ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (30,488)
  • MDPI Publishing  (15,862)
  • Oxford University Press  (12,383)
  • American Meteorological Society
  • 2015-2019  (30,488)
  • 1980-1984
  • 2017  (30,488)
Collection
Years
  • 2015-2019  (30,488)
  • 1980-1984
Year
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Geophysical Journal International, Oxford University Press, 208(1), pp. 449-467, ISSN: 1365-246X
    Publication Date: 2016-12-03
    Description: The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intra-basement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ~131 Ma and ~125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Marine Plankton, Marine Plankton, Oxford University Press, 704 p., ISBN: 9780199233267
    Publication Date: 2017-05-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Marine Plankton, Marine Plankton, Oxford University Press, 704 p., ISBN: 9780199233267
    Publication Date: 2017-04-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Marine Plankton, Marine Plankton, Oxford University Press, 704 p., ISBN: 9780199233267
    Publication Date: 2017-05-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 30, pp. 4337-4350, ISSN: 0894-8755
    Publication Date: 2017-12-15
    Description: Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders ofmagnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 3829-3852, doi:10.1175/JCLI-D-16-0479.1.
    Description: This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P products, and two observation-based salinity products. Three issues are examined: the uncertainty level in the OS freshwater budget in atmospheric reanalyses, the uncertainty structure and association with the global ocean wet/dry zones, and the potential of salinity in ascribing the uncertainty in E − P. The products agree on the global mean pattern but differ considerably in magnitude. The OS freshwater budgets are 129 ± 10 (8%) cm yr−1 for E, 118 ± 11 (9%) cm yr−1 for P, and 11 ± 4 (36%) cm yr−1 for E − P, where the mean and error represent the ensemble mean and one standard deviation of the ensemble spread. The E − P uncertainty exceeds the uncertainty in E and P by a factor of 4 or more. The large uncertainty is attributed to P in the tropical wet zone. Most reanalyses tend to produce a wider tropical rainband when compared to satellite products, with the exception of two recent reanalyses that implement an observation-based correction for the model-generated P over land. The disparity in the width and the extent of seasonal migrations of the tropical wet zone causes a large spread in P, implying that the tropical moist physics and the realism of tropical rainfall remain a key challenge. Satellite salinity appears feasible to evaluate the fidelity of E − P variability in three tropical areas, where the uncertainty diagnosis has a global indication.
    Description: Primary support for the study is provided by the NOAAModeling, Analysis, Predictions, and Projections (MAPP) Program’s Climate Reanalysis Task Force (CRTF) through Grant NA13OAR4310106.
    Description: 2017-11-02
    Keywords: Hydrologic cycle ; Precipitation ; Evaporation ; Salinity ; Water budget ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1233-1243, doi:10.1175/JCLI-D-16-0496.1.
    Description: A downscaling approach is applied to future projection simulations from four CMIP5 global climate models to investigate the response of the tropical cyclone (TC) climatology over the North Pacific basin to global warming. Under the influence of the anthropogenic rise in greenhouse gases, TC-track density, power dissipation, and TC genesis exhibit robust increasing trends over the North Pacific, especially over the central subtropical Pacific region. The increase in North Pacific TCs is primarily manifested as increases in the intense and relatively weak TCs. Examination of storm duration also reveals that TCs over the North Pacific have longer lifetimes under global warming. Through a genesis potential index, the mechanistic contributions of various physical climate factors to the simulated change in TC genesis are explored. More frequent TC genesis under global warming is mostly attributable to the smaller vertical wind shear and greater potential intensity (primarily due to higher sea surface temperature). In contrast, the effect of the saturation deficit of the free troposphere tends to suppress TC genesis, and the change in large-scale vorticity plays a negligible role.
    Description: The authors acknowledge support from the Strategic Environmental Research and Development Program (SERDP) (RC-2336). SERDP is the environmental science and technology program of the U.S. Department of Defense (DoD) in partnership with the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA).
    Description: 2017-08-01
    Keywords: Tropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1739-1751, doi:10.1175/JCLI-D-16-0200.1.
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the twentieth century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multidecadal variations associated with the Pacific decadal oscillation, and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multidecadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward-propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Description: This research was supported by a Research Fellowship by the Alexander von Humboldt Foundation, as well as the Ocean Climate Change Institute and the Investment in Science Fund at WHOI.
    Description: 2017-08-15
    Keywords: Indian Ocean ; Ocean dynamics ; Climate variability ; Multidecadal variability ; Pacific decadal oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2251-2265, doi:10.1175/JPO-D-17-0042.1.
    Description: The problem of localized dense water formation over a sloping bottom is considered for the general case in which the topography forms a closed contour. This class of problems is motivated by topography around islands or shallow shoals in which convection resulting from brine rejection or surface heat loss reaches the bottom. The focus of this study is on the large-scale circulation that is forced far from the region of surface forcing. The authors find that a cyclonic current is generated around the topography, in the opposite sense to the propagation of the dense water plume. In physical terms, this current results from the propagation of low sea surface height from the region of dense water formation anticyclonically along the topographic contours back to the formation region. This pressure gradient is then balanced by a cyclonic geostrophic flow. This basic structure is well predicted by a linear quasigeostrophic theory, a primitive equation model, and in rotating tank experiments. For sufficiently strong forcing, the anticyclonic circulation of the dense plume meets this cyclonic circulation to produce a sharp front and offshore advection of dense water at the bottom and buoyant water at the surface. This nonlinear limit is demonstrated in both the primitive equation model and in the tank experiments.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1534618. Support for CC was given by the WHOI Ocean Climate Change Institute Proposal 27071273.
    Description: 2018-03-20
    Keywords: Bottom currents ; Buoyancy ; Ocean dynamics ; Density currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 355-373, doi:10.1175/JTECH-D-15-0226.1.
    Description: Passive longwave infrared radiometric satellite–based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically thin cirrus (OTC) clouds [cloud optical depth (COD) ≤ 0.3]. Level 2 nonlinear SST (NLSST) retrievals over tropical oceans (30°S–30°N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. OTC clouds are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level 2 data, representing over 99% of all contaminating cirrus found. Cold-biased NLSST (MODIS, AVHRR, and VIIRS) and triple-window (AVHRR and VIIRS only) SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5-km-thick OTC cloud placed incrementally from 10.0 to 18.0 km above mean sea level for cloud optical depths between 0.0 and 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud-top height and COD (assuming they are consistent across each platform) integrated within each corresponding modeled cold bias matrix. NLSST relative OTC cold biases, for any single observation, range from 0.33° to 0.55°C for the three sensors, with an absolute (bulk mean) bias between 0.09° and 0.14°C. Triple-window retrievals are more resilient, ranging from 0.08° to 0.14°C relative and from 0.02° to 0.04°C absolute. Cold biases are constant across the Pacific and Indian Oceans. Absolute bias is lower over the Atlantic but relative bias is higher, indicating that this issue persists globally.
    Description: Authors JWM, NJS, and JZ acknowledge the support of NASA Project NNX14AJ13G andNSF Project IIA-1355466.Author JZ also acknowledges the support of ONR N00014-16-1-2040 (Grant 11843919). Author JWM further recognizes the Naval Research Enterprise Internship Program (NREIP). Support for his NREIP fellowship came from NASA Interagency Agreement NNG15JA17P on behalf of theMicro-Pulse LidarNetwork (E. J. Welton). Authors JRC, JAC and DLW acknowledge the support of Office of Naval Research Code 322 (PE0602435). Author JRC also acknowledges the support of NASA Interagency Agreement RPO201522 on behalf of the CALIPSO Science Team (C. R. Trepte).
    Description: 2017-08-06
    Keywords: Sea surface temperature ; Cirrus clouds ; Lidars/Lidar observations ; Remote sensing ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 339-351, doi:10.1175/JPO-D-16-0165.1.
    Description: A novel multi-iteration statistical method for studying tracer spreading using drifter data is introduced. The approach allows for the best use of the available drifter data by making use of a simple iterative procedure, which results in the statistically probable map showing the likelihood that a tracer released at some source location would visit different geographical regions, along with the associated arrival travel times. The technique is tested using real drifter data in the North Atlantic. Two examples are considered corresponding to sources in the western and eastern North Atlantic Ocean, that is, Massachusetts Bay–like and Irish Sea–like sources, respectively. In both examples, the method worked well in estimating the statistics of the tracer transport pathways and travel times throughout the entire North Atlantic. The role of eddies versus mean flow is quantified using the same technique, and eddies are shown to significantly broaden the spread of a tracer. The sensitivity of the results to the size of the source domain is investigated and causes for this sensitivity are discussed.
    Description: This work was supported by the Grant OCE-1356630 from the National Science Foundation (NSF). Rypina also acknowledges NSF Grant OCE-1154641 and NASA Grant NNX14AH29G.
    Description: 2017-07-31
    Keywords: Atlantic Ocean ; Mass fluxes/transport ; Ocean circulation ; Trajectories ; Statistics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 269-275, doi:10.1175/JTECH-D-11-00196.1.
    Description: A data telemetry technique for communicating over standard oceanographic sea cables that achieves a nearly 100-fold increase in bandwidth as compared to traditional systems has been recently developed and successfully used at sea on board two Research Vessel (R/V) Atlantis cruises with an 8.5-km, 0.322-in.-diameter three-conductor sea cable. The system uses commercially available modules to provide Ethernet connectivity through existing sea cables, linking serial and video underwater instrumentation to the shipboard user. The new method applies Synchronous Digital Subscriber Line (SDSL) communications technology to undersea applications, greatly increasing the opportunities to use scientific instrumentation from existing ships and sea cables at minimal cost and without modification.
    Description: This development program has been supported, in part, through research grants from the National Science Foundation (OCE 0447395), the National Aeronautics and Space Administration’s ASTEP program (NNX09AB76G), and a WHOI Green and Hiam Innovative Technology Award.
    Description: 2017-07-23
    Keywords: Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 309-333, doi:10.1175/JTECH-D-16-0156.1.
    Description: Doppler current profilers on autonomous underwater gliders measure water velocity relative to the moving glider over vertical ranges of O(10) m. Measurements obtained with 1-MHz Nortek acoustic Doppler dual current profilers (AD2CPs) on Spray gliders deployed off Southern California, west of the Galápagos Archipelago, and in the Gulf Stream are used to demonstrate methods of estimating absolute horizontal velocities in the upper 1000 m of the ocean. Relative velocity measurements nearest to a glider are used to infer dive-dependent flight parameters, which are then used to correct estimates of absolute vertically averaged currents to account for the accumulation of biofouling during months-long glider missions. The inverse method for combining Doppler profiler measurements of relative velocity with absolute references to estimate profiles of absolute horizontal velocity is reviewed and expanded to include additional constraints on the velocity solutions. Errors arising from both instrumental bias and decreased abundance of acoustic scatterers at depth are considered. Though demonstrated with measurements from a particular combination of platform and instrument, these techniques should be applicable to other combinations of gliders and Doppler current profilers.
    Description: Spray glider missions were supported by the National Science Foundation (OCE-1232971, OCE-1233282), the National Oceanic and Atmospheric Administration (NA10OAR4320156, NA15OAR4320071), Eastman Chemical Company, the Oceans and Climate Change Institute at WHOI, and the W. Van Alan Clark Jr. Chair for Excellence in Oceanography at WHOI. RET acknowledges additional support for analysis and publication from the National Science Foundation (OCE-1633911).
    Description: 2017-07-31
    Keywords: Currents ; Acoustic measurements/effects ; Data processing ; Data quality control ; Profilers ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 633-647, doi:10.1175/JPO-D-16-0089.1.
    Description: Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.
    Description: DGE was supported by a Natural Environment Research Council studentship award at the University of Southampton. JMT’s contribution was supported by the U.S. National Science Foundation (Grant OCE-1332667). GF’s contribution was supported by the U.S. National Science Foundation through Grant OCE-0961713 and by the U.S. National Oceanic and Atmospheric Administration through Grant NA10OAR4310135. The contributions of JDZ and AJGN were supported by the NERC Grant ‘‘Climate scale analysis of air and water masses’’ (NE/ K012932/1). ACNG gratefully acknowledges support from the Leverhulme Trust, the Royal Society, and the Wolfson Foundation. LY was supported by NASA Ocean Vector Wind Science Team (OVWST) activities under Grant NNA10AO86G.
    Keywords: North Atlantic Ocean ; Atmosphere-ocean interaction ; Ekman pumping/transport ; Ocean circulation ; Water masses ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1291-1305, doi:10.1175/JPO-D-16-0160.1.
    Description: Along-stream variations in the dynamics of the Antarctic Circumpolar Current (ACC) impact heat and tracer transport, regulate interbasin exchange, and influence closure of the overturning circulation. Topography is primarily responsible for generating deviations from zonal-mean properties, mainly through standing meanders associated with regions of high eddy kinetic energy. Here, an idealized channel model is used to explore the spatial distribution of energy exchange and its relationship to eddy geometry, as characterized by both eddy momentum and eddy buoyancy fluxes. Variations in energy exchange properties occur not only between standing meander and quasi-zonal jet regions, but throughout the meander itself. Both barotropic and baroclinic stability properties, as well as the magnitude of energy exchange terms, undergo abrupt changes along the path of the ACC. These transitions are captured by diagnosing eddy fluxes of energy and by adopting the eddy geometry framework. The latter, typically applied to barotropic stability properties, is applied here in the depth–along-stream plane to include information about both barotropic and baroclinic stability properties of the flow. These simulations reveal that eddy momentum fluxes, and thus barotropic instability, play a leading role in the energy budget within a standing meander. This result suggests that baroclinic instability alone cannot capture the dynamics of ACC standing meanders, a challenge for models where eddy fluxes are parameterized.
