ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (102)
  • Nature Research  (69)
  • Public Library of Science  (23)
  • Geozon Science Media
  • 2015-2019  (102)
  • 2018  (82)
  • 2015  (20)
  • 1
    Publication Date: 2021-02-08
    Description: The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO2. In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206Pb/238U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-19
    Description: Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-21
    Description: Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (〈0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-11
    Description: The Messinian salinity crisis (MSC) - the most abrupt, global-scale environmental change since the end of the Cretaceous – is widely associated with partial desiccation of the Mediterranean Sea. A major open question is the way normal marine conditions were abruptly restored at the end of the MSC. Here we use geological and geophysical data to identify an extensive, buried and chaotic sedimentary body deposited in the western Ionian Basin after the massive Messinian salts and before the Plio-Quaternary open-marine sedimentary sequence. We show that this body is consistent with the passage of a megaflood from the western to the eastern Mediterranean Sea via a south-eastern Sicilian gateway. Our findings provide evidence for a large amplitude drawdown in the Ionian Basin during the MSC, support the scenario of a Mediterranean-wide catastrophic flood at the end of the MSC, and suggest that the identified sedimentary body is the largest known megaflood deposit on Earth.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-19
    Description: There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called “cryptic sulfur cycle”. We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques. A single SUP05 species, UThioglobus perditus, was found to be abundant and active in both sulfidic shelf and sulfide-free offshore OMZ waters. Our combined data indicated that mesoscale eddy-driven transport led to the dispersal of UT. perditus and elemental sulfur from the sulfidic shelf waters into the offshore OMZ region. This offshore transport of shelf waters provides an alternative explanation for the abundance and activity of sulfide-oxidizing denitrifying bacteria in sulfide-poor offshore OMZ waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the “3rd global coral bleaching event” by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (〉60%) were also among the rarest (〈1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-08
    Description: Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring’s immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-19
    Description: Ocean acidification (OA), the dissolution of excess anthropogenic carbon dioxide in ocean waters, is a potential stressor to many marine fish species. Whether species have the potential to acclimate and adapt to changes in the seawater carbonate chemistry is still largely unanswered. Simulation experiments across several generations are challenging for large commercially exploited species because of their long generation times. For Atlantic cod (Gadus morhua), we present first data on the effects of parental acclimation to elevated aquatic CO2 on larval survival, a fundamental parameter determining population recruitment. The parental generation in this study was exposed to either ambient or elevated aquatic CO2 levels simulating end-of-century OA levels (~1100 µatm CO2) for six weeks prior to spawning. Upon fully reciprocal exposure of the F1 generation, we quantified larval survival, combined with two larval feeding regimes in order to investigate the potential effect of energy limitation. We found a significant reduction in larval survival at elevated CO2 that was partly compensated by parental acclimation to the same CO2 exposure. Such compensation was only observed in the treatment with high food availability. This complex 3-way interaction indicates that surplus metabolic resources need to be available to allow a transgenerational alleviation response to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Mid- to late-Holocene sea-level records from low-latitude regions serve as an important baseline of natural variability in sea level and global ice volume prior to the Anthropocene. Here, we reconstruct a high-resolution sea-level curve encompassing the last 6000 years based on a comprehensive study of coral microatolls, which are sensitive low-tide recorders. Our curve is based on microatolls from several islands in a single region and comprises a total of 82 sea-level index points. Assuming thermosteric contributions are negligible on millennial time scales, our results constrain global ice melting to be 1.5–2.5 m (sea-level equivalent) since ~5500 years before present. The reconstructed curve includes isolated rapid events of several decimetres within a few centuries, one of which is most likely related to loss from the Antarctic ice sheet mass around 5000 years before present. In contrast, the occurrence of large and flat microatolls indicates periods of significant sea-level stability lasting up to ~300 years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Communications, 9 (1). Art.Nr. 690.
    Publication Date: 2021-03-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature, 554 (7693). p. 423.
    Publication Date: 2019-01-29
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-03-19
    Description: Anthropogenic impacts are perturbing the global nitrogen cycle via warming effects and pollutant sources such as chemical fertilizers and burning of fossil fuels. Understanding controls on past nitrogen inventories might improve predictions for future global biogeochemical cycling. Here we show the quantitative reconstruction of deglacial bottom water nitrate concentrations from intermediate depths of the Peruvian upwelling region, using foraminiferal pore density. Deglacial nitrate concentrations correlate strongly with downcore δ13C, consistent with modern water column observations in the intermediate Pacific, facilitating the use of δ13C records as a paleo-nitrate-proxy at intermediate depths and suggesting that the carbon and nitrogen cycles were closely coupled throughout the last deglaciation in the Peruvian upwelling region. Combining the pore density and intermediate Pacific δ13C records shows an elevated nitrate inventory of 〉10% during the Last Glacial Maximum relative to the Holocene, consistent with a δ13C-based and δ15N-based 3D ocean biogeochemical model and previous box modeling studies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-02-08
    Description: Limited insight into eel larvae feeding and diet prevents a holistic overview of the life-cycle of catadromous eels and an understanding of the ecological position of their early stages in marine waters. The present study evaluated the diet of larval European eel, Anguilla anguilla - a critically endangered species. Next-generation 18S rRNA gene sequencing data of Sargasso Sea eel larvae gut contents and marine snow aggregates was compared with a reference plankton database to assess the trophic relations of eel larvae. Gut contents of A. anguilla larvae were not well explained by the eukaryotic composition of marine snow aggregates; gut contents being dominated by gene sequences of Hydrozoa taxa (phylum Cnidaria), while snow aggregates were dominated by Crustacea taxa. Pronounced differences between gut contents and marine snow aggregates were also seen in the prokaryotic 16S rRNA gene composition. The findings, in concert with significant abundances of Hydrozoa in the study area, suggest that Hydrozoa plankton are important in the diet of A. anguilla larvae, and that consideration of these organisms would further our understanding of A. anguilla feeding strategies in the oligotrophic Sargasso Sea, which may be important for potential future rearing of A. anguilla larvae in captivity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-04-23
    Description: Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 μatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-02-08
    Description: The surface microlayer (SML) in marine systems is often characterized by an enrichment of biogenic, gel-like particles, such as the polysaccharide-containing transparent exopolymer particles (TEP) and the protein-containing Coomassie stainable particles (CSP). This study investigated the distribution of TEP and CSP, in the SML and underlying water, as well as their bio-physical controlling factors in Daya Bay, an area impacted by warm discharge from two Nuclear power plants (Npp’s) and aquaculture during a research cruise in July 2014. The SML had higher proportions of cyanobacteria and of pico-size Chl a contrast to the underlayer water, particularly at the nearest outlet station characterized by higher temperature. Diatoms, dinoflagellates and chlorophyll a were depleted in the SML. Both CSP and TEP abundance and total area were enriched in the SML relative to the underlying water, with enrichment factors (EFs) of 1.5–3.4 for CSP numbers and 1.32–3.2 for TEP numbers. Although TEP and CSP showed highest concentration in the region where high productivity and high nutrient concertation were observed, EFs of gels and of dissolved organic carbon (DOC) and dissolved acidic polysaccharide (〉 1 kDa), exhibited higher values near the outlet of the Npp’s than in the adjacent waters. The positive relation between EF’s of gels and temperature and the enrichment of cyanobacteria in the SML may be indicative of future conditions in a warmer ocean, suggesting potential effects on adjusting phytoplankton community, biogenic element cycling and air-sea exchange processes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-02-08
    Description: Ocean warming and acidification (OA) may alter the fitness of species in marine pelagic ecosystems through community effects or direct physiological impacts. We used the zooplanktonic appendicularian, Oikopleura dioica, to assess temperature and pH effects at mesocosm and microcosm scales. In mesocosms, both OA and warming positively impacted O. dioica abundance over successive generations. In microcosms, the positive impact of OA, was observed to result from increased fecundity. In contrast, increased pH, observed for example during phytoplankton blooms, reduced fecundity. Oocyte fertility and juvenile development were equivalent under all pH conditions, indicating that the positive effect of lower pH on O. dioica abundance was principally due to increased egg number. This effect was influenced by food quantity and quality, supporting possible improved digestion and assimilation at lowered pH. Higher temperature resulted in more rapid growth, faster maturation and earlier reproduction. Thus, increased temperature and reduced pH had significant positive impacts on O. dioica fitness through increased fecundity and shortened generation time, suggesting that predicted future ocean conditions may favour this zooplankton species. © 2018 Bouquet et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-03-19
