ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-28
    Description: Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
    Description: Article includes 14 pages.
    Keywords: Environment ; Health ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: S3
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S3, doi:10.1186/1476-069X-7-S2-S3.
    Description: Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
    Description: The Oceans and Human Health Initiative research described within this paper is supported by the National Science Foundation, The National Institute for Environmental Health Sciences and the National Oceanic and Atmospheric Administration. Grant numbers are: NIEHS P50 ES012742 and NSF OCE- 043072 (RJG, LAA-Z, MFP), NSF OCE04-32479 and NIEHS P50 ES012740 (RSF), NSF OCE-0432368 and NIEHS P50 ES12736 (HMS-G), NIEHS P50 ES012762 and NSF OCE-0434087 (JSM).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Toxicology and Applied Pharmacology 254 (2011): 1-7, doi:10.1016/j.taap.2011.04.015.
    Description: This study assessed the role of aryl hydrocarbon receptor (AHR) affinity, and cytochrome P4501A (CYP1A) protein and activity in polyaromatic hydrocarbon (PAH)-­‐induced oxidative stress. In the 1-­‐100 nM concentration range benzo[a]pyrene (BaP) but not benzo[e]pyrene (BeP) competitively displaced 2 nM [3H]2, 3, 7, 8-­‐tetrachloro-­‐dibenzo-­‐p-­‐dioxin from rainbow trout AHR2α. Based on appearance of fluorescent aromatic compounds in bile over 3, 7, 14, 28 or 50 days of feeding 3 μg of BaP or BeP/g fish/day, rainbow trout liver readily excreted these polyaromatic hydrocarbons (PAHs) and their metabolites at near steady state rates. CYP1A proteins catalyzed more than 98% of ethoxyresorufin-­‐O-­‐deethylase (EROD) activity in rainbow trout hepatic microsomes. EROD activity of hepatic microsomes initially increased and then decreased to control activities after 50 days of feeding both PAHs. Immunohistochemistry of liver confirmed CYP1A protein increased in fish fed both PAHs after 3 days and remained elevated for up to 28 days. Neither BaP nor BeP increased hepatic DNA adduct concentrations at any time up to 50 days of feeding these PAHs. Comet assays of blood cells demonstrated marked DNA damage after 14 days of feeding both PAHs that was not significant after 50 days. There was a strong positive correlation between hepatic EROD activity and DNA damage in blood cells over time for both PAHs. Neither CYP1A protein nor 3-­‐ nitrotyrosine (a biomarker for oxidative stress) immunostaining in trunk kidney were significantly altered by BaP or BeP after 3, 7, 14, or 28 days. There was no clear association between AHR2α affinity and BaP and BeP-­‐induced oxidative stress.
    Description: The Oregon Agricultural Experiment Station, Northwest Fisheries Science Center, and RO1ES006272 from the National Institute of Health supported this work.
    Keywords: Cytochrome P4501A activity ; Oxidative stress ; Benzo[a]pyrene ; Benzo[e]pyrene ; Aryl hydrocarbon receptor ; Biliary excretion ; Fish
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sandifer, P., Knapp, L., Lichtveld, M., Manley, R., Abramson, D., Caffey, R., Cochran, D., Collier, T., Ebi, K., Engel, L., Farrington, J., Finucane, M., Hale, C., Halpern, D., Harville, E., Hart, L., Hswen, Y., Kirkpatrick, B., McEwen, B., Morris, G., Orbach, R., Palinkas, L., Partyka, M., Porter, D., Prather, A. A., Rowles, T., Scott, G., Seeman, T., Solo-Gabriele, H., Svendsen, E., Tincher, T., Trtanj, J., Walker, A. H., Yehuda, R., Yip, F., Yoskowitz, D., & Singer, B. Framework for a community health observing system for the Gulf of Mexico Region: preparing for future disasters. Frontiers in Public Health, 8, (2020): 578463, doi:10.3389/fpubh.2020.578463.
    Description: The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop.
    Description: This project was supported in part by contract # C-231826 between the Gulf of Mexico Alliance, on behalf of the Gulf of Mexico Research Initiative, and the College of Charleston. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf of Mexico Alliance, the Gulf of Mexico Research Initiative, the College of Charleston, or the Centers for Disease Control and Prevention. Mention of private companies, trade names, or products does not imply endorsement of any kind.