    Description: The authors all acknowledge support from NSF OCE-1235488. MKY also acknowledges support from the AMS Graduate Student Fellowship.
    Description: 2017-10-12
    Keywords: Southern Ocean ; Channel flows ; Stability ; Topographic effects ; Eddies ; Mesoscale models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology and Evolution 34 (2017): 1890-1901, doi:10.1093/molbev/msx125.
    Description: The highly conserved ADAR enzymes, found in all multicellular metazoans, catalyze the editing of mRNA transcripts by the deamination of adenosines to inosines. This type of editing has two general outcomes: site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.
    Description: This work was supported by the Australian Research Council (to PK), the European Research Council (grant 311257), the I-CORE Program of the Planning and Budgeting Committee in Israel (grants 41/11 and 1796/12), and the Israel Science Foundation (1380/14).
    Keywords: RNA editing ; ADAR ; Evolution ; Coral
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 415-427, doi:10.1175/JTECH-D-16-0069.1.
    Description: Sensors and instruments for basic oceanographic properties are becoming increasingly sophisticated, which both simplifies and complicates their use in field studies. This increased sophistication disproportionately affects smaller-scale observational efforts that are less likely to be well supported technically but which need to integrate instruments, sensors, and commonly needed peripheral devices in ways not envisioned by their manufacturers. A general-purpose hardware and software framework was developed around a widely used family of low-power microcontrollers to lessen the technical expertise and customization required to integrate sensors, instruments, and peripherals, and thus simplify such integration scenarios. Both the hardware and associated firmware development tools provide a range of features often required in such scenarios: serial data interfaces, analog inputs and outputs, logic lines and power-switching capability, nonvolatile storage of data and parameters for sampling or configuration, and serial communication interfaces to supervisory or telemetry systems. The microcontroller and additional components needed to implement this integration framework are small enough to encapsulate in standard cable splices, creating a small form factor “smart cable” that can be readily wired and programmed for a range of integration needs. An application programming library developed for this hardware provides skeleton code for functions commonly desired when integrating sensors, instruments, and peripherals. This minimizes the firmware programming expertise needed to apply this framework in many integration scenarios and thus streamlines the development of firmware for different field applications. Envisioned applications are in field programs where significant technical instrumentation expertise is unavailable or not cost effective.
    Description: Link Foundation Ocean Engineering graduate fellowship to SRL. Subsequent development effort was supported by a NASA New Investigator Award to SRL (NNX10AQ83G) and by the Woods Hole Oceanographic Institution through its Assistant Scientist Endowed Support, a Cecil H. and Ida M. Green Technology Innovation Award, and the Investment in Science Program.
    Keywords: Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 2373-2384, doi:10.1175/JTECH-D-16-0024.1.
    Description: A long-path methane (CH4) sensor was developed and field deployed using an 8-μm quantum cascade laser. The high optical power (40 mW) of the laser allowed for path-integrated measurements of ambient CH4 at total pathlengths from 100 to 1200 m with the use of a retroreflector. Wavelength modulation spectroscopy was used to make high-precision measurements of atmospheric pressure–broadened CH4 absorption over these long distances. An in-line reference cell with higher harmonic detection provided metrics of system stability in rapidly changing and harsh environments. The system consumed less than 100 W of power and required no consumables. The measurements intercompared favorably (typically less than 5% difference) with a commercial in situ methane sensor when accounting for the different spatiotemporal scales of the measurements. The sensor was field deployed for 2 weeks at an arctic lake to examine the robustness of the approach in harsh field environments. Short-term precision over a 458-m pathlength was 10 ppbv at 1 Hz, equivalent to a signal from a methane enhancement above background of 5 ppmv in a 1-m length. The sensor performed well in a range of harsh environmental conditions, including snow, rain, wind, and changing temperatures. These field measurements demonstrate the capabilities of the approach for use in detecting large but highly variable emissions in arctic environments.
    Description: The authors gratefully acknowledge funding for this work by MIRTHE through NSF-ERC Grant EEC-0540832. D. J. Miller acknowledges support by the National Science Foundation Graduate Research Fellowship under Grant DGE-0646086. K. Sun acknowledges support by the NASA Earth and Space Science Fellowship IIP-1263579.
    Description: 2017-05-01
    Keywords: Arctic ; North America ; Greenhouse gases ; In situ atmospheric observations ; Instrumentation/sensors ; Field experiments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2016. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 208 (2017): 1026-1042, doi:10.1093/gji/ggw435.
    Description: In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the subseafloor conductivity that is assumed to be isotropic. The deep water (ocean layer electrically much thicker than the overburden) seafloor EM response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a half-space, or a stronger and faster response. For an ocean whose electrical thickness is comparable to or much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. These transitions can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire subseafloor resistivity structure with the sea surface. A stronger and faster response occurs when guided energy flow is dominant, while a weaker and slower response occurs when the air interaction is dominant. However, at intermediate offsets for some models, the air interaction can partially or fully reverse the direction of energy flux in the reservoir layer toward rather than away from the source, resulting in a stronger and slower response. The Fréchet derivatives are dominated by preferential sensitivity to the reservoir layer conductivity for all water depths except at high frequencies, but also display a shift with offset from the galvanic to the inductive mode in the underburden and overburden due to the interplay of guided energy flow and the air interaction. This means that the sensitivity to the horizontal conductivity is almost as strong as to the vertical component in the shallow parts of the subsurface, and in fact is stronger than the vertical sensitivity deeper down. However, the sensitivity to horizontal conductivity is still weak compared to the vertical component within thin resistive regions. The horizontal sensitivity is gradually decreased when the water becomes deep. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
    Keywords: Electrical properties ; Marine electromagnetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 98 (2017): 737-752, doi:10.1175/BAMS-D-16-0057.1.
    Description: For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
    Description: The authors gratefully acknowledge financial support from the U.S. National Science Foundation (NSF; OCE-1259102, OCE-1259103, OCE-1259618, OCE-1258823, OCE-1259210, OCE-1259398, OCE-0136215, and OCE-1005697); the U.S. National Aeronautics and Space Administration (NASA); the U.S. National Oceanic and Atmospheric Administration (NOAA); the WHOI Ocean and Climate Change Institute (OCCI), the WHOI Independent Research and Development (IRD) Program, and the WHOI Postdoctoral Scholar Program; the U.K. Natural Environment Research Council (NERC; NE/K010875/1, NE/K010700/1, R8-H12-85, FASTNEt NE/I030224/1, NE/K010972/1, NE/K012932/1, and NE/M018024/1); the European Union Seventh Framework Programme (NACLIM project, 308299 and 610055); the German Federal Ministry and Education German Research RACE Program; the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN 227438-09, RGPIN 04357, and RG-PCC 433898); Fisheries and Oceans Canada; the National Natural Science Foundation of China (NSFC; 41521091, U1406401); the Fundamental Research Funds for the Central Universities of China; the French Research Institute for Exploitation of the Sea (IFREMER); the French National Center for Scientific Research (CNRS); the French National Institute for Earth Sciences and Astronomy (INSU); the French national program LEFE; and the French Oceanographic Fleet (TGIR FOF).
    Description: 2017-10-24
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 485-498, doi:10.1175/JPO-D-16-0175.1.
    Description: Dense oceanic overflows descend over the rough topography of the continental slope entraining and mixing with surrounding waters. The associated dilution dictates the fate of these currents and thus is of fundamental importance to the formation of deep water masses. The entrainment in a dense current flowing down a sloping bottom in a rotating homogeneous fluid is investigated using laboratory experiments, focusing on the influence of the bottom roughness on the flow dynamics. The roughness is idealized by an array of vertical rigid cylinders and both their spacing and height are varied as well as the inclination of the sloping bottom. The presence of the roughness is generally observed to decelerate the dense current, with a consequent reduction of the Froude number, when compared to the smooth bottom configuration. However, the dilution of the dense current due to mixing with the ambient fluid is enhanced by the roughness elements, especially for low Froude numbers. When the entrainment due to shear instability at the interface between the dense current and the ambient fluid is low, the additional turbulence and mixing arising at the bottom of the dense current due to the roughness elements strongly affects the dilution of the current. Finally, a strong dependence of the entrainment parameter on the Reynolds number is observed.
    Description: Support to C. C. was given by the National Science Foundation Project OCE- 1333174. Support to L. O. during her internship at WHOI was provided by the Lions Club ‘‘Napoli Megaride’’ and the Zoological Station Anton Dohrn through the Paolo Brancaccio fellowship (2012).
    Description: 2017-08-20
    Keywords: Density currents ; Entrainment ; Density currents ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bioscience 67 (2017): 760–768, doi:10.1093/biosci/bix059.
    Description: As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.
    Description: We would like to thank generous support from International Fund for Animal Welfare, the Bureau of Ocean Energy, and the Oak Foundation for funding support for the telemetry devices.
    Keywords: Abundance estimation ; Gray seals (Halichoerus grypus) ; Cape Cod ; Remote sensing ; Earth observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 6757-6769, doi:10.1175/JCLI-D-16-0461.1.
    Description: Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.
    Description: This work was supported by the National Research Foundation of Korea Grant NRF-2009-C1AAA001-0093, funded by the Korean government (MEST), to HJL, YHK, and MOK. S-WY is supported by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2015-1042. Y-OK is supported by the U.S. Department of Energy (DE-SC0014433) and National Science Foundation (OCE-1242989). WP acknowledges support from the BMBF project CLIMPRE InterDec (FKZ: 01LP1609B).
    Description: 2018-01-26
    Keywords: Pacific decadal oscillation ; Sea surface temperature ; Humidity ; Ice loss/growth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather and Forecasting 32 (2017): 1659-1666, doi:10.1175/WAF-D-17-0076.1.
    Description: Although rip currents are a major hazard for beachgoers, the relationship between the danger to swimmers and the physical properties of rip current circulation is not well understood. Here, the relationship between statistical model estimates of hazardous rip current likelihood and in situ velocity observations is assessed. The statistical model is part of a forecasting system that is being made operational by the National Weather Service to predict rip current hazard likelihood as a function of wave conditions and water level. The temporal variability of rip current speeds (offshore-directed currents) observed on an energetic sandy beach is correlated with the hindcasted hazard likelihood for a wide range of conditions. High likelihoods and rip current speeds occurred for low water levels, nearly shore-normal wave angles, and moderate or larger wave heights. The relationship between modeled hazard likelihood and the frequency with which rip current speeds exceeded a threshold was assessed for a range of threshold speeds. The frequency of occurrence of high (threshold exceeding) rip current speeds is consistent with the modeled probability of hazard, with a maximum Brier skill score of 0.65 for a threshold speed of 0.23 m s−1, and skill scores greater than 0.60 for threshold speeds between 0.15 and 0.30 m s−1. The results suggest that rip current speed may be an effective proxy for hazard level and that speeds greater than ~0.2 m s−1 may be hazardous to swimmers.
    Description: Funding was provided by the National Science Foundation (1232910, 1332705, and 1536365), and by National Security Science and Engineering and Vannevar Bush Faculty Fellowships funded by the assistant secretary of Defense for Research and Engineering.
    Description: 2018-02-28
    Keywords: Coastlines ; Coastal flows ; Waves, oceanic ; Forecast verification/skill ; Probability forecasts/models/distribution ; Statistical forecasting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1061-1075, doi:10.1175/JPO-D-16-0248.1.
    Description: A major challenge in modeling the circulation over coral reefs is uncertainty in the drag coefficient because existing estimates span two orders of magnitude. Current and pressure measurements from five coral reefs are used to estimate drag coefficients based on depth-average flow, assuming a balance between the cross-reef pressure gradient and the bottom stress. At two sites wind stress is a significant term in the cross-reef momentum balance and is included in estimating the drag coefficient. For the five coral reef sites and a previous laboratory study, estimated drag coefficients increase as the water depth decreases consistent with open channel flow theory. For example, for a typical coral reef hydrodynamic roughness of 5 cm, observational estimates, and the theory indicate that the drag coefficient decreases from 0.4 in 20 cm of water to 0.005 in 10 m of water. Synthesis of results from the new field observations with estimates from previous field and laboratory studies indicate that coral reef drag coefficients range from 0.2 to 0.005 and hydrodynamic roughnesses generally range from 2 to 8 cm. While coral reef drag coefficients depend on factors such as physical roughness and surface waves, a substantial fraction of the scatter in estimates of coral reef drag coefficients is due to variations in water depth.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST to S. Lentz and J. Churchill. The Palau field program was funded by NSF Award OCE-1220529.
    Keywords: Ocean ; Currents ; Wind stress ; Boundary layer ; Sea level ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1789-1797, doi:10.1175/JPO-D-16-0240.1.
    Description: Internal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.