    Description: The simulation of Sahel rainfall and its onset during the West African Monsoon (WAM) remains a challenge for current state-of-the-art climate models due to their persistent biases, especially in the tropical Atlantic region. Here we show that improved representation of Atlantic Cold Tongue (ACT) development is essential for a more realistic seasonal evolution of the WAM, which is due to a further inland migration of the precipitation maximum. The observed marked relationship between ACT development and Sahel rainfall onset only can be reproduced by a climate model, the Kiel Climate Model (KCM), when sufficiently high resolution in its atmospheric component is employed, enabling enhanced equatorial Atlantic interannual sea surface temperature variability in the ACT region relative to versions with coarser atmospheric resolution. The ACT/Sahel rainfall relationship in the model critically depends on the correct seasonal phase-locking of the interannual variability rather than on its magnitude. We compare the KCM results with those obtained from climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-02-08
    Description: Shape variability represents an important direct response of organisms to selective environments. Here, we use a combination of geometric morphometrics and generalised additive mixed models (GAMMs) to identify spatial patterns of natural shell shape variation in the North Atlantic and Arctic blue mussels, Mytilus edulis and M. trossulus, with environmental gradients of temperature, salinity and food availability across 3980 km of coastlines. New statistical methods and multiple study systems at various geographical scales allowed the uncoupling of the developmental and genetic contributions to shell shape and made it possible to identify general relationships between blue mussel shape variation and environment that are independent of age and species influences. We find salinity had the strongest effect on the latitudinal patterns of Mytilus shape, producing shells that were more elongated, narrower and with more parallel dorsoventral margins at lower salinities. Temperature and food supply, however, were the main drivers of mussel shape heterogeneity. Our findings revealed similar shell shape responses in Mytilus to less favourable environmental conditions across the different geographical scales analysed. Our results show how shell shape plasticity represents a powerful indicator to understand the alterations of blue mussel communities in rapidly changing environments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-03-19
    Description: In the coming decades, environmental change like warming and acidification will affect life in the ocean. While data on single stressor effects on fish are accumulating rapidly, we still know relatively little about interactive effects of multiple drivers. Of particular concern in this context are the early life stages of fish, for which direct effects of increased CO2 on growth and development have been observed. Whether these effects are further modified by elevated temperature was investigated here for the larvae of Atlantic herring (Clupea harengus), a commercially important fish species. Over a period of 32 days, larval survival, growth in size and weight, and instantaneous growth rate were assessed in a crossed experimental design of two temperatures (10°C and 12°C) with two CO2 levels (400 μatm and 900 μatm CO2) at food levels mimicking natural levels using natural prey. Elevated temperature alone led to increased swimming activity, as well as decreased survival and instantaneous growth rate (Gi). The comparatively high sensitivity to elevated temperature in this study may have been influenced by low food levels offered to the larvae. Larval size, Gi and swimming activity were not affected by CO2, indicating tolerance of this species to projected "end of the century" CO2 levels. A synergistic effect of elevated temperature and CO2 was found for larval weight, where no effect of elevated CO2 concentrations was detected in the 12°C treatment, but a negative CO2 effect was found in the 10°C treatment. Contrasting CO2 effects were found for survival between the two temperatures. Under ambient CO2 conditions survival was increased at 12°C compared to 10°C. In general, CO2 effects were minor and considered negligible compared to the effect of temperature under these mimicked natural food conditions. These findings emphasize the need to include biotic factors such as energy supply via prey availability in future studies on interactive effects of multiple stressors. © 2018 Sswat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-03-19
    Description: It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the similar to 100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and delta O-18 record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and similar to 13 +/- 2 kyr before the delta O-18 minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the delta O-18 record diminishes, while the tephra record maintains its strong 100 kyr periodicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-02-08
    Description: In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. Anaerobic metabolisms are thought to thrive in microenvironments that develop inside sinking organic aggregates, but the global distribution and geochemical significance of these microenvironments is poorly understood. Here, we develop a new size-resolved particle model to predict anaerobic respiration from aggregate properties and seawater chemistry. Constrained by observations of the size spectrum of sinking particles, the model predicts that denitrification and sulfate reduction can be sustained throughout vast, hypoxic expanses of the ocean, and could explain the trace metal enrichment observed in particles due to sulfide precipitation. Globally, the expansion of the anaerobic niche due to particle microenvironments doubles the rate of water column denitrification compared with estimates based on anoxic zones alone, and changes the sensitivity of the marine nitrogen cycle to deoxygenation in a warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-02-08
    Description: Mid-ocean ridges spreading at ultraslow rates of less than 20 mm yr−1 can exhume serpentinized mantle to the seafloor, or they can produce magmatic crust. However, seismic imaging of ultraslow-spreading centres has not been able to resolve the abundance of serpentinized mantle exhumation, and instead supports 2 to 5 km of crust. Most seismic crustal thickness estimates reflect the depth at which the 7.1 km s−1 P-wave velocity is exceeded. Yet, the true nature of the oceanic lithosphere is more reliably deduced using the P- to S-wave velocity (Vp/Vs) ratio. Here we report on seismic data acquired along off-axis profiles of older oceanic lithosphere at the ultraslow-spreading Mid-Cayman Spreading Centre. We suggest that high Vp/Vs ratios greater than 1.9 and continuously increasing P-wave velocity, changing from 4 km s−1 at the seafloor to greater than 7.4 km s−1 at 2 to 4 km depth, indicate highly serpentinized peridotite exhumed to the seafloor. Elsewhere, either magmatic crust or serpentinized mantle deformed and uplifted at oceanic core complexes underlies areas of high bathymetry. The Cayman Trough therefore provides a window into mid-ocean ridge dynamics that switch between magma-rich and magma-poor oceanic crustal accretion, including exhumation of serpentinized mantle covering about 25% of the seafloor in this region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-02-08
    Description: Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M 〈 3) within the Istanbul offshore domain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-02-08
    Description: Climate variability plays a central role in the dynamics of marine pelagic ecosystems shaping the structure and abundance changes of plankton communities, thereby affecting energy pathways and biogeochemical fluxes in the ocean. Here we have investigated complex interactions driven a climate-hydrology-plankton system in the southern East China Sea over the period 2000 to 2012. In particular, we aimed at quantifying the influence of climate phenomena playing out in tropical (El Nino 3.4) and middle-high latitudes (East Asia Winter Monsoon, EAWM, and Pacific Decadal Oscillation, PDO) on pelagic copepods. We found that the EAWM and El Nino 3.4 showed a non-stationary and non-linear relationship with local temperature variability. In the two cases, the strength of the relationship, as indexed by the wavelet coherence analysis, decreased along with the positive phase of the PDO. Likewise, the influence of EAWM and El Nino3.4 on copepods exhibited a non-stationary link that changed along with the PDO state. Indeed, copepods and EAWM were closely related during the positive phase, while the link copepods–El Nino 3.4 was stronger during the negative phase. Our results pointed out cascading effects from climate to plankton driven by the positive phase of the PDO through its effect on temperature conditions, and likely through a larger southward transport of nutrient-rich water masses to northern Taiwan and the Taiwan Strait. We suggest a chain of mechanisms whereby the PDO shapes interannual dynamics of pelagic copepods and highlight that these results have implications for integrative management measures, as pelagic copepods plays a prominent role in food web dynamics and for harvested fish in the East China Sea. © 2018 Molinero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-02-08
    Description: Climate change challenges plankton communities, but evolutionary adaptation could mitigate the potential impacts. Here, we tested with the phytoplankton species Emiliania huxleyi whether adaptation to a stressor under laboratory conditions leads to equivalent fitness gains in a more natural environment. We found that fitness advantages that had evolved under laboratory conditions were masked by pleiotropic effects in natural plankton communities. Moreover, new genotypes with highly variable competitive abilities evolved on timescales significantly shorter than climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-02-08
    Description: Large amounts of methane are stored in continental margins as gas hydrates. They are stable under high pressure and low temperature, but react sensitively to environmental changes. Bottom water temperature and sea level changes were considered as main contributors to gas hydrate dynamics after the last glaciation. However, here we show with numerical simulations that pulses of increased sedimentation dominantly controlled hydrate stability during the end of the last glaciation offshore mid-Norway. Sedimentation pulses triggered widespread gas hydrate dissociation and explains the formation of ubiquitous blowout pipes in water depths of 600 to 800 m. Maximum gas hydrate dissociation correlates spatially and temporally with the formation or reactivation of pockmarks, which is constrained by radiocarbon dating of Isorropodon nyeggaensis bivalve shells. Our results highlight that rapid changes of sedimentation can have a strong impact on gas hydrate systems affecting fluid flow and gas seepage activity, slope stability and the carbon cycle.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-02-08
    Description: Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 ( 400 and 1600 ?atm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH’s developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-02-08
    Description: Ocean acidification—the decrease in seawater pH due to rising CO2 concentrations—has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO2, but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO2 conditions (~760 µatm pCO2) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO2-stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO2 ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Climate Change, 8 (4). pp. 300-304.