    Keywords: Health observing system ; Disasters ; Gulf of Mexico ; Cohort studies ; Stress ; COVID-19 ; Allostatic load ; Health surveillance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of environmental contamination and toxicology 5 (1977), S. 513-529 
    ISSN: 1432-0703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Notes: Abstract Carbon-14 labeled benzene, naphthalene, and anthracene were administered to young coho salmon (Oncorhynchus kisutch) in the food and by intraperitoneal injection. Regardless of the mode of application the accumulated carbon-14 (% administered dose) in key organs (e.g., liver and brain) increased in the order anthracene 〉 naphthalene 〉 benzene over various time periods. The metabolic fate of the hydrocarbons after intraperitoneal injection was studied. It was shown that the highest percentages of metabolites occurred in the gall bladder; however, significant amounts were also found in the liver, brain, flesh, and “carcass.” Solvent partition and thin-layer chromatographic techniques were developed to determine the structure of individual metabolites. In brain, liver, and gall bladder, 1-naphthol and 1-naphthyl glucuronic acid were major products of naphthalene metabolism; however, glycoside/sulfate fractions and mercapturic acid were indicated. The heart and flesh were rich in 1-naphthol and the former organ contained significant amounts of 1,2-dihydro-1,2-dihydroxynaphthalene. The findings indicated that the aromatic hydrocarbons in key organs increased in relation to the number of benzenoid rings. Further, it appears that aromatic metabolites are broadly distributed throughout fish exposed to polynuclear aromatic hydrocarbons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of environmental contamination and toxicology 34 (1985), S. 114-120 
    ISSN: 1432-0800
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of environmental contamination and toxicology 20 (1991), S. 462-473 
    ISSN: 1432-0703
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Notes: Abstract English sole (Parophrys vetulus) are susceptible to the development of hepatic disease, including neoplasia, as a result of environmental exposure to polycyclic aromatic hydrocarbons (PAHs). The metabolism of PAHs, believed to be an essential factor in the development of neoplasia, has received considerable study in English sole, except that xenobiotic metabolizing enzymes (XMEs) have not been wellstudied in this species. In the present work, the activities of hepatic aryl hydrocarbon hydroxylase (AHH), glutathione-S-transferase (GST), and epoxide hydrolase (EH) were measured in English sole exposed to several organic xenobiotics. These studies included an examination of the effects of captivity, the short-term responses of hepatic XME activities to several xenobiotic compounds, and detailed studies of the time- and dose-responses of hepatic XME activities to both a representative carcinogenic PAH (benzo[a]pyrene) and to a complex mixture of contaminants extracted from a sediment collected from a polluted area of Puget Sound, WA. Additionally, during the captivity and time- and dose-response studies, the levels of fluorescent aromatic compounds (FACs) were measured in the bile of the fish, both to provide an estimation of contaminant exposure and to evaluate the time- and dose-responses of this measure. The results of the captivity studies showed that the levels of FACs in bile were most affected by captivity, primarily as a result of changes in feeding status. The results of the exposure studies showed that xenobiotic metabolism, as reflected in hepatic activities of XMEs and levels of FACs in the bile, is altered by exposure to environmental contaminants. Whereas hepatic AHH activity could be rapidly and substantially increased by such exposure, activities of GST and EH were not affected, even up to 42 days after exposure. Moreover, because fish were exposed to a wide range of doses of chemicals or mixtures of chemicals which are known to be present in contaminated estuaries, and the responses of the hepatic AHH system and the levels of FACs in bile were measured at several time periods after exposure, the results provided substantial validation for the use of these two measures as bioindicators of exposure to environmental contamination in benthic fish.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5141
    Keywords: chlorinated hydrocarbons ; endocrine disruptors ; English sole ; polycylic aromatic ; hydrocarbons ; reproduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of exposure to xenobiotic compounds on ovarian development was investigated in prespawning female English sole (Pleuronectes vetulus) from the Hylebos Waterway, an industrial site in Commencement Bay, WA, contaminated with aromatic hydrocarbons (AHs), polychlorinated biphenyls (PCBs)and other chlorinated compounds, including hexachlorobutadiene (HCBD) and hexachlorobenzene (HCB). Reference sole were collected from Colvos Passage, a nearby site with minimal sediment contaminant concentrations. English sole from theHylebos Waterway had significantly higher concentrations of fluorescent aromatic compounds (FACs) in bile, polycyclic aromatic compound-DNA adducts in liver, and dioxin-like and other selected PCB congeners in liver than sole from Colvos Passage. The Hylebos Waterway animals also showed significant alterations in their pattern of reproductive development when compared to Colvos Passage sole. Hylebos Waterway sole entered vitellogenesis at a nearlier age than Colvos Passage sole, with about 50%of fish below 5 years of age maturing in the Hylebos Waterway as compared to 20% of Colvos Passage sole in this age range, with corresponding increases in plasma estradiol concentrations and GSI in Hylebosfish. However, while the proportion of maturing Colvos Passage females increased with age to over70% for fish 5 years of age or greater, the proportion of maturing females in the Hylebos Waterway remained at about 50%. Moreover, plasma estradiol concentrations and gonadosomatic indices in these sole were depressed. Inhibited reproductive development and increased oocyte atresia in adult fish were correlated with elevated concentrations of FACs in bile. Enhanced growth, as well as exposure to both aromatic and chlorinated hydrocarbons, were associated with precocious maturation in sub adult Hylebos Waterway sole.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5141
    Keywords: contaminants ; juvenile salmon ; toxicants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Hylebos Waterway is an industrialized waterway ofCommencement Bay, Tacoma, Washington, that is severelycontaminated with aromatic and chlorinatedhydrocarbons in the sediment. Juvenile chinook (Oncorhynchus keta) and chum salmon (O.tshawytscha) inhabit this waterway for a few days orweeks during their outmigration from freshwaterstreams to saltwater. The purpose of thisinvestigation was to determine to what degree juvenilechum and chinook salmon captured from the HylebosWaterway might bioaccumulate organic contaminants. These levels of exposure will be compared to previousstudies where such exposures have been linked tobiological dysfunction in juvenile salmon. Theresults showed that juvenile chum and chinook salmonfrom the Hylebos Waterway take up a wide range ofchemical contaminants, compared to fish fromhatcheries or reference estuaries. These contaminantsinclude high and low molecular weight polycyclicaromatic hydrocarbons (PAHs), polychlorinatedbiphenyls (PCBs, including the toxic congeners 105 and118), hexachlorobutadiene (HCBD), hexachlorobenzene(HCB), DDTs, heptachlor, and several pesticides. Immunohistochemical examination of the gill and gut injuvenile chum salmon from the Hylebos Waterway showedthe induction of the P450 metabolizing enzyme. Moreover, concentrations of contaminants in juvenilechinook and chum salmon from the Hylebos Waterway arecomparable to levels previously shown to be associatedwith biological injury in juvenile chinook salmon,such as impaired growth, suppression of immunefunction as demonstrated by reduced B cell function,and increased mortality following pathogen exposure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...