    Description: National Science Foundation (OCE-1061609)
    Description: 2018-01-03
    Keywords: Estuaries ; Internal waves ; Solitary waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 8061-8080, doi:10.1175/JCLI-D-16-0834.1.
    Description: During the southwest monsoons, the Arabian Sea (AS) develops highly energetic mesoscale variability associated with the Somali Current (SC), Great Whirl (GW), and cold filaments (CF). The resultant high-amplitude anomalies and gradients of sea surface temperature (SST) and surface currents modify the wind stress, triggering the so-called mesoscale coupled feedbacks. This study uses a high-resolution regional coupled model with a novel coupling procedure that separates spatial scales of the air–sea coupling to show that SST and surface currents are coupled to the atmosphere at distinct spatial scales, exerting distinct dynamic influences. The effect of mesoscale SST–wind interaction is manifested most strongly in wind work and Ekman pumping over the GW, primarily affecting the position of GW and the separation latitude of the SC. If this effect is suppressed, enhanced wind work and a weakened Ekman pumping dipole cause the GW to extend northeastward, delaying the SC separation by 1°. Current–wind interaction, in contrast, is related to the amount of wind energy input. When it is suppressed, especially as a result of background-scale currents, depth-integrated kinetic energy, both the mean and eddy, is significantly enhanced. Ekman pumping velocity over the GW is overly negative because of a lack of vorticity that offsets the wind stress curl, further invigorating the GW. Moreover, significant changes in time-mean SST and evaporation are generated in response to the current–wind interaction, accompanied by a noticeable southward shift in the Findlater Jet. The significant increase in moisture transport in the central AS implies that air–sea interaction mediated by the surface current is a potentially important process for simulation and prediction of the monsoon rainfall.
    Description: This work is supported by ONR (N00014-15-1-2588 and N00014-17-1-2398), NSF (OCE- 1419235), and NOAA (NA15OAR4310176).
    Description: 2018-03-08
    Keywords: Indian Ocean ; Wind stress ; Ekman pumping ; Monsoons ; Air-sea interaction ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 6611-6627, doi:10.1175/JCLI-D-16-0291.1.
    Description: The interannual fluctuations of the equatorial thermocline are usually associated with El Niño activity, but the linkage between the thermocline modes and El Niño is still under debate. In the present study, a mode function decomposition method is applied to the equatorial Pacific thermocline, and the results show that the first two dominant modes (M1 and M2) identify two distinct characteristics of the equatorial Pacific thermocline. The M1 reflects a basinwide zonally tilted thermocline related to the eastern Pacific (EP) El Niño, with shoaling (deepening) in the western (eastern) equatorial Pacific. The M2 represents the central Pacific (CP) El Niño, characterized by a V-shaped equatorial Pacific thermocline (i.e., deep in the central equatorial Pacific and shallow on both the western and eastern boundaries). Furthermore, both modes are stable and significant on the interannual time scale, and manifest as the major feature of the thermocline fluctuations associated with the two types of El Niño events. As good proxies of EP and CP El Niño events, thermocline-based indices clearly reveal the inherent characteristics of subsurface ocean responses during the evolution of El Niño events, which are characterized by the remarkable zonal eastward propagation of equatorial subsurface ocean temperature anomalies, particularly during the CP El Niño. Further analysis of the mixed layer heat budget suggests that the air–sea interactions determine the establishment and development stages of the CP El Niño, while the thermocline feedback is vital for its further development. These results highlight the key influence of equatorial Pacific thermocline fluctuations in conjunction with the air–sea interactions, on the CP El Niño.
    Description: This work is jointly supported by the Funds for Creative Research Groups of China (Grant 41521005), the Special Fund for Public Welfare Industry (GYHY201506013), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA11010301), and the National Natural Science Foundation of China (Grants 41406033, 41475057, 41376024, 41676013) and the CAS/SAFEA International Partnership Program for Creative Research Teams.
    Description: 2018-01-21
    Keywords: Thermocline ; El Nino
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2017. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 211 (2017): 1046–1061, doi:10.1093/gji/ggx360.
    Description: In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically-polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the sub-seafloor conductivity that is assumed to be transversely anisotropic, with a vertical-to-horizontal resistivity ratio of 3:1. For an ocean whose electrical thickness is comparable to that of the overburden, the seafloor electromagnetic response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a halfspace, or a stronger and faster response, and displays little to no evidence for the air interaction. For an ocean whose electrical thickness is much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets, and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. By comparison to the isotropic case with the same horizontal conductivity, transverse anisotropy stretches the Poynting vector and the electric field response from a thin resistive layer to much longer offsets. These phenomena can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire sub-seafloor resistivity structure with the sea surface. The Fréchet derivatives are dominated by preferential sensitivity to the vertical conductivity in the reservoir layer and overburden at short offsets. The horizontal conductivity Fréchet derivatives are weaker than to comparable to the vertical derivatives at long offsets in the substrate. This means that the sensitivity to the horizontal conductivity is present in the shallow parts of the subsurface. In the presence of transverse anisotropy, it is necessary to go to higher frequencies to sense the horizontal conductivity in the overburden as compared to an isotropic model with the same horizontal conductivity. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
    Description: This work was supported at WHOI by an Independent Research and Development award, and by the Walter A. and Hope Noyes Smith Chair for Excellence in Oceanography.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-06-20
    Description: A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). Although much progress has been made in consistently modeling the ice-sheet evolution throughout the last glacial cycle, as well as the induced bedrock deformation caused by these load changes, forward models of GIA remain ambiguous due to the lack of observational constraints on the ice sheet's past extent and thickness and mantle rheology beneath the continent. As an alternative to forward-modeling GIA, we estimate GIA from multiple space-geodetic observations: Gravity Recovery and Climate Experiment (GRACE), Envisat/ICESat and Global Positioning System (GPS). Making use of the different sensitivities of the respective satellite observations to current and past surface-mass (ice mass) change and solid Earth processes, we estimate GIA based on viscoelastic response functions to disc load forcing. We calculate and distribute the viscoelastic response functions according to estimates of the variability of lithosphere thickness and mantle viscosity in Antarctica. We compare our GIA estimate with published GIA corrections and evaluate its impact in determining the ice-mass balance in Antarctica from GRACE and satellite altimetry. Particular focus is applied to the Amundsen Sea Sector in West Antarctica, where uplift rates of several centimetres per year have been measured by GPS. We show that most of this uplift is caused by the rapid viscoelastic response to recent ice-load changes, enabled by the presence of a low-viscosity upper mantle in West Antarctica. This paper presents the second and final contributions summarizing the work carried out within a European Space Agency funded study, REGINA (www.regina-science.eu).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3549-3562, doi:10.1175/JPO-D-16-0140.1.
    Description: The equatorial deep jets (EDJs) are a ubiquitous feature of the equatorial oceans; in the Atlantic Ocean, they are the dominant mode of interannual variability of the zonal flow at intermediate depth. On the basis of more than 10 years of moored observations of zonal velocity at 23°W, the vertically propagating EDJs are best described as superimposed oscillations of the 13th to the 23rd baroclinic modes with a dominant oscillation period for all modes of 1650 days. This period is close to the resonance period of the respective gravest equatorial basin mode for the dominant vertical modes 16 and 17. It is argued that since the equatorial basin mode is composed of linear equatorial waves, a linear reduced-gravity model can be employed for each baroclinic mode, driven by spatially homogeneous zonal forcing oscillating with the EDJ period. The fit of the model solutions to observations at 23°W yields a basinwide reconstruction of the EDJs and the associated vertical structure of their forcing. From the resulting vertical profile of mean power input and vertical energy flux on the equator, it follows that the EDJs are locally maintained over a considerable depth range, from 500 to 2500 m, with the maximum power input and vertical energy flux at 1300 m. The strong dissipation closely ties the apparent vertical propagation of energy to the vertical distribution of power input and, together with the EDJs’ prevailing downward phase propagation, requires the phase of the forcing of the EDJs to propagate downward.
    Description: MC is grateful for support from the German Federal Ministry of Education and Research (BMBF) Miklip project through the MODINI project. RJG and PB are grateful for continuing support from the GEOMAR Helmholtz Centre for Ocean Research Kiel. This study has also been supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean,” through several research cruises with R/V Meteor and R/V Maria S. Merian by the German Federal Ministry of Education and Research as part of the cooperative projects “RACE” and “SACUS” and by European Union 7th Framework Programme (FP7 2007–2013) under Grant Agreement 603521 PREFACE project. Additional support for the observations and JMT’s contributions were provided by the U.S. National Science Foundation (OCE-0850175).
    Keywords: Tropics ; Forcing ; Shallow-water equations ; Waves, oceanic ; Oscillations ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 9 (2017): 659-676, doi:10.1093/gbe/evx023.
    Description: Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.
    Description: This work was primarily supported by a grant from the National Science Foundation (collaborative research grants DEB-1265282, DEB-1120512, DEB-1120013, DEB-1120263, DEB-1120333, DEB-1120398 to J.K.C., D.L.C., M.E.H., S.I.K., M.F.O., J.R.S., W.W., and A.W.). Further support was provided by the National Institute of Environmental Health Sciences (1R01ES021934-01 to A.W., P42ES7373 to T.H.H., P42ES007381 to M.E.H., and R01ES019324 to J.R.S.), the National Institute of General Medical Sciences (P20GM103423 and P20GM104318 to B.L.K.), and the National Science Foundation (DBI-0640462 and XSEDE-MCB100147 to D.G.).
    Keywords: Population genomics ; Genome sequence ; Comparative genomics ; Adaptation ; Genetic diversity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1205-1220, doi:10.1175/JPO-D-16-0258.1.
    Description: The linkage among total exchange flow, entrainment, and diffusive salt flux in estuaries is derived analytically using salinity coordinates, revealing the simple but important relationship between total exchange flow and mixing. Mixing is defined and quantified in this paper as the dissipation of salinity variance. The method uses the conservation of volume and salt to quantify and distinguish the diahaline transport of volume (i.e., entrainment) and diahaline diffusive salt flux. A numerical model of the Hudson estuary is used as an example of the application of the method in a realistic estuary with a persistent but temporally variable exchange flow. A notable finding of this analysis is that the total exchange flow and diahaline salt flux are out of phase with respect to the spring–neap cycle. Total exchange flow reaches its maximum near minimum neap tide, but diahaline salt transport reaches its maximum during the maximum spring tide. This phase shift explains the strong temporal variation of stratification and estuarine salt content through the spring–neap cycle. In addition to quantifying temporal variation, the method reveals the spatial variation of total exchange flow, entrainment, and diffusive salt flux through the estuary. For instance, the analysis of the Hudson estuary indicates that diffusive salt flux is intensified in the wider cross sections. The method also provides a simple means of quantifying numerical mixing in ocean models because it provides an estimate of the total dissipation of salinity variance, which is the sum of mixing due to the turbulence closure and numerical mixing.
    Description: T. Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509), the Fundamental Research Funds for the Central Universities (Grant 2017B03514), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA11010203). W. R. Geyer was supported by NSF Grant OCE 0926427 and ONR Grant N00014-16-1-2948. P. MacCready was supported by NSF Grant OCE-1634148.
    Description: 2017-09-14
    Keywords: Baroclinic flows ; Conservation equations ; Diapycnal mixing ; Diffusion ; Entrainment ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 4965-4981, doi:10.1175/JCLI-D-16-0228.1.
    Description: To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.
    Description: JFB was partially supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections program (Grant NA15OAR4310094). Y-OK was supported by NSF Division of Atmospheric and Geospace Science Climate and Large-scale Dynamics Program (AGS-1355339), NASA Physical Oceanography Program (NNX13AM59G), and DOE Office of Biological and Environmental Research Regional and Global Climate Modeling Program (DE-SC0014433). RJS was supported by DOE Office of Biological and Environmental Research (DE-SC0006743) and NSF Directorate for Geosciences Division of Ocean Sciences (1419584),
    Description: 2017-10-03
    Keywords: Atmosphere-ocean interaction ; Storm tracks
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1921-1939, doi:10.1175/JPO-D-16-0146.1.
    Description: The role of surface gravity waves in structuring the air–sea momentum flux is examined in the middle reaches of Chesapeake Bay. Observed wave spectra showed that wave direction in Chesapeake Bay is strongly correlated with basin geometry. Waves preferentially developed in the direction of maximum fetch, suggesting that dominant wave frequencies may be commonly and persistently misaligned with local wind forcing. Direct observations from an ultrasonic anemometer and vertical array of ADVs show that the magnitude and direction of stress changed across the air–sea interface, suggesting that a stress divergence occurred at or near the water surface. Using a numerical wave model in combination with direct flux measurements, the air–sea momentum flux was partitioned between the surface wave field and the mean flow. Results indicate that the surface wave field can store or release a significant fraction of the total momentum flux depending on the direction of the wind. When wind blew across dominant fetch axes, the generation of short gravity waves stored as much as 40% of the total wind stress. Accounting for the storage of momentum in the surface wave field closed the air–sea momentum budget. Agreement between the direction of Lagrangian shear and the direction of the stress vector in the mixed surface layer suggests that the observed directional difference was due to the combined effect of breaking waves producing downward sweeps of momentum in the direction of wave propagation and the straining of that vorticity field in a manner similar to Langmuir turbulence.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-01-13
    Keywords: Atmosphere-ocean interaction ; Coastal flows ; Mixing ; Momentum ; Wind stress ; Wind waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2611-2630, doi:10.1175/JPO-D-16-0259.1.