    Publication Date: 2021-02-08
    Description: A shutdown of ocean convection in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1,2,3. Noting that a key uncertainty for future convection resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain convection with a comprehensive dataset, including hydrographic records that are over a decade in length from the convection regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying convection. By shortening the time span for the convective freshwater export, the identified seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short convection periods. We estimate that in the winter 2010–2011, after the warmest and freshest Irminger Sea summer on our record, ~40% of the surface freshwater was retained.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-03-19
    Description: The blue mussel Mytilus is a popular food source with high economical value. Species of the M. edulis complex (M. edulis, M. galloprovincialis and M. trossulus) hybridise whenever their geographic ranges overlap posing difficulties to species discrimination, which is important for blue mussel aquaculture. The aim of this study was to determine the genetic structure of farmed blue mussels in Kiel Fjord. Microbial and metabolic profile patterns were studied to investigate a possible dependency on the genotype of the bivalves. Genotyping confirmed the complex genetic structure of the Baltic Sea hybrid zone and revealed an unexpected dominance of M. trossulus alleles being in contrast to the predominance of M. edulis alleles described for wild Baltic blue mussels. Culture-dependent and -independent microbial community analyses indicated the presence of a diverse Mytilus-associated microbiota, while an LC-MS/MS-based metabolome study identified 76 major compounds dominated by pigments, alkaloids and polyketides in the whole tissue extracts. Analysis of mussel microbiota and metabolome did not indicate genotypic dependence, but demonstrated high intraspecific variability of farmed mussel individuals. We hypothesise that individual differences in microbial and metabolite patterns may be caused by high individual plasticity and might be enhanced by e.g. nutritional condition, age and gender.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-02-08
    Description: The Kryos Basin is a deep-sea hypersaline anoxic basin (DHAB) located in the Eastern Mediterranean Sea (34.98°N 22.04°E). It is filled with brine of re-dissolved Messinian evaporites and is nearly saturated with MgCl2-equivalents, which makes this habitat extremely challenging for life. The strong density difference between the anoxic brine and the overlying oxic Mediterranean seawater impedes mixing, giving rise to a narrow chemocline. Here, we investigate the microbial community structure and activities across the seawater–brine interface using a combined biogeochemical, next-generation sequencing, and lipid biomarker approach. Within the interface, we detected fatty acids that were distinctly 13C-enriched when compared to other fatty acids. These likely originated from sulfide-oxidizing bacteria that fix carbon via the reverse tricarboxylic acid cycle. In the lower part of the interface, we also measured elevated rates of methane oxidation, probably mediated by aerobic methanotrophs under micro-oxic conditions. Sulfate reduction rates increased across the interface and were highest within the brine, providing first evidence that sulfate reducers (likely Desulfovermiculus and Desulfobacula) thrive in the Kryos Basin at a water activity of only ~0.4 Aw. Our results demonstrate that a highly specialized microbial community in the Kryos Basin has adapted to the poly-extreme conditions of a DHAB with nearly saturated MgCl2 brine, extending the known environmental range where microbial life can persist.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-04-23
    Description: Ocean acidification, the change in seawater carbonate chemistry due to the uptake of anthropogenic CO2, affects the physiology of marine organisms in multiple ways1. Diverse competitive and trophic interactions transform the metabolic responses to changes in community composition, seasonal succession and potentially geographical distribution of species. The health of ocean ecosystems depends on whether basic biotic functions are maintained, ecosystem engineers and keystone species are retained, and the spread of nuisance species is avoided2. Here, we show in a field experiment that the toxic microalga Vicicitus globosus has a selective advantage under ocean acidification, increasing its abundance in natural plankton communities at CO2 levels higher than 600 µatm and developing blooms above 800 µatm CO2. The mass development of V. globosus has had a dramatic impact on the plankton community, preventing the development of the micro- and mesozooplankton communities, thereby disrupting trophic transfer of primary produced organic matter. This has prolonged the residence of particulate matter in the water column and caused a strong decline in export flux. Considering its wide geographical distribution and confirmed role in fish kills3, the proliferation of V. globosus under the IPCC4 CO2 emission representative concentration pathway (RCP4.5 to RCP8.5) scenarios may pose an emergent threat to coastal communities, aquaculture and fisheries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-02-08
    Description: Seepage of methane (CH4) on land and in the sea may significantly affect Earth's biogeochemical cycles. However processes of CH4 generation and consumption, both abiotic and microbial, are not always clear. We provide new geochemical and isotope data to evaluate if a recently discovered CH4 seepage from the shallow seafloor close to the Island of Elba (Tuscany) and two small islands nearby are derived from abiogenic or biogenic sources and whether carbonate encrusted vents are the result of microbial or abiotic processes. Emission of gas bubbles (predominantly CH4) from unlithified sands was observed at seven spots in an area of 100 m(2) at Pomonte (Island of Elba), with a total rate of 234 ml m(-2) d(-1). The measured carbon isotope values of CH4 of around -18 parts per thousand (VPDB) in combination with the measured delta H-2 value of -120 parts per thousand (VSMOW) and the inverse correlation of delta C-13-value with carbon number of hydrocarbon gases are characteristic for sites of CH4 formation through abiogenic processes, specifically abiogenic formation of CH4 via reduction of CO2 by H-2. The H-2 for methanogenesis likely derives from ophiolitic host rock within the Ligurian accretionary prism. The lack of hydrothermal activity allows CH4 gas to become decoupled from the stagnant aqueous phase. Hence no hyperalkaline fluid is currently released at the vent sites. Within the seep area a decrease in porewater sulphate concentrations by ca. 5 mmol/l relative to seawater and a concomitant increase in sulphide and dissolved inorganic carbon (DIC) indicate substantial activity of sulphate-dependent anaerobic oxidation of methane (AOM). In absence of any other dissimilatory pathway, the delta C-13-values between -17 and -5 parts per thousand in dissolved inorganic carbon and aragonite cements suggest that the inorganic carbon is largely derived from CH4. The formation of seep carbonates is thus microbially induced via anaerobic oxidation of abiotic CH4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-02-08
    Description: Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H +-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought. © 2018 International Society for Microbial Ecology All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-03-19
    Description: The orbital-scale timing of South Asian monsoon (SAM) precipitation is poorly understood. Here we present new SST and seawater δ18O (δ18Osw) records from the Bay of Bengal, the core convective region of the South Asian monsoon, over the past 1 million years. Our records reveal that SAM precipitation peaked in the precession band ~9 kyrs after Northern Hemisphere summer insolation maxima, in phase with records of SAM winds in the Arabian Sea and eastern Indian Ocean. Precession-band variance, however, accounts for ~30% of the total variance of SAM precipitation while it was either absent or dominant in records of the East Asian monsoon (EAM). This and the observation that SAM precipitation was phase locked with obliquity minima and was sensitive to Southern Hemisphere warming provides clear evidence that SAM and EAM precipitation responded differently to orbital forcing and highlights the importance of internal processes forcing monsoon variability.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-02-08
    Description: During the Late Cretaceous and early Cenozoic the Earth experienced prolonged climatic cooling most likely caused by decreasing volcanic activity and atmospheric CO2 levels. However, the causes and mechanisms of subsequent major global warming culminating in the late Paleocene to Eocene greenhouse climate remain enigmatic. We present deep and intermediate water Nd-isotope records from the North and South Atlantic to decipher the control of the opening Atlantic Ocean on ocean circulation and its linkages to the evolution of global climate. The marked convergence of Nd-isotope signatures 59 million years ago indicates a major intensification of deep-water exchange between the North and South Atlantic, which coincided with the turning point of deep-water temperatures towards early Paleogene warming. We propose that this intensification of Atlantic overturning circulation in concert with increased atmospheric CO2 from continental rifting marked a climatic tipping point contributing to a more efficient distribution of heat over the planet.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-01-02
    Description: A paradigm shift is underway in wastewater treatment as the industry heads toward ~3% of global electricity consumption and contributes ~1.6% of greenhouse gas emissions. Although incremental improvements to energy efficiency and renewable energy recovery are underway, studies considering wastewater for carbon capture and utilization are few. This Review summarizes alternative wastewater treatment pathways capable of simultaneous CO2 capture and utilization, and demonstrates the environmental and economic benefits of microbial electrochemical and phototrophic processes. Preliminary estimates demonstrate that re-envisioning wastewater treatment may entirely offset the industry’s greenhouse gas footprint and make it a globally significant contributor of negative carbon emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-04-21
    Description: Ocean ventilation is the integrated effect of various processes that exchange surface properties with the ocean interior and is essential for oxygen supply, storage of anthropogenic carbon and the heat budget of the ocean, for instance. Current observational methods utilise transient tracers, e.g. tritium, SF6, CFCs and 14C. However, their dating ranges are not ideal to resolve the centennial-dynamics of the deep ocean, a gap filled by the noble gas isotope 39Ar with a half-life of 269 years. Its broad application has been hindered by its very low abundance, requiring 1000 L of water for dating. Here we show successful 39Ar dating with 5 L of water based on the atom-optical technique Atom Trap Trace Analysis. Our data reveal previously not quantifiable ventilation patterns in the Tropical Atlantic, where we find that advection is more important for the ventilation of the intermediate depth range than previously assumed. Now, the demonstrated analytical capabilities allow for a global collection of 39Ar data, which will have significant impact on our ability to quantify ocean ventilation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-02-08
    Description: The Baltic Sea is one of the world’s largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within, microbial ecosystems, but are computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort. The assembly is constructed using 2.6 billion metagenomic reads from 81 water samples, spanning both spatial and temporal dimensions, and contains 6.8 million genes that have been annotated for function and taxonomy. The assembly is useful as a reference, facilitating taxonomic and functional annotation of additional samples by simply mapping their reads against the assembly. This capability is demonstrated by the successful mapping and annotation of 24 external samples. In addition, we present a public web interface, BalticMicrobeDB, for interactive exploratory analysis of the dataset.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Nature Research
    In:  In: Physical Geology of Shallow Magmatic Systems. , ed. by Breitkreuz, C. and Rocchi, S. Advances in Volcanology . Nature Research, Cham, Switzerland, pp. 119-130.
    Publication Date: 2019-01-14
    Description: Subvolcanic systems are characterized by complex combinations of intrusive units (dykes, sills, saucer-shaped sills, cone sheets, etc.) for which genetic relationships are unclear. This chapter explains how whole-rock geochemistry may be used to resolve the genetic relationships of such subvolcanic (and volcanic) systems. We start with a short introduction of the geochemical fingerprinting method with particular emphasis on the statistical refinement method called Forward Stepwise-Discriminant Function Analysis (FS-DFA). Combined with field mapping and structural analysis, geochemical fingerprinting based on major and trace elements and isotope ratios, is a very powerful tool to distinguish between igneous units (lavas, sills, dykes) with subtle (or not so subtle) geochemical differences. Different geochemical fingerprinting or signatures indicate derivation from distinct magma batches. The results from FS-DFA analyses may be used to reveal genetic relationships between geological units, or lack of such, which again may be used to throw light on subvolcanic plumbing systems, the feeding system in sill-dyke complexes, as well as other problems. The method is illustrated by studies of the Golden Valley Sill Complex in the Karoo Basin (South Africa).
