewar, M., Friedlaender, A. S., Jackson, J. A., Labrousse, S., Lowther, A. D., McMahon, C. R., Phillips, R. A., Pistorius, P., Puskic, P. S., Reis, A. O. d. A., Reisinger, R. R., Santos, M., Tarszisz, E., Tixier, P., Trathan, P. N., Wege, M., & Wienecke, B. Marine ecosystem assessment for the Southern Ocean: birds and marine mammals in a changing climate. Frontiers in Ecology and Evolution, 8, (2020): 566936, doi:10.3389/fevo.2020.566936.
    Description: The massive number of seabirds (penguins and procellariiformes) and marine mammals (cetaceans and pinnipeds) – referred to here as top predators – is one of the most iconic components of the Antarctic and Southern Ocean. They play an important role as highly mobile consumers, structuring and connecting pelagic marine food webs and are widely studied relative to other taxa. Many birds and mammals establish dense breeding colonies or use haul-out sites, making them relatively easy to study. Cetaceans, however, spend their lives at sea and thus aspects of their life cycle are more complicated to monitor and study. Nevertheless, they all feed at sea and their reproductive success depends on the food availability in the marine environment, hence they are considered useful indicators of the state of the marine resources. In general, top predators have large body sizes that allow for instrumentation with miniature data-recording or transmitting devices to monitor their activities at sea. Development of scientific techniques to study reproduction and foraging of top predators has led to substantial scientific literature on their population trends, key biological parameters, migratory patterns, foraging and feeding ecology, and linkages with atmospheric or oceanographic dynamics, for a number of species and regions. We briefly summarize the vast literature on Southern Ocean top predators, focusing on the most recent syntheses. We also provide an overview on the key current and emerging pressures faced by these animals as a result of both natural and human causes. We recognize the overarching impact that environmental changes driven by climate change have on the ecology of these species. We also evaluate direct and indirect interactions between marine predators and other factors such as disease, pollution, land disturbance and the increasing pressure from global fisheries in the Southern Ocean. Where possible we consider the data availability for assessing the status and trends for each of these components, their capacity for resilience or recovery, effectiveness of management responses, risk likelihood of key impacts and future outlook.
    Description: SoB is supported by Australian Research Council DECRA DE180100828. PT is supported by Australian Research Council LP160100329. We thank the WWF-UK for financial support during the original workshop and to RR and YR-C.
    Keywords: marine ecosystem assessment ; marine predators ; climate change ; fisheries interactions ; conservation management ; Antarctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Angeletti, L., Castellan, G., Montagna, P., Remia, A., & Taviani, M. The "Corsica Channel Cold-Water Coral Province" (Mediterranean Sea). Frontiers in Marine Science, 7, (2020): 661, doi:10.3389/fmars.2020.00661.
    Description: Over 25 mounds have been identified in the Corsica Channel (Mediterranean Sea) through multibeam bathymetric mapping at depth of 400–430 m, with dimensions ranging from 70 to 330 m, achieving maximum heights of 25 m. Two mounds have been explored in detail using a remotely operated vehicle, revealing thick coral growth with a predominance of the branching scleractinian Madrepora oculata as main frame builder and subordinate Desmophyllum pertusum. The solitary scleractinians Desmophyllum dianthus and Javania cailleti add to the biodiversity here, which accounts for at least 50 macro- and megabenthic species. In consideration of the remarkable surface (ca. 5.3 km2) covered by living corals, their density and healthy appearance, and discontinuity with other major cold-water coral (CWC) occurrences in the Mediterranean Sea, we propose that this area represents a distinct CWC province in a sector already known for the presence of pre-modern CWC mounds. Noticeably, well-developed contourite drift systems occur in the Corsica Channel, lending support to their strict spatial link with coral establishment at depth. The ecosystemic value of the new CWC province calls for proper conservation measures to ensure their present Good Environmental Status.
    Description: This work was partly supported by the “Convenzione MATTM-CNR per i Programmi di Monitoraggio per la Direttiva sulla Strategia Marina (MSFD, Art. 11, Dir. 2008/56/CE)” and is part of the DG Environment programme IDEM (grant agreement no. 11.0661/2017/750680/SUB/EN V.C2) and the MIUR-PRIN GLIDE.
    Keywords: cold-water corals ; Mediterranean Sea ; hydrology ; biodiversity ; contourites ; protection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...