    Description: This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.
    Description: This work was supported by Linné FLOW Centre at KTH and the Academy of Finland Centre of Excellence program (Grant 307331) (E. E.) and VR Swedish Research Council, Outstanding Young Researcher Award, Grant VR 2014-5001 (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.
    Description: 2018-04-26
    Keywords: Buoyancy ; Internal waves ; Turbulence ; Jets ; Oscillations ; Large eddy simulations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2479-2498, doi:10.1175/JPO-D-16-0167.1.
    Description: The generation of trapped and radiating internal tides around Izu‐Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.
    Description: This study was supported by JST CREST Grant Number JPRMJCR12A6.
    Description: 2018-04-12
    Keywords: Pacific Ocean ; Internal waves ; Kelvin waves ; In situ oceanic observations ; Baroclinic models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 5 (2017): cox061, doi:10.1093/conphys/cox061.
    Description: Recent studies have demonstrated that some hormones are present in baleen powder from bowhead (Balaena mysticetus) and North Atlantic right (Eubalaena glacialis) whales. To test the potential generalizability of this technique for studies of stress and reproduction in large whales, we sought to determine whether all major classes of steroid and thyroid hormones are detectable in baleen, and whether these hormones are detectable in other mysticetes. Powdered baleen samples were recovered from single specimens of North Atlantic right, bowhead, blue (Balaenoptera [B.]musculus), sei (B. borealis), minke (B. acutorostrata), fin (B. physalus), humpback (Megaptera novaeangliae) and gray (Eschrichtius robustus) whales. Hormones were extracted with a methanol vortex method, after which we tested all species with commercial enzyme immunoassays (EIAs, Arbor Assays) for progesterone, testosterone, 17β-estradiol, cortisol, corticosterone, aldosterone, thyroxine and tri-iodothyronine, representing a wide array of steroid and thyroid hormones of interest for whale physiology research. In total, 64 parallelism tests (8 species × 8 hormones) were evaluated to verify good binding affinity of the assay antibodies to hormones in baleen. We also tested assay accuracy, although available sample volume limited this test to progesterone, testosterone and cortisol. All tested hormones were detectable in baleen powder of all species, and all assays passed parallelism and accuracy tests. Although only single individuals were tested, the consistent detectability of all hormones in all species indicates that baleen hormone analysis is likely applicable to a broad range of mysticetes, and that the EIA kits tested here perform well with baleen extract. Quantification of hormones in baleen may be a suitable technique with which to explore questions that have historically been difficult to address in large whales, including pregnancy and inter-calving interval, age of sexual maturation, timing and duration of seasonal reproductive cycles, adrenal physiology and metabolic rate.
    Description: This work was supported by (1) the Center for Bioengineering Innovation at Northern Arizona University and (2) the New England Aquarium.
    Keywords: Baleen ; Cetaceans ; Hormones ; Marine mammals ; Reproduction ; Stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 98 (2017): 2429-2454, doi:10.1175/BAMS-D-16-0030.1.
    Description: Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
    Description: We are grateful to U.S. CLIVAR for their leadership in instigating and facilitating the Climate Process Team program. We are indebted to NSF and NOAA for sponsoring the CPT series.
    Description: 2018-06-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1873-1896, doi:10.1175/JPO-D-16-0264.1.
    Description: Midocean ridge fracture zones channel bottom waters in the eastern Brazil Basin in regions of intensified deep mixing. The mechanisms responsible for the deep turbulent mixing inside the numerous midocean fracture zones, whether affected by the local or the nonlocal canyon topography, are still subject to debate. To discriminate those mechanisms and to discern the canyon mean flow, two moorings sampled a deep canyon over and away from a sill/contraction. A 2-layer exchange flow, accelerated at the sill, transports 0.04–0.10-Sv (1 Sv ≡ 106 m3 s−1) up canyon in the deep layer. At the sill, the dissipation rate of turbulent kinetic energy ε increases as measured from microstructure profilers and as inferred from a parameterization of vertical kinetic energy. Cross-sill density and microstructure transects reveal an overflow potentially hydraulically controlled and modulated by fortnightly tides. During spring to neap tides, ε varies from O(10−9) to O(10−10) W kg−1 below 3500 m around the 2-layer interface. The detection of temperature overturns during tidal flow reversal, which almost fully opposes the deep up-canyon mean flow, confirms the canyon middepth enhancement of ε. The internal tide energy flux, particularly enhanced at the sill, compares with the lower-layer energy loss across the sill. Throughout the canyon away from the sill, near-inertial waves with downward-propagating energy dominate the internal wave field. The present study underlines the intricate pattern of the deep turbulent mixing affected by the mean flow, internal tides, and near-inertial waves.
    Description: The DoMORE project was supported by NSF under the Grant OCE-1235094.
    Description: 2018-01-13
    Keywords: Abyssal circulation ; Bottom currents/bottom water ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2531-2543, doi:10.1175/JPO-D-17-0051.1.
    Description: Argo floats are used to investigate Labrador Sea overturning and its variability on seasonal time scales. This is the first application of Argo floats to estimate overturning in a deep-water formation region in the North Atlantic. Unlike hydrographic measurements, which are typically confined to the summer season, floats offer the advantage of collecting data in all seasons. Seasonal composite potential density and absolute geostrophic velocity sections across the mouth of the Labrador Sea assembled from float profiles and trajectories at 1000 m are used to calculate the horizontal and overturning circulations. The overturning exhibits a pronounced seasonal cycle; in depth space the overturning doubles throughout the course of the year, and in density space it triples. The largest overturning [1.2 Sv (1 Sv ≡ 106 m3 s−1) in depth space and 3.9 Sv in density space] occurs in spring and corresponds to the outflow of recently formed Labrador Sea Water. The overturning decreases through summer and reaches a minimum in winter (0.6 Sv in depth space and 1.2 Sv in density space). The robustness of the Argo seasonal overturning is supported by a comparison to an overturning estimate based on hydrographic data from the AR7W line.
    Description: NSF OCE-1459474 supported this work.
    Description: 2018-04-17
    Keywords: North Atlantic Ocean ; Meridional overturning circulation ; In situ oceanic observations ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2631-2646, doi:10.1175/JPO-D-17-0062.1.
    Description: Data from a mooring array deployed north of Denmark Strait from September 2011 to August 2012 are used to investigate the structure and variability of the shelfbreak East Greenland Current (EGC). The shelfbreak EGC is a surface-intensified current situated just offshore of the east Greenland shelf break flowing southward through Denmark Strait. This study identified two dominant spatial modes of variability within the current: a pulsing mode and a meandering mode, both of which were most pronounced in fall and winter. A particularly energetic event in November 2011 was related to a reversal of the current for nearly a month. In addition to the seasonal signal, the current was associated with periods of enhanced eddy kinetic energy and increased variability on shorter time scales. The data indicate that the current is, for the most part, barotropically stable but subject to baroclinic instability from September to March. By contrast, in summer the current is mainly confined to the shelf break with decreased eddy kinetic energy and minimal baroclinic conversion. No other region of the Nordic Seas displays higher levels of eddy kinetic energy than the shelfbreak EGC north of Denmark Strait during fall. This appears to be due to the large velocity variability on mesoscale time scales generated by the instabilities. The mesoscale variability documented here may be a source of the variability observed at the Denmark Strait sill.
    Description: Support for this work was provided by the Norwegian Research Council under Grant Agreement 231647 (LH and KV) and the Bergen Research Foundation under Grant BFS2016REK01 (KV). Additional funding was provided by the National Science Foundation under Grants OCE-0959381 and OCE-1558742 (RP).
    Keywords: Ocean ; Arctic ; Boundary currents ; Currents ; Stability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3661-3679, doi:10.1175/JPO-D-16-0018.1.
    Description: A hydrostatic, coupled-mode, shallow-water model (CSW) is described and used to diagnose and simulate tidal dynamics in the greater Mid-Atlantic Bight region. The reduced-physics model incorporates realistic stratification and topography, internal tide forcing from a priori estimates of the surface tide, and advection terms that describe first-order interactions of internal tides with slowly varying mean flow and mean buoyancy fields and their respective shear. The model is validated via comparisons with semianalytic models and nonlinear primitive equation models in several idealized and realistic simulations that include internal tide interactions with topography and mean flows. Then, 24 simulations of internal tide generation and propagation in the greater Mid-Atlantic Bight region are used to diagnose significant internal tide interactions with the Gulf Stream. The simulations indicate that locally generated mode-one internal tides refract and/or reflect at the Gulf Stream. The redirected internal tides often reappear at the shelf break, where their onshore energy fluxes are intermittent (i.e., noncoherent with surface tide) because meanders in the Gulf Stream alter their precise location, phase, and amplitude. These results provide an explanation for anomalous onshore energy fluxes that were previously observed at the New Jersey shelf break and linked to the irregular generation of nonlinear internal waves.
    Description: We thank the National Science Foundation for support under Grant OCE-1061160 (ShelfIT) to the Massachusetts Institute of Technology (MIT) and under Grant OCE-1060430 to the Woods Hole Oceanographic Institution. PFJL and PJH also thank the Office of Naval Research for research support under Grants N00014-11-1-0701 (MURI-IODA), N00014-12-1-0944 (ONR6.2), and N00014-13-1-0518 (Multi-DA) to MIT.
    Description: 2017-06-14
    Keywords: Continental shelf/slope ; Inertia-gravity waves ; Internal waves ; Boundary currents ; Tides ; Baroclinic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 85-100, doi:10.1175/JPO-D-15-0234.1.
    Description: Observations and analyses of two tidally recurring, oblique, internal hydraulic jumps at a stratified estuary mouth (Columbia River, Oregon/Washington) are presented. These hydraulic features have not previously been studied due to the challenges of both horizontally resolving the sharp gradients and temporally resolving their evolution in numerical models and traditional observation platforms. The jumps, both of which recurred during ebb, formed adjacent to two engineered lateral channel constrictions and were identified in marine radar image time series. Jump occurrence was corroborated by (i) a collocated sharp gradient in the surface currents measured via airborne along-track interferometric synthetic aperture radar and (ii) the transition from supercritical to subcritical flow in the cross-jump direction via shipborne velocity and density measurements. Using a two-layer approximation, observed jump angles at both lateral constrictions are shown to lie within the theoretical bounds given by the critical internal long-wave (Froude) angle and the arrested maximum-amplitude internal bore angle, respectively. Also, intratidal and intertidal variability of the jump angles are shown to be consistent with that expected from the two-layer model, applied to varying stratification and current speed over a range of tidal and river discharge conditions. Intratidal variability of the upchannel jump angle is similar under all observed conditions, whereas the downchannel jump angle shows an additional association with stratification and ebb velocity during the low discharge periods. The observations additionally indicate that the upchannel jump achieves a stable position that is collocated with a similarly oblique bathymetric slope.
    Description: We acknowledge the financial support of the Office of Naval Research under Awards N00014-10-1-0932 and N00014-13-1-0364.
    Description: 2017-07-04
    Keywords: Estuaries ; Baroclinic flows ; Internal waves ; Microwave observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 2305-2327, doi:10.1175/BAMS-D-15-00274.1.
    Description: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Description: PZ, BK, and RM acknowledge support from NOAA Grant NA14OAR4310278, and PZ acknowledges support from NSF AGS-1233874. BM acknowledges support from the Regional and Global Climate Modeling Program of the U.S. Department of Energy’s Office of Science, Cooperative Agreement DE-FC02-97ER62402. PC acknowledges support from U.S. NSF Grants OCE-1334707 and AGS-1462127, and NOAA Grant NA11OAR4310154. PC also acknowledges support from China’s National Basic Research Priorities Programme (2013CB956204) and the Natural Science Foundation of China (41222037 and 41221063). TF acknowledges support from NSF Grant OCE-0745508 and NASA Grant NNX14AM71G. PB acknowledges support from the BMBF SACUS (03G0837A) project. TT and PB acknowledge support from the European Union Seventh Framework Programme (FP7 20072013) under Grant Agreement 603521 for the PREFACE Project. ES and ZW acknowledge support from NSF AGS-1338427, NOAA NA14OAR4310160, and NASA NNX14AM19G; and ES is grateful for further support from the National Monsoon Mission, Ministry of Earth Sciences, India.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 2185-2203, doi:10.1175/JTECH-D-16-0095.1.
    Description: This study presents amended procedures to process and map data collected by pressure-sensor-equipped inverted echo sounders (PIESs) in western boundary current regions. The modifications to the existing methodology, applied to observations of the Kuroshio from a PIES array deployed northeast of Luzon, Philippines, consist of substituting a hydrography-based mean travel time field for the PIES-based mean field and using two distinct gravest empirical mode (GEM) lookup tables across the front that separate water masses of South China Sea and North Pacific origin. In addition, this study presents a method to use time-mean velocities from acoustic Doppler current profilers (ADCPs) to reference (or “level”) the PIES-recorded pressures in order to obtain time series of absolute geostrophic velocity. Results derived from the PIES observations processed with the hydrography-based mean field and two GEMs are compared with hydrographic profiles sampled by Seagliders during the PIES observation period and with current velocity measured concurrently by a collocated ADCP array. The updated processing scheme leads to a 41% error decrease in the determination of the thermocline depth across the current, a 22% error decrease in baroclinic current velocity shear, and a 61% error decrease in baroclinic volume transports. The absolute volume transport time series derived from the leveled PIES array compares well with that obtained directly from the ADCPs with a root-mean-square difference of 3.0 Sv (1 Sv ≡ 106 m3 s–1), which is mainly attributed to the influence of ageostrophic processes on the ADCP-measured velocities that cannot be calculated from the PIES observations.