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-01-02
    Description: Marine algae perform approximately half of global carbon fixation, but their growth is often limited by the availability of phosphate or other nutrients 1,2 . As oceans warm, the area of phosphate-limited surface waters is predicted to increase, resulting in ocean desertification 3,4 . Understanding the responses of key eukaryotic phytoplankton to nutrient limitation is therefore critical 5,6 . We used advanced photo-bioreactors to investigate how the widespread marine green alga Micromonas commoda grows under transitions from replete nutrients to chronic phosphate limitation and subsequent relief, analysing photosystem changes and broad cellular responses using proteomics, transcriptomics and biophysical measurements. We find that physiological and protein expression responses previously attributed to stress are critical to supporting stable exponential growth when phosphate is limiting. Unexpectedly, the abundance of most proteins involved in light harvesting does not change, but an ancient light-harvesting-related protein, LHCSR, is induced and dissipates damaging excess absorbed light as heat throughout phosphate limitation. Concurrently, a suite of uncharacterized proteins with narrow phylogenetic distributions increase multifold. Notably, of the proteins that exhibit significant changes, 70 are not differentially expressed at the mRNA transcript level, highlighting the importance of post-transcriptional processes in microbial eukaryotes. Nevertheless, transcript-protein pairs with concordant changes were identified that will enable more robust interpretation of eukaryotic phytoplankton responses in the field from metatranscriptomic studies. Our results show that P-limited Micromonas responds quickly to a fresh pulse of phosphate by rapidly increasing replication, and that the protein network associated with this ability is composed of both conserved and phylogenetically recent proteome systems that promote dynamic phosphate homeostasis. That an ancient mechanism for mitigating light stress is central to sustaining growth during extended phosphate limitation highlights the possibility of interactive effects arising from combined stressors under ocean change, which could reduce the efficacy of algal strategies for optimizing marine photosynthesis. © 2018 The Author(s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-02-08
    Description: Estimates of the 1.5 °C carbon budget vary widely among recent studies, emphasizing the need to better understand and quantify key sources of uncertainty. Here we quantify the impact of carbon cycle uncertainty and non-CO2 forcing on the 1.5 °C carbon budget in the context of a prescribed 1.5 °C temperature stabilization scenario. We use Bayes theorem to weight members of a perturbed parameter ensemble with varying land and ocean carbon uptake, to derive an estimate for the fossil fuel (FF) carbon budget of 469 PgC since 1850, with a 95% likelihood range of (411,528) PgC. CO2 emissions from land-use change (LUC) add about 230 PgC. Our best estimate of the total (FF + LUC) carbon budget for 1.5 °C is therefore 699 PgC, which corresponds to about 11 years of current emissions. Non-CO2 greenhouse gas and aerosol emissions represent equivalent cumulative CO2 emissions of about 510 PgC and −180 PgC for 1.5 °C, respectively. The increased LUC, high non-CO2 emissions and decreased aerosols in our scenario, cause the long-term FF carbon budget to decrease following temperature stabilization. In this scenario, negative emissions would be required to compensate not only for the increasing non-CO2 climate forcing, but also for the declining natural carbon sinks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-02-08
    Description: Digital imaging has become one of the most important techniques in environmental monitoring and exploration. In the case of the marine environment, mobile platforms such as autonomous underwater vehicles (AUVs) are now equipped with high-resolution cameras to capture huge collections of images from the seabed. However, the timely evaluation of all these images presents a bottleneck problem as tens of thousands or more images can be collected during a single dive. This makes computational support for marine image analysis essential. Computer-aided analysis of environmental images (and marine images in particular) with machine learning algorithms is promising, but challenging and different to other imaging domains because training data and class labels cannot be collected as efficiently and comprehensively as in other areas. In this paper, we present Machine learning Assisted Image Annotation (MAIA), a new image annotation method for environmental monitoring and exploration that overcomes the obstacle of missing training data. The method uses a combination of autoencoder networks and Mask Region-based Convolutional Neural Network (Mask R-CNN), which allows human observers to annotate large image collections much faster than before. We evaluated the method with three marine image datasets featuring different types of background, imaging equipment and object classes. Using MAIA, we were able to annotate objects of interest with an average recall of 84.1% more than twice as fast as compared to “traditional” annotation methods, which are purely based on software-supported direct visual inspection and manual annotation. The speed gain increases proportionally with the size of a dataset. The MAIA approach represents a substantial improvement on the path to greater efficiency in the annotation of large benthic image collections.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-02-08
    Description: Understanding how the Antarctic ice sheet will respond to global warming relies on knowledge of how it has behaved in the past. The use of numerical models, the only means to quantitatively predict the future, is hindered by limitations to topographic data both now and in the past, and in knowledge of how subsurface oceanic, glaciological and hydrological processes interact. Incorporating the variety and interplay of such processes, operating at multiple spatio-temporal scales, is critical to modeling the Antarctic’s system evolution and requires direct observations in challenging locations. As these processes do not observe disciplinary boundaries neither should our future research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-02-08
    Description: Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Geoscience, 11 (7). pp. 467-473.
    Publication Date: 2021-02-08
    Description: Direct observations indicate that the global ocean oxygen inventory is decreasing. Climate models consistently confirm this decline and predict continuing and accelerating ocean deoxygenation. However, current models (1) do not reproduce observed patterns for oxygen changes in the ocean’s thermocline; (2) underestimate the temporal variability of oxygen concentrations and air–sea fluxes inferred from time-series observations; and (3) generally simulate only about half the oceanic oxygen loss inferred from observations. We here review current knowledge about the mechanisms and drivers of oxygen changes and their variation with region and depth over the world’s oceans. Warming is considered a major driver: in part directly, via solubility effects, and in part indirectly, via changes in circulation, mixing and oxygen respiration. While solubility effects have been quantified and found to dominate deoxygenation near the surface, a quantitative understanding of contributions from other mechanisms is still lacking. Current models may underestimate deoxygenation because of unresolved transport processes, unaccounted for variations in respiratory oxygen demand, or missing biogeochemical feedbacks. Dedicated observational programmes are required to better constrain biological and physical processes and their representation in models to improve our understanding and predictions of patterns and intensity of future oxygen change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-02-08
    Description: Tropical corals are often associated with dinitrogen (N-2)-fixing bacteria (diazotrophs), and seasonal changes in key environmental parameters, such as dissolved inorganic nitrogen (DIN) availability and seawater temperature, are known to affect N-2 fixation in coral-microbial holobionts. Despite, then, such potential for seasonal and depth-related changes in N-2 fixation in reef corals, such variation has not yet been investigated. Therefore, this study quantified seasonal (winter vs. summer) N-2 fixation rates associated with the reef-building coral Stylophora pistillata collected from depths of 5, 10 and 20 m in the northern Gulf of Aqaba (Red Sea). Findings revealed that corals from all depths exhibited the highest N-2 fixation rates during the oligotrophic summer season, when up to 11% of their photo-metabolic nitrogen demand (CPND) could be met by N-2 fixation. While N-2 fixation remained seasonally stable for deep corals (20 m), it significantly decreased for the shallow corals (5 and 10 m) during the DIN-enriched winter season, accounting for less than 2% of the corals' CPND. This contrasting seasonal response in N-2 fixation across corals of different depths could be driven by 1) release rates of coral-derived organic matter, 2) the community composition of the associated diazotrophs, and/or 3) nutrient acquisition by the Symbiodinium community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-02-08
    Description: Between the 8th January and the 25th February 2016, the largest sperm whale Physeter macrocephalus mortality event ever recorded in the North Sea occurred with 30 sperm whales stranding in five countries within six weeks. All sperm whales were immature males. Groups were stratified by size, with the smaller animals stranding in the Netherlands, and the largest in England. The majority (n = 27) of the stranded animals were necropsied and/or sampled, allowing for an international and comprehensive investigation into this mortality event. The animals were in fair to good nutritional condition and, aside from the pathologies caused by stranding, did not exhibit significant evidence of disease or trauma. Infectious agents were found, including various parasite species, several bacterial and fungal pathogens and a novel alphaherpesvirus. In nine of the sperm whales a variety of marine litter was found. However, none of these findings were considered to have been the primary cause of the stranding event. Potential anthropogenic and environmental factors that may have caused the sperm whales to enter the North Sea were assessed. Once sperm whales enter the North Sea and head south, the water becomes progressively shallower (〈40 m), making this region a global hotspot for sperm whale strandings. We conclude that the reasons for sperm whales to enter the southern North Sea are the result of complex interactions of extrinsic environmental factors. As such, these large mortality events seldom have a single ultimate cause and it is only through multidisciplinary, collaborative approaches that potentially multifactorial large-scale stranding events can be effectively investigated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-02-08
    Description: What process triggered the Mediterranean Sea restriction remains debated since the discovery of the Messinian Salinity Crisis (MSC). Recent hypotheses infer that the MSC initiated after the closure of the Atlantic-Mediterranean Betic and Rifean corridors, being modulated through restriction at the Gibraltar Strait. These hypotheses however, do not integrate contemporaneous speciation patterns of the faunal exchange between Iberia and Africa and geological features like the evaporite distribution. Exchange of terrestrial biota occurred before, during and after the MSC, and speciation models support an exchange path across the East Alborán basin (EAB) located a few hundreds of km east of the Gibraltar Strait. Yet, a structure explaining jointly geological and biological observations has remained undiscovered. We present new seismic data showing the velocity structure of a well-differentiated 14-17-km thick volcanic arc in the EAB. Isostatic considerations support that the arc-crust buoyancy created an archipelago and filter bridge across the EAB. Sub-aerial erosional unconformities and onlap relationships support that the arc was active between ~10-6 Ma. Progressive arc build-up leading to an archipelago and its later subsidence can explain the extended exchange of terrestrial biota between Iberia and Africa (~7-3 Ma), and agrees with patterns of biota speciation and terrestrial fossil distribution before the MSC (10-6.2 Ma). In this scenario, the West Alboran Basin (WAB) could then be the long-postulated open-marine refuge for the Mediterranean taxa that repopulated the Mediterranean after the MSC, connected to the deep restricted Mediterranean basin through a sill at the Alboran volcanic arc archipelago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-03-19
    Description: Optical imaging is a common technique in ocean research. Diving robots, towed cameras, drop-cameras and TV-guided sampling gear: all produce image data of the underwater environment. Technological advances like 4K cameras, autonomous robots, high-capacity batteries and LED lighting now allow systematic optical monitoring at large spatial scale and shorter time but with increased data volume and velocity. Volume and velocity are further increased by growing fleets and emerging swarms of autonomous vehicles creating big data sets in parallel. This generates a need for automated data processing to harvest maximum information. Systematic data analysis benefits from calibrated, geo-referenced data with clear metadata description, particularly for machine vision and machine learning. Hence, the expensive data acquisition must be documented, data should be curated as soon as possible, backed up and made publicly available. Here, we present a workflow towards sustainable marine image analysis. We describe guidelines for data acquisition, curation and management and apply it to the use case of a multi-terabyte deep-sea data set acquired by an autonomous underwater vehicle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-02-08
    Description: Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-04-23
    Description: Runoff from the Greenland Ice Sheet (GrIS) is thought to enhance marine productivity by adding bioessential iron and silicic acid to coastal waters. However, experimental data suggest nitrate is the main summertime growth-limiting resource in regions affected by meltwater around Greenland. While meltwater contains low nitrate concentrations, subglacial discharge plumes from marine-terminating glaciers entrain large quantities of nitrate from deep seawater. Here, we characterize the nitrate fluxes that arise from entrainment of seawater within these plumes using a subglacial discharge plume model. The upwelled flux from 12 marine-terminating glaciers is estimated to be 〉1000% of the total nitrate flux from GrIS discharge. This plume upwelling effect is highly sensitive to the glacier grounding line depth. For a majority of Greenland’s marine-terminating glaciers nitrate fluxes will diminish as they retreat. This decline occurs even if discharge volume increases, resulting in a negative impact on nitrate availability and thus summertime marine productivity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-04-23
    Description: Dissolved iron (DFe) concentrations in oxygen minimum zones (OMZs) of Eastern Boundary Upwelling Systems are enhanced as a result of high supply rates from anoxic sediments. However, pronounced variations in DFe concentrations in anoxic coastal waters of the Peruvian OMZ indicate that there are factors in addition to dissolved oxygen concentrations (O2) that control Fe cycling. Our study demonstrates that sediment-derived reduced Fe (Fe(II)) forms the main DFe fraction in the anoxic/euxinic water column off Peru, which is responsible for DFe accumulations of up to 200 nmol L-1. Lowest DFe values were observed in anoxic shelf waters in the presence of nitrate and nitrite. This reflects oxidation of sediment-sourced Fe(II) associated with nitrate/nitrite reduction and subsequent removal as particulate Fe(III) oxyhydroxides. Unexpectedly, the highest DFe levels were observed in waters with elevated concentrations of hydrogen sulfide (up to 4 µmol L-1) and correspondingly depleted nitrate/nitrite concentrations (〈0.18 µmol L-1). Under these conditions, Fe removal was reduced through stabilization of Fe(II) as aqueous iron sulfide (FeSaqu) which comprises complexes (e.g., FeSH+) and clusters (e.g., Fe2S2|4H2O). Sulfidic events on the Peruvian shelf consequently enhance Fe availability, and may increase in frequency in future due to projected expansion and intensification of OMZs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-03-19