    Description: The authors are supported by the Office of Naval Research (ONR) Departmental Research Initiative entitled Origins of the Kuroshio and Mindanao Currents (ONR Grant N00014-10-1-0397). MA was supported by ONR Grants N00014-15-12593 and N00014-16-1-2668. CL was supported by ONR Grant N00014-10-0308. SJ was supported by MOST Grants NSC 101-2611-M-002-018-MY3, MOST 103-2611-M-002-011, and MOST 105-2119-M-002-042.
    Description: 2017-04-05
    Keywords: Boundary currents ; Data processing ; In situ oceanic observations ; Inverse methods ; Optimization ; Time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 1713-1721, doi:10.1175/JTECH-D-16-0258.1.
    Description: Data collected with acoustic Doppler current profilers installed on CTD rosettes and lowered through the water column [lowered ADCP (LADCP) systems] are routinely used to derive full-depth profiles of ocean velocity. In addition to the uncertainties arising from random noise in the along-beam velocity measurements, LADCP-derived velocities are commonly contaminated by bias errors due to imperfectly measured instrument attitude (heading, pitch, and roll). Of particular concern are the heading measurements, because it is not usually feasible to calibrate the internal ADCP compasses with the instruments installed on a CTD rosette, away from the magnetic disturbances of the ship. Heading data from dual-headed LADCP systems, which consist of upward- and downward-pointing ADCPs installed on the same rosette, commonly indicate heading-dependent compass errors with amplitudes exceeding 10°. In an attempt to reduce LADCP velocity errors, several dozen profiles of simultaneous LADCP and magnetometer/accelerometer data were collected in the Gulf of Mexico. Agreement between the LADCP profiles and simultaneous shipboard velocity measurements improves significantly when the former are processed with external attitude measurements. Another set of LADCP profiles with external attitude data was collected in a region of the Arctic Ocean where the horizontal geomagnetic field is too weak for the ADCP compasses to work reliably. Good agreement between shipboard velocity measurements and Arctic LADCP profiles collected at magnetic dip angles exceeding and processed with external attitude measurements indicate that high-quality velocity profiles can be obtained close to the magnetic poles.
    Description: Part of this research was made possible by a grant from the Gulf of Mexico Research Initiative to support the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG-2) research consortium. Funding for acquisition of the 2015 Arctic data was provided by NSF (1203473 and 1249133) and NOAA (NA15OAR4310155) under the NABOS-II program.
    Keywords: Ocean ; Arctic ; Algorithms ; In situ oceanic observations ; Measurements ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 1679-1691, doi:10.1175/JTECH-D-16-0162.1.
    Description: For direction-finding high-frequency (HF) radar systems, the correct separation of backscattered spectral energy due to Bragg resonant waves from that due to more complex double-scattering represents a critical first step toward attaining accurate estimates of surface currents from the range-dependent radar backscatter. Existing methods to identify this “first order” region of the spectra, generally sufficient for lower-frequency radars and low-velocity or low-surface gravity wave conditions, are more likely to fail in higher-frequency systems or locations with more variable current, wave, or noise regimes, leading to elevated velocity errors. An alternative methodology is presented that uses a single and globally relevant smoothing length scale, careful pretreatment of the spectra, and marker-controlled watershed segmentation, an image processing technique, to separate areas of spectral energy due to surface currents from areas of spectral energy due to more complex scattering by the wave field or background noise present. Applied to a number of HF radar datasets with a range of operating frequencies and characteristic issues, the new methodology attains a higher percentage of successful first-order identification, particularly during complex current and wave conditions. As operational radar systems continue to expand to more systematically cover areas of high marine traffic, close approaches to ports and harbors, or offshore energy installations, use of this type of updated methodology will become increasingly important to attain accurate current estimates that serve both research and operational interests.
    Description: This analysis was supported by internal funds from the Woods Hole Oceanographic Institution.
    Description: 2018-02-11
    Keywords: Ocean circulation ; Waves, oceanic ; Data processing ; Radars/Radar observations ; Remote sensing ; Pattern detection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3599-3621, doi:10.1175/JPO-D-16-0085.1.
    Description: At continental margins, energetic deep-ocean eddies can transport shelf water offshore in filaments that wrap around the eddy. One example is that of Gulf Stream warm-core rings interacting with the Mid-Atlantic Bight shelf. The rate at which shelf water is exported in these filaments is a major unknown in regional budgets of volume, heat, and salt. This unknown transport is constrained using a series of idealized primitive equation numerical experiments wherein a surface-intensified anticyclonic eddy interacts with idealized shelf–slope topography. There is no shelfbreak front in these experiments, and shelf water is tracked using a passive tracer. When anticyclones interact with shelf–slope topography, they suffer apparent intrusions of shelf–slope water, resulting in a subsurface maximum in offshore transport. The simulations help construct an approximate model for the filament of exported water that originates inshore of any given isobath. This model is then used to derive an expression for the total volume of shelf–slope water transported by the eddy across that isobath. The transport scales with water depth, radius, and azimuthal velocity scale of the eddy. The resulting expression can be used with satellite-derived eddy properties to estimate approximate real-world transports ignoring the presence of a shelfbreak front. The expression assumes that the eddy’s edge is at the shelf break, a condition not always satisfied by real eddies.
    Description: The research presented here was funded by NSF Grants OCE-1059632 and OCE-1433953. Funding support from the Academic Programs Office, and WHOI is also gratefully acknowledged.
    Description: 2017-06-08
    Keywords: Continental shelf/slope ; Advection ; Dynamics ; Eddies ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 8317-8331, doi:10.1175/JCLI-D-16-0109.1.
    Description: A simple analytic model is developed to represent the offshore decay of cold sea surface temperature (SST) signals that originate from wind-driven upwelling at a coastal boundary. The model couples an oceanic mixed layer to an atmospheric boundary layer through wind stress and air–sea heat exchange. The primary mechanism that controls SST is a balance between Ekman advection and air–sea exchange. The offshore penetration of the cold SST signal decays exponentially with a length scale that is the product of the ocean Ekman velocity and a time scale derived from the air–sea heat flux and the radiative balance in the atmospheric boundary layer. This cold SST signal imprints on the atmosphere in terms of both the boundary layer temperature and surface wind. Nonlinearities due to the feedback between SST and atmospheric wind, baroclinic instability, and thermal wind in the atmospheric boundary layer all slightly modify this linear theory. The decay scales diagnosed from two-dimensional and three-dimensional eddy-resolving numerical ocean models are in close agreement with the theory, demonstrating that the basic physics represented by the theory remain dominant even in these more complete systems. Analysis of climatological SST off the west coast of the United States also shows a decay of the cold SST anomaly with scale roughly in agreement with the theory.
    Description: MASwas supported by the Andrew W. Mellon Foundation Endowed Fund for Innovative Research and the National Science Foundation under Grant OCE-1433170 and PLR-1415489. NS was supported by the National Aeronautics and Space Administration under Grant NNX14AL83G, the Department of Energy, Office of Science Grant DE-SC0006766, and the Japan Agency for Marine-Earth Science and Technology as part of the JAMSTEC-IPRC Joint Investigations.
    Description: 2017-05-03
    Keywords: Coastal flows ; Ekman pumping/transport ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 97 (2016): 1859–1884, doi:10.1175/BAMS-D-14-00197.1.
    Description: Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.
    Description: This work was sponsored by the U.S. Office of Naval Research (ONR) in an ONR Departmental Research Initiative (DRI), Air–Sea Interactions in Northern Indian Ocean (ASIRI), and in a Naval Research Laboratory project, Effects of Bay of Bengal Freshwater Flux on Indian Ocean Monsoon (EBOB). ASIRI–RAWI was funded under the NASCar DRI of the ONR. The Indian component of the program, Ocean Mixing and Monsoons (OMM), was supported by the Ministry of Earth Sciences of India.
    Description: 2017-04-22
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 9679-9702, doi:10.1175/JCLI-D-16-0707.1.
    Description: The North Atlantic atmospheric circulation response to the meridional shifts of the Gulf Stream (GS) path is examined using a large ensemble of high-resolution hemispheric-scale Weather Research and Forecasting Model simulations. The model is forced with a broad range of wintertime sea surface temperature (SST) anomalies derived from a lag regression on a GS index. The primary result of the model experiments, supported in part by an independent analysis of a reanalysis dataset, is that the large-scale quasi-steady North Atlantic circulation response is remarkably nonlinear about the sign and amplitude of the SST anomaly chosen over a wide range of GS shift scenarios. The nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation (NAO), the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the shift of the North Atlantic eddy-driven jet, which is reinforced, with nearly equal importance, by the high-frequency transient eddy feedback and the low-frequency wave-breaking events. Additional sensitivity simulations confirm that the nonlinearity of the circulation response is a robust feature found over the broad parameter space encompassing not only the varied SST but also the absence/presence of tropical influence, the varying lateral boundary conditions, and the initialization scheme. The result highlights the fundamental importance of the intrinsically nonlinear transient eddy dynamics and the eddy–mean flow interactions in generating the nonlinear downstream response to the meridional shifts in the Gulf Stream.
    Description: The authors are grateful for the support from NASA (NNX13AM59G) and the NSF (AGS-1355339, OCE-1419235).