    Description: Identification of benthic megafauna is commonly based on analysis of physical samples or imagery acquired by cameras mounted on underwater platforms. Physical collection of samples is difficult, particularly from the deep sea, and identification of taxonomic morphotypes from imagery depends on resolution and investigator experience. Here, we show how an Underwater Hyperspectral Imager (UHI) can be used as an alternative in situ taxonomic tool for benthic megafauna. A UHI provides a much higher spectral resolution than standard RGB imagery, allowing marine organisms to be identified based on specific optical fingerprints. A set of reference spectra from identified organisms is established and supervised classification performed to identify benthic megafauna semi-autonomously. The UHI data provide an increased detection rate for small megafauna difficult to resolve in standard RGB imagery. In addition, seafloor anomalies with distinct spectral signatures are also detectable. In the region investigated, sediment anomalies (spectral reflectance minimum at ~675 nm) unclear in RGB imagery were indicative of chlorophyll a on the seafloor. Underwater hyperspectral imaging therefore has a great potential in seafloor habitat mapping and monitoring, with areas of application ranging from shallow coastal areas to the deep sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-03-19
    Description: Widespread gas venting along the Cascadia margin is investigated from acoustic water column data and reveals a nonuniform regional distribution of over 1100 mapped acoustic flares. The highest number of flares occurs on the shelf, and the highest flare density is seen around the nutrition-rich outflow of the Juan de Fuca Strait. We determine similar to 430 flow-rates at similar to 340 individual flare locations along the margin with instantaneous in situ values ranging from similar to 6 mL min(-1) to similar to 18 L min(-1). Applying a tidal-modulation model, a depth-dependent methane density, and extrapolating these results across the margin using two normalization techniques yields a combined average in situ flow-rate of similar to 88 x 10(6) kg y(-1). The average methane flux-rate for the Cascadia margin is thus estimated to similar to 0.9 g y(-1) m(-2). Combined uncertainties result in a range of these values between 4.5 and 1800% of the estimated mean values.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-02-08
    Description: European eel (Anguilla anguilla) is a euryhaline species, that has adapted to cope with both, hyper- and hypo-osmotic environments. This study investigates the effect of salinity, from a morphological and molecular point of view on European eel larvae reared from 0 to 12 days post hatch (dph). Offspring reared in 36 practical salinity units (psu; control), were compared with larvae reared in six scenarios, where salinity was decreased on 0 or 3 dph and in rates of 1, 2 or 4 psu/day, towards iso-osmotic conditions. Results showed that several genes relating to osmoregulation (nkcc2α, nkcc2β, aqp1dup, aqpe), stress response (hsp70, hsp90), and thyroid metabolism (thrαA, thrαB, thrβB, dio1, dio2, dio3) were differentially expressed throughout larval development, while nkcc1α, nkcc2β, aqp3, aqp1dup, aqpe, hsp90, thrαA and dio3 showed lower expression in response to the salinity reduction. Moreover, larvae were able to keep energy metabolism related gene expression (atp6, cox1) at stable levels, irrespective of the salinity reduction. As such, when reducing salinity, an energy surplus associated to reduced osmoregulation demands and stress (lower nkcc, aqp and hsp expression), likely facilitated the observed increased survival, improved biometry and enhanced growth efficiency. Additionally, the salinity reduction decreased the amount of severe deformities such as spinal curvature and emaciation but also induced an edematous state of the larval heart, resulting in the most balanced mortality/deformity ratio when salinity was decreased on 3 dph and at 2 psu/day. However, the persistency of the pericardial edema and if or how it represents an obstacle in further larval development needs to be further clarified. In conclusion, this study clearly showed that salinity reduction regimes towards iso-osmotic conditions facilitated the European eel pre-leptocephalus development and revealed the existence of highly sensitive and regulated osmoregulation processes at such early life stage of this species.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-02-08
    Description: Hydrogen is one of the most common elements on Earth. The enzymes converting molecular hydrogen into protons and electrons are the hydrogenases. Hydrogenases are ubiquitously distributed in all three domains of life where they play a central role in cell metabolism. So far, the recovery of hydrogenases has been restricted to culture-dependent and sequence-based approaches. We have recently developed the only activity-based screen for seeking H-2-uptake enzymes from metagenomes without having to rely on enrichment and isolation of hydrogen-oxidizing microorganisms or prior metagenomic sequencing. When screening 14,400 fosmid clones from three hydrothermal vent metagenomes using this solely activity-based approach, four clones with H-2-uptake activity were identified with specific activities of up to 258 +/- 19 nmol H-2/min/mg protein of partially purified membrane fractions. The respective metagenomic fragments exhibited mostly very low or no similarities to sequences in the public databases. A search with hidden Markov models for different hydrogenase groups showed no hits for three of the four metagenomic inserts, indicating that they do not encode for classical hydrogenases. Our activity-based screen serves as a powerful tool for the discovery of (novel) hydrogenases which would not have been identified by the currently available techniques. This screen can be ideally combined with culture- and sequence-based approaches to investigate the tremendous hydrogen-converting potential in the environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-02-08
    Description: About 5 trillion plastic particles are present in our oceans, from the macro to the micro size. Like any other aquatic particulate, plastics and microplastics can create a micro-environment, within which microbial and chemical conditions differ significantly from the surrounding water. Despite the high and increasing abundance of microplastics in the ocean, their influence on the transformation and composition of marine organic matter is largely unknown. Chromophoric dissolved organic matter (CDOM) is the photo-reactive fraction of the marine dissolved organic matter (DOM) pool. Changes in CDOM quality and quantity have impacts on marine microbial dynamics and the underwater light environment. One major source of CDOM is produced by marine bacteria through their alteration of pre-existing DOM substrates. In a series of microcosm experiments in controlled marine conditions, we explored the impact of microplastics on the quality and quantity of microbial CDOM. In the presence of microplastics we observed an increased production of CDOM with changes in its molecular weight, which resulted from either an increased microbial CDOM production or an enhanced transformation of DOM from lower to higher molecular weight CDOM. Our results point to the possibility that marine microplastics act as localized hot spots for microbial activity, with the potential to influence marine carbon dynamics
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-02-08
    Description: Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth's radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Nature Research
    In:  Scientific Reports, 8 . Art.Nr. 9985.
    Publication Date: 2021-03-19
    Description: The division of the earth’s surface into continents and oceans is a consequence of plate tectonics but a geological paradox exists at continent-ocean boundaries. Continental plate is thicker and lighter than oceanic plate, floating higher on the mantle asthenosphere, but it can rift apart by thinning and heating to form new oceans. In theory, continental plate subsides in proportion to the amount it is thinned and subsequently by the rate it cools down. However, seismic and borehole data from continental margins like the Atlantic show that the upper surface of many plates remains close to sea-level during rifting, inconsistent with its thickness, and subsides after breakup more rapidly than cooling predicts. Here we use numerical models to investigate the origin and nature of this puzzling behaviour with data from the Kwanza Basin, offshore Angola. We explore an idea where the continental plate is made increasingly buoyant during rifting by melt produced and trapped in the asthenosphere. Using finite element simulation, we demonstrate that partially molten asthenosphere combined with other mantle processes can counteract the subsidence effect of thinning plate, keeping it elevated by 2-3 km until breakup. Rapid subsidence occurs after breakup when melt is lost to the embryonic ocean ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: slideshow
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-02-08
    Description: Mitigating the detrimental effects of climate change is a collective problem that requires global cooperation. However, achieving cooperation is difficult since benefits are obtained in the future. The so-called collective-risk game, devised to capture dangerous climate change, showed that catastrophic economic losses promote cooperation when individuals know the timing of a single climatic event. In reality, the impact and timing of climate change is not certain; moreover, recurrent events are possible. Thus, we devise a game where the risk of a collective loss can recur across multiple rounds. We find that wait and see behavior is successful only if players know when they need to contribute to avoid danger and if contributions can eliminate the risks. In all other cases, act quickly is more successful, especially under uncertainty and the possibility of repeated losses. Furthermore, we incorporate influential factors such as wealth inequality and heterogeneity in risks. Even under inequality individuals should contribute early, as long as contributions have the potential to decrease risk. Most importantly, we find that catastrophic scenarios are not necessary to induce such immediate collective action.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature Geoscience, 11 (7). p. 462.
    Publication Date: 2021-02-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-03-19
    Description: To assess the risk that mining of seafloor massive sulfides (SMS) from extinct hydrothermal vent environments has for changing the ecosystem irreversibly, we sampled SMS analogous habitats from the Kairei and the Pelagia vent fields along the Indian Ridge. In total 19.8 million 16S rRNA tags from 14 different sites were analyzed and the microbial communities were compared with each other and with publicly available data sets from other marine environments. The chimneys appear to provide habitats for microorganisms that are not found or only detectable in very low numbers in other marine habitats. The chimneys also host rare organisms and may function as a vital part of the ocean's seed bank. Many of the reads from active and inactive chimney samples were clustered into OTUs, with low or no resemblance to known species. Since we are unaware of the chemical reactions catalyzed by these unknown organisms, the impact of this diversity loss and bio-geo-coupling is hard to predict. Given that chimney structures can be considered SMS analogues, removal of sulfide deposits from the seafloor in the Kairei and Pelagia fields will most likely alter microbial compositions and affect element cycling in the benthic regions and probably beyond.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-04-23
    Description: Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-02-08
    Description: There is compelling evidence that episodic deposition of large volumes of freshwater into the oceans strongly influenced global ocean circulation and climate variability during glacial periods1,2. In the North Atlantic region, episodes of massive freshwater discharge to the North Atlantic Ocean were related to distinct cold periods known as Heinrich Stadials1,2,3. By contrast, the freshwater history of the North Pacific region remains unclear, giving rise to persistent debates about the existence and possible magnitude of climate links between the North Pacific and North Atlantic oceans during Heinrich Stadials4,5. Here we find that there was a strong connection between changes in North Atlantic circulation during Heinrich Stadials and injections of freshwater from the North American Cordilleran Ice Sheet to the northeastern North Pacific. Our record of diatom δ18O (a measure of the ratio of the stable oxygen isotopes 18O and 16O) over the past 50,000 years shows a decrease in surface seawater δ18O of two to three per thousand, corresponding to a decline in salinity of roughly two to four practical salinity units. This coincided with enhanced deposition of ice-rafted debris and a slight cooling of the sea surface in the northeastern North Pacific during Heinrich Stadials 1 and 4, but not during Heinrich Stadial 3. Furthermore, results from our isotope-enabled model6 suggest that warming of the eastern Equatorial Pacific during Heinrich Stadials was crucial for transmitting the North Atlantic signal to the northeastern North Pacific, where the associated subsurface warming resulted in a discernible freshwater discharge from the Cordilleran Ice Sheet during Heinrich Stadials 1 and 4. However, enhanced background cooling across the northern high latitudes during Heinrich Stadial 3—the coldest period in the past 50,000 years7—prevented subsurface warming of the northeastern North Pacific and thus increased freshwater discharge from the Cordilleran Ice Sheet. In combination, our results show that nonlinear ocean–atmosphere background interactions played a complex role in the dynamics linking the freshwater discharge responses of the North Atlantic and North Pacific during glacial periods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-03-19
    Description: Large intraplate earthquakes in oceanic lithosphere are rare and usually related to regions of diffuse deformation within the oceanic plate. The 23 January 2018 MW 7.9 strike-slip Gulf of Alaska earthquake ruptured an oceanic fracture zone system offshore Kodiak Island. Bathymetric compilations show a muted topographic expression of the fracture zone due to the thick sediment that covers oceanic basement but the fracture zone system can be identified by offset N-S magnetic anomalies and E-W linear zones in the vertical gravity gradient. Back-projection from global seismic stations reveals that the initial rupture at first propagated from the epicenter to the north, likely rupturing along a weak zone parallel to the ocean crustal fabric. The rupture then changed direction to eastward directed with most energy emitted on Aka fracture zone resulting in an unusual multi-fault earthquake. Similarly, the aftershocks show complex behavior and are related to two different tectonic structures: (1) events along N-S trending oceanic fabric, which ruptured mainly strike-slip and additionally, in normal and oblique slip mechanisms and (2) strike-slip events along E-W oriented fracture zones. To explain the complex faulting behavior we adopt the classical stress and strain partitioning concept and propose a generalized model for large intra-oceanic strike-slip earthquakes of trench-oblique oriented fracture zones/ocean plate fabric near subduction zones. Taking the Kodiak asperity position of 1964 maximum afterslip and outer-rise Coulomb stress distribution into account, we propose that the unusual 2018 Gulf of Alaska moment release was stress transferred to the incoming oceanic plate from co- and post-processes of the nearby great 1964 MW 9.2 megathrust earthquake.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-02-08
    Description: Ecologists must understand how marine life responds to changing local conditions, rather than to overall global temperature rise, say Amanda E. Bates and 16 colleagues.