    Description: 2018-05-07
    Keywords: North Atlantic Ocean ; Blocking ; North Atlantic Oscillation ; Atmosphere-ocean interaction ; Regional models ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-01-01
    Description: In situ observations of cloud properties made by airborne probes play a critical role in ice cloud research through their role in process studies, parameterization development, and evaluation of simulations and remote sensing retrievals. To determine how cloud properties vary with environmental conditions, in situ data collected during different field projects processed by different groups must be used. However, because of the diverse algorithms and codes that are used to process measurements, it can be challenging to compare the results. Therefore it is vital to understand both the limitations of specific probes and uncertainties introduced by processing algorithms. Since there is currently no universally accepted framework regarding how in situ measurements should be processed, there is a need for a general reference that describes the most commonly applied algorithms along with their strengths and weaknesses. Methods used to process data from bulk water probes, single-particle light-scattering spectrometers and cloud-imaging probes are reviewed herein, with emphasis on measurements of the ice phase. Particular attention is paid to how uncertainties, caveats, and assumptions in processing algorithms affect derived products since there is currently no consensus on the optimal way of analyzing data. Recommendations for improving the analysis and interpretation of in situ data include the following: establishment of a common reference library of individual processing algorithms, better documentation of assumptions used in these algorithms, development and maintenance of sustainable community software for processing in situ observations, and more studies that compare different algorithms with the same benchmark datasets.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-01-01
    Description: It has been known that aerosol particles act as nuclei for ice formation for over a century and a half (see Dufour). Initial attempts to understand the nature of these ice nucleating particles were optical and electron microscope inspection of inclusions at the center of a crystal (see Isono; Kumai). Only within the last few decades has instrumentation to extract ice crystals from clouds and analyze the residual material after sublimation of condensed-phase water been available (see Cziczo and Froyd). Techniques to ascertain the ice nucleating potential of atmospheric aerosols have only been in place for a similar amount of time (see DeMott et al.). In this chapter the history of measurements of ice nucleating particles, both in the field and complementary studies in the laboratory, are reviewed. Remaining uncertainties and artifacts associated with measurements are described and suggestions for future areas of improvement are made.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-01-01
    Description: The life cycle of individual (initially line shaped) contrails behind aircraft and of contrail cirrus (aged contrails mixed with other ice clouds) is described. The full contrail life cycle is covered, from ice formation for given water, heat, and particulate emissions; to changes in the jet, wake, and dispersion phases; through final sublimation or sedimentation. Contrail properties are deduced from various in situ, remote sensing, and model studies. Aerodynamically induced contrails and distrails are explained briefly. Contrails form both in clear air and inside cirrus. Young contrails consume most of the ambient ice supersaturation. Optical properties of contrails are age and humidity dependent. Contrail occurrence and radiative forcing depends on the ambient Earth–atmosphere conditions. Contrail cirrus seems to be optically thicker than assessed previously and may not only increase cirrus coverage but also thicken existing cirrus. Some observational constraints for contrail cirrus occurrence and radiative forcing are derived. Key parameters controlling contrail properties—besides aircraft and fuel properties, ambient pressure, temperature, and humidity—are the number of ice particles per flight distance surviving the wake vortex phase, the contrail depth, and particle sedimentation, wind shear, turbulence, and vertical motions controlling contrail dispersion. The climate impact of contrails depends among other things on the ratio of shortwave to longwave radiative forcing (RF) and on the efficacy with which contrail RF contributes to surface warming. Several open issues are identified, including renucleation from residuals of sublimated contrail ice particles.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-01-01
    Description: Ice-phase precipitation occurs at Earth’s surface and may include various types of pristine crystals, rimed crystals, freezing droplets, secondary crystals, aggregates, graupel, hail, or combinations of any of these. Formation of ice-phase precipitation is directly related to environmental and cloud meteorological parameters that include available moisture, temperature, and three-dimensional wind speed and turbulence, as well as processes related to nucleation, cooling rate, and microphysics. Cloud microphysical parameters in the numerical models are resolved based on various processes such as nucleation, mixing, collision and coalescence, accretion, riming, secondary ice particle generation, turbulence, and cooling processes. These processes are usually parameterized based on assumed particle size distributions and ice crystal microphysical parameters such as mass, size, and number and mass density. Microphysical algorithms in the numerical models are developed based on their need for applications. Observations of ice-phase precipitation are performed using in situ and remote sensing platforms, including radars and satellite-based systems. Because of the low density of snow particles with small ice water content, their measurements and predictions at the surface can include large uncertainties. Wind and turbulence affecting collection efficiency of the sensors, calibration issues, and sensitivity of ground-based in situ observations of snow are important challenges to assessing the snow precipitation. This chapter’s goals are to provide an overview for accurately measuring and predicting ice-phase precipitation. The processes within and below cloud that affect falling snow, as well as the known sources of error that affect understanding and prediction of these processes, are discussed.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-01-01
    Description: Ice fog is a natural, outdoor cloud laboratory that provides an excellent opportunity to study ice microphysical processes. Ice crystals in fog are formed through similar pathways as those in elevated clouds; that is, cloud condensation or ice nuclei are activated in an atmosphere supersaturated with respect to liquid water or ice. The primary differences between surface and elevated ice clouds are related to the sources of water vapor, the cooling mechanisms and dynamical processes leading to supersaturation, and the microphysical characteristics of the nuclei that affect ice fog crystal physical properties. As with any fog, its presence can be a hazard for ground or airborne traffic because of poor visibility and icing. In addition, ice fog plays a role in climate change by modulating the heat and moisture budgets. Ice fog wintertime occurrence in many parts of the world can have a significant impact on the environment. Global climate models need to accurately account for the temporal and spatial microphysical and optical properties of ice fog, as do weather forecast models. The primary handicap is the lack of adequate information on nucleation processes and microphysical algorithms that accurately represent glaciation of supercooled water fog. This chapter summarizes the current understanding of ice fog formation and evolution; discusses operating principles, limitations, and uncertainties associated with the instruments used to measure ice fog microphysical properties; describes the prediction of ice fog by the numerical forecast models and physical parameterizations used in climate models; identifies the outstanding questions to be resolved; and lists recommended actions to address and solve these questions.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-01-01
    Description: State-of-the-art remote sensing techniques applicable to the investigation of ice formation and evolution are described. Ground-based and spaceborne measurements with lidar, radar, and radiometric techniques are discussed together with a global view on past and ongoing remote sensing measurement campaigns concerned with the study of ice formation and evolution. This chapter has the intention of a literature study and should illustrate the major efforts that are currently taken in the field of remote sensing of atmospheric ice. Since other chapters of this monograph mainly focus on aircraft in situ measurements, special emphasis is put on active remote sensing instruments and synergies between aircraft in situ measurements and passive remote sensing methods. The chapter concentrates on homogeneous and heterogeneous ice formation in the troposphere because this is a major topic of this monograph. Furthermore, methods that deliver direct, process-level information about ice formation are elaborated with a special emphasis on active remote sensing methods. Passive remote sensing methods are also dealt with but only in the context of synergy with aircraft in situ measurements.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-01-01
    Description: Ice particle formation in tropospheric clouds significantly changes cloud radiative and microphysical properties. Ice nucleation in the troposphere via homogeneous freezing occurs at temperatures lower than −38°C and relative humidity with respect to ice above 140%. In the absence of these conditions, ice formation can proceed via heterogeneous nucleation aided by aerosol particles known as ice nucleating particles (INPs). In this chapter, new developments in identifying the heterogeneous freezing mechanisms, atmospheric relevance, uncertainties, and unknowns about INPs are described. The change in conventional wisdom regarding the requirements of INPs as new studies discover physical and chemical properties of these particles is explained. INP sources and known reasons for their ice nucleating properties are presented. The need for more studies to systematically identify particle properties that facilitate ice nucleation is highlighted. The atmospheric relevance of long-range transport, aerosol aging, and coating studies (in the laboratory) of INPs are also presented. Possible mechanisms for processes that change the ice nucleating potential of INPs and the corresponding challenges in understanding and applying these in models are discussed. How primary ice nucleation affects total ice crystal number concentrations in clouds and the discrepancy between INP concentrations and ice crystal number concentrations are presented. Finally, limitations of parameterizing INPs and of models in representing known and unknown processes related to heterogeneous ice nucleation processes are discussed.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-01-01
    Description: The goal of this chapter is to synthesize information about what is now known about one of the three main types of clouds, cirrus, and to identify areas where more knowledge is needed. Cirrus clouds, composed of ice particles, form in the upper troposphere, where temperatures are generally below −30°C. Satellite observations show that the maximum-occurrence frequency of cirrus is near the tropics, with a large latitudinal movement seasonally. In situ measurements obtained over a wide range of cirrus types, formation mechanisms, temperatures, and geographical locations indicate that the ice water content and particle size generally decrease with decreasing temperature, whereas the ice particle concentration is nearly constant or increases slightly with decreasing temperature. High ice concentrations, sometimes observed in strong updrafts, result from homogeneous nucleation. The satellite-based and in situ measurements indicate that cirrus ice crystals typically differ from the simple, idealized geometry for smooth hexagonal shapes, indicating complexity and/or surface roughness. Their shapes significantly impact cirrus radiative properties and feedbacks to climate. Cirrus clouds, one of the most uncertain components of general circulation models (GCM), pose one of the greatest challenges in predicting the rate and geographical pattern of climate change. Improved measurements of the properties and size distributions and surface structure of small ice crystals (about 20 μm) and identifying the dominant ice nucleation process (heterogeneous versus homogeneous ice nucleation) under different cloud dynamical forcings will lead to a better representation of their properties in GCM and in modeling their current and future effects on climate.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called ‘full mode coupling’ allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1–2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems that great care must be taken in any attempt to robustly infer details of Earth's density structure using current splitting functions.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L〈sub〉1〈/sub〉-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L〈sub〉2〈/sub〉-norm-based 3-D inversion's result to further investigate the features of the new method.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997–2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi-oki earthquakes and the recovery of the interplate coupling around the rupture area of the 1994 M7.6 Sanriku-Haruka-oki earthquake. The results also indicate the semi-periodic occurrence of slow slip events and the expansion of the area of slow slip events before the 2011 Tohoku-oki earthquake (M9.0) approaching the hypocentre of the Tohoku-oki earthquake.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify 〈span〉P〈/span〉 and 〈span〉S〈/span〉 body waves, along with 〈span〉P〈/span〉- and 〈span〉S〈/span〉-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of 〈span〉P〈/span〉 arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates 〈span〉P〈/span〉- and 〈span〉S〈/span〉-types FZTW. Inversions of high-quality 〈span〉S〈/span〉-type FZTW indicate that the most likely parameters of the trapping structure are width of ∼70 m, 〈span〉S〈/span〉-wave velocity reduction of 60 per cent, 〈span〉Q〈/span〉 value of 60 and depth of ∼2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉The computational cost of quasi-〈span〉P〈/span〉 wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyse the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of 〈span〉SV〈/span〉-wave artefacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modelling engine performs better than an isotropic migration.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017
    Description: 〈span〉〈div〉Summary〈/div〉Over the past 15 yr, numerical models of convection in Earth’s mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough for an accurate prediction of instantaneous flow, but not for a prediction after 10 My of evolution. Therefore, inverse methods (sequential or data assimilation methods) using short-term fully dynamic evolution that predict surface kinematics are promising tools for a better understanding of the state of the Earth’s mantle.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-10-21
    Description: Minerals, Vol. 7, Pages 200: Adsorption of Scandium and Neodymium on Biochar Derived after Low-Temperature Pyrolysis of Sawdust Minerals doi: 10.3390/min7100200 Authors: Konstantinos Komnitsas Dimitra Zaharaki Georgios Bartzas Georgios Alevizos The objective of this study was to investigate the adsorption of two rare earth elements (REEs), namely scandium (Sc) and neodymium (Nd), on biochar produced after low temperature pyrolysis (350 °C) of wood sawdust. The biochar was characterized with the use of several analytical techniques, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) analysis, while the pH at point of zero charge (pHPZC) was also determined. The experimental conditions were: absorbent concentration 1–10 g L−1, REE concentration in solution 20 mg L−1, contact time for equilibrium 24 h, temperature 25 °C and stirring speed 350 rpm. The efficiency of biochar was compared to that of a commercial activated carbon. Geochemical modelling was carried out to determine speciation of Nd and Sc species in aqueous solutions using PHREEQC-3 equipped with the llnl database. The experimental results indicated the potential of low temperature produced biochar, even though inferior to that of activated carbon, to adsorb efficiently both REEs. The equilibrium adsorption data were very well fitted into the Freundlich isotherm model, while kinetic data suggested that the removal of both REEs follows the pseudo-second order kinetic reaction. Finally, the most probable adsorption mechanisms are discussed.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-11-08
    Description: IJERPH, Vol. 14, Pages 1354: Pattern of Road Traffic Injuries in Rural Bangladesh: Burden Estimates and Risk Factors International Journal of Environmental Research and Public Health doi: 10.3390/ijerph14111354 Authors: Md. Ul Baset Aminur Rahman Olakunle Alonge Priyanka Agrawal Shirin Wadhwaniya Fazlur Rahman Globally, road traffic injury (RTI) causes 1.3 million deaths annually. Almost 90% of all RTI deaths occur in low- and middle-income countries. RTI is one of the leading causes of death in Bangladesh; the World Health Organization estimated that it kills over 21,000 people in the country annually. This study describes the current magnitude and risk factors of RTI for different age groups in rural Bangladesh. A household census was carried out in 51 unions of seven sub-districts situated in the north and central part of Bangladesh between June and November 2013, covering 1.2 million individuals. Trained data collectors collected information on fatal and nonfatal RTI events through face-to-face interviews using a set of structured pre-tested questionnaires. The recall periods for fatal and non-fatal RTI were one year and six months, respectively. The mortality and morbidity rates due to RTI were 6.8/100,000 population/year and 889/100,000 populations/six months, respectively. RTI mortality and morbidity rates were significantly higher among males compared to females. Deaths and morbidities due to RTI were highest among those in the 25–64 years age group. A higher proportion of morbidity occurred among vehicle passengers (34%) and pedestrians (18%), and more than one-third of the RTI mortality occurred among pedestrians. Twenty percent of all nonfatal RTIs were classified as severe injuries. RTI is a major public health issue in rural Bangladesh. Immediate attention is needed to reduce preventable deaths and morbidities in rural Bangladesh.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-12-30
    Description: Sustainability, Vol. 10, Pages 77: Designing a Climate-Resilient Environmental Curriculum—A Transdisciplinary Challenge Sustainability doi: 10.3390/su10010077 Authors: Cheng-Yu Yu Yi-Chang Chiang Building resilience is a promising transdisciplinary area that contributes to addressing the impacts of climate change. This paper focused on the design of climate-resilient environmental curriculums to enhance environmental quality. Transdisciplinary approaches have been recognized as being well-placed to assist responses to climate change, which is a complex phenomenon and problem. Semi-structured interviews were conducted to explore how climate-resilient environmental education can be integrated into the design, implementation, and practice transdisciplinary manner into curriculums. Transdisciplinary curriculum design is an important factor determining the quality of modules, especially in the field of environmental design, due to its real-life setting characteristics. As students are trained with new projects, and under different socioeconomic and environmental conditions, curriculum design requires modification. Moreover, promoting transdisciplinary studies is a new trend that influences curriculum design. Compared to the interdisciplinary approach, the transdisciplinary approach is concerned with issues and subjects that exist between disciplines, across different disciplines, and beyond all the disciplines, leading to an immense space of new knowledge. This approach leads to integrated research that involves non-academic participants. We concluded that the transdisciplinary approach is beneficial for students in two ways: better performance in practical modules, and addresses the real interests of the students. Feedback from students about the curriculum design suggested that, to consider the individual student’s personal circumstances, multiple training methods should be used. The transdisciplinary approach to climate-resilient environmental curriculum design using a participative process amongst stakeholders is crucial; however, in this study, different opinions amongst interviewed tutors may obstruct the realization of the students’ wishes.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-12-30
    Description: Sustainability, Vol. 10, Pages 73: International Tourists’ Perceived Sustainability of Jeju Island, South Korea Sustainability doi: 10.3390/su10010073 Authors: Min-Seong Kim Brijesh Thapa Hany Kim This study investigated the causal relationships between international tourists’ perceived sustainability of Jeju Island, South Korea and environmentally responsible behavior, revisit intention, and positive word-of-mouth communication. Perceived sustainability was employed as a multidimensional construct comprised of economic, cultural, and environmental aspects. Data were collected from international tourists that visited Jeju Island. The results indicated that environmentally responsible behavior was influenced positively by cultural sustainability, and negatively by environmental sustainability. Revisit intention and positive word-of-mouth communication were significantly affected by the three dimensions of sustainability. Based on the findings, associated implications were suggested for sustainable destination management of Jeju Island.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-12-30
    Description: Sensors, Vol. 18, Pages 82: Fog-Based Two-Phase Event Monitoring and Data Gathering in Vehicular Sensor Networks Sensors doi: 10.3390/s18010082 Authors: Yongxuan Lai Fan Yang Jinsong Su Qifeng Zhou Tian Wang Lu Zhang Yifan Xu Vehicular nodes are equipped with more and more sensing units, and a large amount of sensing data is generated. Recently, more and more research considers cooperative urban sensing as the heart of intelligent and green city traffic management. The key components of the platform will be a combination of a pervasive vehicular sensing system, as well as a central control and analysis system, where data-gathering is a fundamental component. However, the data-gathering and monitoring are also challenging issues in vehicular sensor networks because of the large amount of data and the dynamic nature of the network. In this paper, we propose an efficient continuous event-monitoring and data-gathering framework based on fog nodes in vehicular sensor networks. A fog-based two-level threshold strategy is adopted to suppress unnecessary data upload and transmissions. In the monitoring phase, nodes sense the environment in low cost sensing mode and generate sensed data. When the probability of the event is high and exceeds some threshold, nodes transfer to the event-checking phase, and some nodes would be selected to transfer to the deep sensing mode to generate more accurate data of the environment. Furthermore, it adaptively adjusts the threshold to upload a suitable amount of data for decision making, while at the same time suppressing unnecessary message transmissions. Simulation results showed that the proposed scheme could reduce more than 84 percent of the data transmissions compared with other existing algorithms, while it detects the events and gathers the event data.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-12-30
    Description: Sustainability, Vol. 10, Pages 75: Exploring the Patterns and Mechanisms of Reclaimed Arable Land Utilization under the Requisition-Compensation Balance Policy in Wenzhou, China Sustainability doi: 10.3390/su10010075 Authors: Lin Lin Hongzhen Jia Yi Pan Lefeng Qiu Muye Gan Shenggao Lu Jinsong Deng Zhoulu Yu Ke Wang Arable land in China is undergoing significant changes, with massive losses of arable land due to rapid urbanization and the reclamation of arable land from other lands to compensate for these losses. Many studies have analyzed arable land loss, but less attention has been paid to land reclamation, and the utilization of reclaimed land remains unclear. The goal of our study was to characterize the patterns and efficiency of the utilization of reclaimed land and to identify the factors influencing the land utilization process in Wenzhou using remote sensing, geographic information systems and logistic regression. Our results showed that only 37% of the total reclaimed land area was under cultivation, and other lands were still bare or had been covered by trees and grasses. The likelihood that reclaimed land was used for cultivation was highly correlated with the land use type of its neighboring or adjacent parcels. Reclaimed land utilization was also limited at high elevations in lands with poor soil fertility and in lands at a great distance from rural residential areas. In addition, parcels located in the ecological protection zone were less likely to be cultivated. Therefore, we suggest that the important determinants should be considered when identifying the most suitable land reclamation areas.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-12-30
    Description: Sensors, Vol. 18, Pages 78: A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications Sensors doi: 10.3390/s18010078 Authors: Sung-Woo Kim Youngoh Lee Jonghwa Park Seungmok Kim Heeyoung Chae Hyunhyub Ko Jae Kim This study presents a flexible wireless electronic skin (e-skin) sensor system that includes a multi-functional sensor device, a triple-mode reconfigurable readout integrated circuit (ROIC), and a mobile monitoring interface. The e-skin device’s multi-functionality is achieved by an interlocked micro-dome array structure that uses a polyvinylidene fluoride and reduced graphene oxide (PVDF/RGO) composite material that is inspired by the structure and functions of the human fingertip. For multi-functional implementation, the proposed triple-mode ROIC is reconfigured to support piezoelectric, piezoresistance, and pyroelectric interfaces through single-type e-skin sensor devices. A flexible system prototype was developed and experimentally verified to provide various wireless wearable sensing functions—including pulse wave, voice, chewing/swallowing, breathing, knee movements, and temperature—while their real-time sensed data are displayed on a smartphone.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-12-30
    Description: Sensors, Vol. 18, Pages 77: Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems Sensors doi: 10.3390/s18010077 Authors: Stanislav Vítek Maria Nasyrova The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-12-08
    Description: Energies, Vol. 10, Pages 2083: Core Abilities Evaluation Index System Exploration and Empirical Study on Distributed PV-Generation Projects Energies doi: 10.3390/en10122083 Authors: Lin He Chang-Ling Li Qing-Yun Nie Yan Men Hai Shao Jiang Zhu In line with the constraints of environmental problems and economic development, large-scale renewable-generation projects have been planned and constructed in recent years. In order to achieve sustainable power development and improve the power supply structure, China’s government has focused on distributed photovoltaic (PV) generation projects due to their advantages of clean emission and local consumption. However, their unstable output power still brings a series of problems concerning reliability, investment income, and available substitution proportion to traditional power, and so on. Therefore, it is imperative to understand the competitive development abilities of distributed PV generation projects and measure them effectively. First, through various investigation methods such as literature reviews, feasibility report analysis and expert interviews, the factors that influence the core abilities of distributed PV-generation projects were explored based on the micro-grid structure. Then, with the indexed exploration results, the factors were classified into 6 dimensions, i.e., investment and earning ability, production and operation ability, power-grid coordination ability, energy-conservation and emission-reduction ability, sustainable development ability, and society-serving ability. Meanwhile, an evaluation index system for core abilities of distributed PV-generation project was constructed using all quantitative indicators. Third, for examining the availability of the evaluation index system, combination weighting and techniques for order preference by similarity to an ideal solution (TOPSIS) methods were adopted to assess the practical distributed PV-generation projects. The case study results showed that installed capacity, local economy development, and grid-connected power quantity will influence the core abilities of distributed PV-generation project, obviously. The conclusions of the evaluation analysis on core abilities can provide useful references to operate and manage distributed PV-generation projects and promote their sustainable and health advantages. The proposed evaluation index system can also be used to assess power-generation projects in other types of energy, such as wind power and hydropower.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-03-17
    Description: Comprehensive research on glacier changes in the Tian Shan is available for the current decade; however, there is limited information about glacier investigations of previous decades and especially before the mid 1970s. The earliest stereo images from the Corona missions were acquired in the 1960s but existing studies dealing with these images focus on single glaciers or small areas only. We developed a workflow to generate digital terrain models (DTMs) and orthophotos from 1964 Corona KH-4 for an entire mountain range (Ak-Shirak) located in the Central Tian Shan. From these DTMs and orthoimages, we calculated geodetic mass balances and length changes in comparison to 1973 and 1980 Hexagon KH-9 data. We found mass budgets between −0.4 ± 0.1 m·w.e.a−1 (1964–1980) and −0.9 ± 0.4 m·w.e.a−1 (1973–1980) for the whole region and individual glaciers. The length changes, on the other hand, vary heterogeneously between +624 ± 18 m (+39.0 ± 1.1 m·a−1) and −923 ± 18 m (−57.7 ± 1.1 m·a−1) for 1964–1980. An automation of the processing line can successively lead to region-wide Corona data processing allowing the analysis and interpretation of glacier changes on a larger scale and supporting a refinement of glacier modelling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-03-07
    Description: Hydraulic manifolds are used to realize compact circuit layout, but may introduce a high pressure drop in the system. Their design is in fact oriented more toward achieving minimum size and weight than to reducing pressure losses. This work studies the pressure losses in hydraulic manifolds using different methods: Computational Fluid Dynamic (CFD) analysis; semi-empirical formulation derived from the scientific literature, when available; and experimental characterization. The purpose is to obtain the pressure losses when the channels’ connections within the manifold are not ascribable to the few classic cases studied in the literature, in particular for 90° bends (elbows) with expansion/contraction and offset intersection of channels. Moreover, since CFD analysis is used to predict pressure losses, general considerations of the manifold design may be outlined and this will help the design process in the optimization of flow passages. The main results obtained show how CFD analysis overestimates the experimental results; nevertheless, the numerical analysis represents the correct trends of the pressure losses.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-03-07
    Description: Traditional current transformers (CTs) suffer from DC and AC saturation and remanent magnetization in many industrial applications. Moreover, the drawbacks of traditional CTs, such as closed iron cores, bulky volume, and heavy weight, further limit the development of an intelligent power protection system. In order to compensate for these drawbacks, we proposed a novel current measurement method by using Hall sensors, which is called the Hall-effect current transformer (HCT). The existing commercial Hall sensors are electronic components, so the reliability of the HCT is normally worse than that of the traditional CT. Therefore, our study proposes a redundancy mechanism for the HCT to strengthen its reliability. With multiple sensor modules, the method has the ability to improve the accuracy of the HCT as well. Additionally, the proposed redundancy mechanism monitoring system provides a condition-based maintenance for the HCT. We verify our method with both simulations and an experimental test. The results demonstrate that the proposed HCT with a redundancy mechanism can almost achieve Class 0.2 for measuring CTs according to IEC Standard 60044-8.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-03-07
    Description: This paper proposes a model for strategic maintenance scheduling of offshore wind farms (SMSOWF) in a deregulated power system. The objective of the model is to plan the maintenance schedules in a way to maximize the profit of the offshore wind farm. In addition, some network constraints, such as transmission lines capacity, and wind farm constraints, such as labor working shift, wave height limit and wake effect, as well as unexpected outages, are included in deterministic and stochastic studies. Moreover, the proposedmodel provides theability to incorporate information from condition monitoring systems. SMSOWF is formulated through a bi-level formulation and then transformed into a single-level through Karush–Kuhn–Tucker conditions. The model is validated through a test system, and the results demonstrate applicability, advantages and challenges of harnessing the full potential of the model.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-03-07
    Description: Due to a mistake during the production process, there was a spelling error in the Academic Editors’ names in the original published version [...]
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-03-17
    Description: In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-03-18
    Description: Since the late 1990s, land surface temperatures over Japan have increased during the summer and autumn, while global mean temperatures have not risen in this duration (i.e., the global warming hiatus). In contrast, winter and spring temperatures in Japan have decreased. To assess the impact of both global warming and global-scale decadal variability on this enhanced seasonal temperature contrast, we analyzed the outputs of 100 ensemble simulations of historical and counterfactual non-warming climate simulations conducted using a high-resolution atmospheric general circulation model (AGCM). Our simulations showed that atmospheric fields impacted by the La Nina-like conditions associated with Interdecadal Pacific Oscillation (IPO) have predominantly contributed to the seasonal temperature contrast over Japan. Compared with the impact of negative IPO, the influence of global warming on seasonal temperature contrasts in Japan was small. In addition, atmospheric variability has also had a large impact on temperatures in Japan over a decadal timescale. The results of this study suggest a future increase in heatwave risk during the summer and autumn when La Nina-like decadal phenomena and atmospheric perturbations coincide over a background of global warming.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-03-19
    Description: In this paper, the composite additive of CaF2/CaO was used to extract vanadium from stone coal, and the effect of roasting and leaching kinetics were studied. The purpose of this manuscript is to realize and improve the vanadium recovery from stone coal using the composite additive. The experimental results indicated that the roasted clinker can be obtained under the conditions of CaF2/CaO at a mass ratio of 2:3 and a total additive amount of 10 wt %, a roasting temperature 850 °C, and a roasting time of 90 min. The leaching rate of vanadium can reach 86.74%, which increased by 16.4% compared with that of blank roasting under the conditions including a leaching temperature of 950 °C, a sulfuric acid concentration of 15% (v/v), a leaching time of 2 h, and a ratio of liquid to solid of 3 mL/g. The phase transformation analysis indicated that the muscovite structure was effectively destroyed during the roasting process comparing with no additives, which provided the basis for vanadium dissociation. Roasting can promote the formation of calcium vanadate, which is beneficial to the leaching of vanadium. The vanadium leaching kinetic analysis indicated that the activation energy of the acid leaching reaction decreased from 42.50 KJ/mol in the blank roasting to 22.56 KJ/mol in the calcified roasting, and the reaction order, with respect to the sulfuric acid concentration, decreased from 1.15 to 0.85. Calcified roasting has a better mineral activation than blank roasting, which can accelerate the leaching of vanadium and reduce the dependence on high-temperature and high acid levels in the leaching process.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-03-19
    Description: Two new Cr(III) complexes based on 2-substituted 8-hydroxyquinoline ligands, namely [Cr(L1)3] (1), (HL1=(E)-2-[2-(4-nitro-phenyl)-vinyl]-8-hydroxy-quinoline) and [Cr(L2)3] (2), (HL2=(E)-2-[2-(4-chloro-phenyl)vinyl]-8-hydroxy-quinoline), were prepared by a facile hydrothermal method and characterized thoroughly by single crystal X-ray diffraction, powder X-ray diffraction, FTIR, TGA, ESI-MS, UV-Visible absorption spectra and fluorescence emission spectra. Single crystal X-ray diffraction analyses showed that the two compounds featured 3D supramolecular architectures constructed from noncovalent interactions, such as π···π stacking, C-H···π, C-H···O, C-Cl···π, C-H···Cl interactions. The thermogravimetric analysis and ESI-MS study of compounds 1 and 2 suggested that the Cr(III) complexes possessed good stability both in solid and solution. In addition, the ultraviolet and fluorescence response of the HL1 and HL2 shown marked changes upon their complexation with Cr(III) ion, which indicated that the two 8-hydroxyquinolinate based ligand are promising heavy metal chelating agent for Cr3+.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-03-19
    Description: Geographic Object-Based Image Analysis (GEOBIA) mostly uses proprietary software,but the interest in Free and Open-Source Software (FOSS) for GEOBIA is growing. This interest stems not only from cost savings, but also from benefits concerning reproducibility and collaboration. Technical challenges hamper practical reproducibility, especially when multiple software packages are required to conduct an analysis. In this study, we use containerization to package a GEOBIA workflow in a well-defined FOSS environment. We explore the approach using two software stacks to perform an exemplary analysis detecting destruction of buildings in bi-temporal images of a conflict area. The analysis combines feature extraction techniques with segmentation and object-based analysis to detect changes using automatically-defined local reference values and to distinguish disappeared buildings from non-target structures. The resulting workflow is published as FOSS comprising both the model and data in a ready to use Docker image and a user interface for interaction with the containerized workflow. The presented solution advances GEOBIA in the following aspects: higher transparency of methodology; easier reuse and adaption of workflows; better transferability between operating systems; complete description of the software environment; and easy application of workflows by image analysis experts and non-experts. As a result, it promotes not only the reproducibility of GEOBIA, but also its practical adoption.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-03-19
    Description: Digital surface models (DSMs) derived from spaceborne and airborne sensors enable the monitoring of the vertical structures for forests in large areas. Nevertheless, due to the lack of an objective performance assessment for this task, it is difficult to select the most appropriate data source for DSM generation. In order to fill this gap, this paper performs change detection analysis including forest decrease and tree growth. The accuracy of the DSMs is evaluated by comparison with measured tree heights from inventory plots (field data). In addition, the DSMs are compared with LiDAR data to perform a pixel-wise quality assessment. DSMs from four different satellite stereo sensors (ALOS/PRISM, Cartosat-1, RapidEye and WorldView-2), one satellite InSAR sensor (TanDEM-X), two aerial stereo camera systems (HRSC and UltraCam) and two airborne laser scanning datasets with different point densities are adopted for the comparison. The case study is a complex central European temperate forest close to Traunstein in Bavaria, Germany. As a major experimental result, the quality of the DSM is found to be robust to variations in image resolution, especially when the forest density is high. The forest decrease results confirm that besides aerial photogrammetry data, very high resolution satellite data, such as WorldView-2, can deliver results with comparable quality as the ones derived from LiDAR, followed by TanDEM-X and Cartosat DSMs. The quality of the DSMs derived from ALOS and Rapid-Eye data is lower, but the main changes are still correctly highlighted. Moreover, the vertical tree growth and their relationship with tree height are analyzed. The major tree height in the study site is between 15 and 30 m and the periodic annual increments (PAIs) are in the range of 0.30–0.50 m.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-03-19
    Description: This paper presents an automated and effective framework for classifying airborne laser scanning (ALS) point clouds. The framework is composed of four stages: (i) step-wise point cloud segmentation, (ii) feature extraction, (iii) Random Forests (RF) based feature selection and classification, and (iv) post-processing. First, a step-wise point cloud segmentation method is proposed to extract three kinds of segments, including planar, smooth and rough surfaces. Second, a segment, rather than an individual point, is taken as the basic processing unit to extract features. Third, RF is employed to select features and classify these segments. Finally, semantic rules are employed to optimize the classification result. Three datasets provided by Open Topography are utilized to test the proposed method. Experiments show that our method achieves a superior classification result with an overall classification accuracy larger than 91.17%, and kappa coefficient larger than 83.79%.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-03-19
    Description: This paper presents a supervised feature extraction method called weighted kernel entropy component analysis (WKECA) for fault diagnosis of rolling bearings. The method is developed based on kernel entropy component analysis (KECA) which attempts to preserve the Renyi entropy of the data set after dimension reduction. It makes full use of the labeled information and introduces a weight strategy in the feature extraction. The class-related weights are introduced to denote differences among the samples from different patterns, and genetic algorithm (GA) is implemented to seek out appropriate weights for optimizing the classification results. The features based on wavelet packet decomposition are derived from the original signals. Then the intrinsic geometric features extracted by WKECA are fed into the support vector machine (SVM) classifier to recognize different operating conditions of bearings, and we obtain the overall accuracy (97%) for the experimental samples. The experimental results demonstrated the feasibility and effectiveness of the proposed method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-03-19
    Description: Achieving a high fill factor is a bottleneck problem for capturing high-quality images. There are hardware and software solutions to overcome this problem. In the solutions, the fill factor is known. However, this is an industrial secrecy by most image sensor manufacturers due to its direct effect on the assessment of the sensor quality. In this paper, we propose a method to estimate the fill factor of a camera sensor from an arbitrary single image. The virtual response function of the imaging process and sensor irradiance are estimated from the generation of virtual images. Then the global intensity values of the virtual images are obtained, which are the result of fusing the virtual images into a single, high dynamic range radiance map. A non-linear function is inferred from the original and global intensity values of the virtual images. The fill factor is estimated by the conditional minimum of the inferred function. The method is verified using images of two datasets. The results show that our method estimates the fill factor correctly with significant stability and accuracy from one single arbitrary image according to the low standard deviation of the estimated fill factors from each of images and for each camera.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-03-19
    Description: The aim of this paper is to identify the correlations between energy consumption and the factors that control usage in the city of Tangshan. To do this, we first analyze the current status of Tangshan’s economic development and energy consumption, and then applied the logarithmic mean Divisia index to identify the factors affecting the changes in energy consumption of all sectors. The findings are summarized as follows: (1) secondary industry accounts for an extremely high percentage of industry in Tangshan city, much higher than the national average; from 2007 to 2012, the proportion of secondary industry increased in Tangshan city; (2) Tangshan’s energy consumption in 2013 was nearly twice that in 2005. Coal and coke coal consumption was responsible for 96.2% of total energy consumption in 2005 and 95.1% in 2013; (3) Tangshan’s energy intensity decreased from 3.00 tce/thousand Yuan in 2005 to 1.85 tce/thousand Yuan in 2013. However, the energy intensity of Tangshan was far more than the average for China, and the decline in Tangshan’s energy intensity was much slower than the average for China; (4) The technical effect plays a dominant role in decreasing energy consumption in most sectors, and the scale effect is the most important contributor to increasing energy consumption in all sectors. Input structural and final use structural effects play different roles in energy consumption in different sectors.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-03-19
    Description: The European population is ageing, and there is a need for health solutions that keep older adults independent longer. With increasing access to mobile technology, such as smartphones and smartwatches, the development and use of mobile health applications is rapidly growing. To meet the societal challenge of changing demography, mobile health solutions are warranted that support older adults to stay healthy and active and that can prevent or delay functional decline. This paper reviews the literature on mobile technology, in particular wearable technology, such as smartphones, smartwatches, and wristbands, presenting new ideas on how this technology can be used to encourage an active lifestyle, and discusses the way forward in order further to advance development and practice in the field of mobile technology for active, healthy ageing.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-03-19
    Description: The Transition Network is a global grassroots network that supports community-led resilience in the face of global change. This paper reports on an ethnographic study of one of its longest-running projects, Transition Town Lewes (TTL) in the United Kingdom. The aim of the study is to analyse TTL as a community. More specifically, we ask two questions: (1) what type of community is TTL? and (2) what are the challenges TTL faces as a community? With this, we contribute to the existing literature on local sustainability initiatives and in particular on Transition initiatives, by providing an in-depth understanding of the challenges and social dynamics at play in a day-to-day setting. We conducted three months of intensive ethnographic fieldwork using participant observation, interviews, and a focus group. Our analysis shows that TTL is a community that, on the one hand, is motivated by explicit intentions and goals, but that, on the other hand, leaves openness and flexibility regarding the level and specifics of participants’ engagement. We introduce the novel concept of ‘light intentional community’ to describe this type of community. We first investigate intentionality in TTL, finding that differences exist between individual participant motivations and stated TTL objectives. We go on to describe the ‘light’ aspect of TTL—the differences in levels of engagement between community participants. Our analysis shows that TTL and its participants face two main challenges. First, TTL participants experience ‘multi-dimensional liminality’: they operate in a liminal space between mainstream society and TTL practices, and additionally experience a continuous sense of transitioning toward a moving goal. Second, TTL as a community faces internal and external frictions. These challenges are interrelated and stem from the structure and dynamics of TTL as a light intentional community. We conclude by reflecting on our analysis of the nature and challenges of ‘light intentional communities’, identifying what opportunities this concept brings for overcoming the challenges of grassroots globalization initiatives amidst mainstream society.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-03-19
    Description: Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-03-19
    Description: On-site management of construction waste commonly determines its destination. In the case of plasterboard (PB), on-site segregation becomes crucial for closed-loop recycling. However, PB is commonly mixed with other wastes in Spain. In this context, the involvement of stakeholders that can contribute to reversing this current situation is needed. This paper analyzes on-site waste management of PB in Spain through a pilot study of a construction site, with the main objective of identifying best practices to increase waste prevention, waste minimization, and the recyclability of the waste. On-site visits and structured interviews were conducted. The results show five management stages: PB distribution (I); PB installation (II); Construction waste storage at the installation area (III); PB waste segregation at the installation area (IV) and PB waste transfer to the PB container and storage (V). The proposed practices refer to each stage and include the merging of Stages III and IV. This measure would avoid the mixing of waste fractions in Stage III, maximizing the recyclability of PB. In addition, two requisites for achieving enhanced management are analyzed: ‘Training and commitment’ and ‘fulfilling the requirements established by the current regulation’. The results show that foremen adopted a more pessimistic attitude than installers towards a joint commitment for waste management. Moreover, not all supervisors valued the importance of a site waste management plan, regulated by the Royal Decree 105/2008 in Spain.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-03-19
    Description: Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape, the roles that this area has served, and the need for water resource data to inform forest management decisions. Forested lands in the southeastern U.S. coastal plain provide a rich set of goods and services for the region, and in one case, the Francis Marion National Forest acts as a buffer to urbanization from the surrounding Charleston metropolitan area. Information from two decades of studies in the forested watersheds there may inform scientists and managers in other coastal forested systems. The common hydrological theme in this region, which has a higher average annual rainfall (1370 mm) than the annual potential evapotranspiration (PET = 1135 mm), is a shallow (〈3 m) water table condition that supports a large range of natural wetlands and also creates management challenges across the region. Modest changes in the position of the water table can lead to either groundwater flooding and concomitant management challenges for forest services, or ecosystem stresses related to dry conditions in wetlands during times of below-normal precipitation or due to groundwater withdrawal. Development pressures have also stressed forest resources through the extraction of materials such as timber and sand mining, and the conversion to housing construction materials. These areas are also targeted for land development, to meet housing demands. In this paper, we discuss the role of groundwater in coastal forests and highlight opportunities for collaborative studies to better inform forest resource management.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-03-19
    Description: Nowadays, any business manager is concerned about sustainability issues and is wondering how to implement social and environmental practices creating economic and social value at the same time. The implementation of social responsibility programs is justified by the benefits that result from a good relationship of the firm with key stakeholders. The present research investigates the links among firms’ relationship with stakeholders, firms’ champion behavior, stakeholders’ satisfaction and firms’ competitive success in regional contexts where social responsibility is promoted. Using the resource-based theory and the concept of shared value, a conceptual model is proposed in which a strong firm relationship with stakeholders will cause the stakeholder’ satisfaction and will help the firm to become a champion in the market, contributing to improved competitiveness. This empirical analysis was based on survey data through partial least squares structural equation modeling (PLS-SEM) from 130 Spanish firms in the Region of Extremadura. Participants were firm managers in regional clusters involved in the social responsibility journey promoted by the local government. The results suggest that a good relationship of the frim with stakeholders directly and positively influences firm competitive success, and also, it is enhanced by improvements in stakeholders’ satisfaction and firm champion behavior.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-03-20
    Description: Energy consumption in cellular networks is receiving significant attention from academia and the industry due to its significant potential economic and ecological influence. Energy efficiency and renewable energy are the main pillars of sustainability and environmental compatibility. Technological advancements and cost reduction for photovoltaics are making cellular base stations (BSs; a key source of energy consumption in cellular networks) powered by solar energy sources a long-term promising solution for the mobile cellular network industry. This paper addresses issues of deployment and operation of two solar-powered global system for mobile communications (GSM) BSs that are being deployed at present (GSM BS 2/2/2 and GSM BS 4/4/4). The study is based on the characteristics of South Korean solar radiation exposure. The optimum criteria as well as economic and technical feasibility for various BSs are analyzed using a hybrid optimization model for electric renewables. In addition, initial capital, replacement, operations, maintenance, and total net present costs for various solar-powered BSs are discussed. Furthermore, the economic feasibility of the proposed solar system is compared with conventional energy sources in urban and remote areas.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...