    Type: Article , PeerReviewed
    Format: text
    Format: audio
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-03-19
    Description: The innate immune system helps animals to navigate the microbial world. The response to microbes relies on the specific recognition of microbial-associated molecular patterns (MAMPs) by immune receptors. Sponges (phylum Porifera), as early-diverging animals, provide insights into conserved mechanisms for animal-microbe crosstalk. However, experimental data is limited. We adopted an experimental approach followed by RNA-Seq and differential gene expression analysis in order to characterise the sponge immune response. Two Mediterranean species, Aplysina aerophoba and Dysidea avara, were exposed to a “cocktail” of MAMPs (lipopolysaccharide and peptidoglycan) or to sterile artificial seawater (control) and sampled 1 h, 3 h, and 5 h post-treatment for RNA-Seq. The response involved, first and foremost, a higher number of differentially-expressed genes in A. aerophoba than D. avara. Secondly, while both species constitutively express a diverse repertoire of immune receptors, they differed in their expression profiles upon MAMP challenge. The response in D. avara was mediated by increased expression of two NLR genes, whereas the response in A. aerophoba involved SRCR and GPCR genes. From the set of annotated genes we infer that both species activated apoptosis in response to MAMPs while in A. aerophoba phagocytosis was additionally stimulated. Our study assessed for the first time the transcriptomic responses of sponges to MAMPs and revealed conserved and species-specific features of poriferan immunity as well as genes potentially relevant to animal-microbe interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-02-08
    Description: Far more species of organisms are found in the tropics than in temperate and polar regions, but the evolutionary and ecological causes of this pattern remain controversial1,2. Tropical marine fish communities are much more diverse than cold-water fish communities found at higher latitudes3,4, and several explanations for this latitudinal diversity gradient propose that warm reef environments serve as evolutionary ‘hotspots’ for species formation5,6,7,8. Here we test the relationship between latitude, species richness and speciation rate across marine fishes. We assembled a time-calibrated phylogeny of all ray-finned fishes (31,526 tips, of which 11,638 had genetic data) and used this framework to describe the spatial dynamics of speciation in the marine realm. We show that the fastest rates of speciation occur in species-poor regions outside the tropics, and that high-latitude fish lineages form new species at much faster rates than their tropical counterparts. High rates of speciation occur in geographical regions that are characterized by low surface temperatures and high endemism. Our results reject a broad class of mechanisms under which the tropics serve as an evolutionary cradle for marine fish diversity and raise new questions about why the coldest oceans on Earth are present-day hotspots of species formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-02-08
    Description: The mobilization of glacial permafrost carbon during the last glacial–interglacial transition has been suggested by indirect evidence to be an additional and significant source of greenhouse gases to the atmosphere, especially at times of rapid sea-level rise. Here we present the first direct evidence for the release of ancient carbon from degrading permafrost in East Asia during the last 17 kyrs, using biomarkers and radiocarbon dating of terrigenous material found in two sediment cores from the Okhotsk Sea. Upscaling our results to the whole Arctic shelf area, we show by carbon cycle simulations that deglacial permafrost-carbon release through sea-level rise likely contributed significantly to the changes in atmospheric CO2 around 14.6 and 11.5 kyrs BP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-02-08
    Description: The ocean is the main source of thermal inertia in the climate system1. During recent decades, ocean heat uptake has been quantified by using hydrographic temperature measurements and data from the Argo float program, which expanded its coverage after 20072,3. However, these estimates all use the same imperfect ocean dataset and share additional uncertainties resulting from sparse coverage, especially before 20074,5. Here we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2)—levels of which increase as the ocean warms and releases gases—as a whole-ocean thermometer. We show that the ocean gained 1.33 ± 0.20 × 1022 joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.83 ± 0.11 watts per square metre of Earth’s surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result—which relies on high-precision O2 measurements dating back to 19916—suggests that ocean warming is at the high end of previous estimates, with implications for policy-relevant measurements of the Earth response to climate change, such as climate sensitivity to greenhouse gases7 and the thermal component of sea-level rise8.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-02-08
    Description: The island of Bali in Indonesia is home to two active stratovolcanoes, Agung and Batur, but relatively little is known of their underlying magma plumbing systems. Here we define magma storage depths and isotopic evolution of the 1963 and 1974 eruptions using mineral-melt equilibrium thermobarometry and oxygen and helium isotopes in mineral separates. Olivine crystallised from a primitive magma and has average δ18O values of 4.8‰. Clinopyroxene records magma storage at the crust-mantle boundary, and displays mantle-like isotope values for Helium (8.62 RA) and δ18O (5.0–5.8‰). Plagioclase reveals crystallisation in upper crustal storage reservoirs and shows δ18O values of 5.5–6.4‰. Our new thermobarometry and isotope data thus corroborate earlier seismic and InSAR studies that inferred upper crustal magma storage in the region. This type of multi-level plumbing architecture could drive replenishing magma to rapid volatile saturation, thus increasing the likelihood of explosive eruptions and the consequent hazard potential for the population of Bali.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-02-08
    Description: Changes in climate variability are as important for society to address as are changes in mean climate1. Contrasting temperature variability during the Last Glacial Maximum and the Holocene can provide insights into the relationship between the mean state of the climate and its variability2,3. However, although glacial–interglacial changes in variability have been quantified for Greenland2, a global view remains elusive. Here we use a network of marine and terrestrial temperature proxies to show that temperature variability decreased globally by a factor of four as the climate warmed by 3–8 degrees Celsius from the Last Glacial Maximum (around 21,000 years ago) to the Holocene epoch (the past 11,500 years). This decrease had a clear zonal pattern, with little change in the tropics (by a factor of only 1.6–2.8) and greater change in the mid-latitudes of both hemispheres (by a factor of 3.3–14). By contrast, Greenland ice-core records show a reduction in temperature variability by a factor of 73, suggesting influences beyond local temperature or a decoupling of atmospheric and global surface temperature variability for Greenland. The overall pattern of reduced variability can be explained by changes in the meridional temperature gradient, a mechanism that points to further decreases in temperature variability in a warmer future.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-04-23
    Description: Recent advances in understanding the ecology of marine systems have been greatly facilitated by the growing availability of metagenomic data, which provide information on the identity, diversity and functional potential of the microbial community in a particular place and time. Here we present a dataset comprising over 5 terabases of metagenomic data from 610 samples spanning diverse regions of the Atlantic and Pacific Oceans. One set of metagenomes, collected on GEOTRACES cruises, captures large geographic transects at multiple depths per station. The second set represents two years of time-series data, collected at roughly monthly intervals from 3 depths at two long-term ocean sampling sites, Station ALOHA and BATS. These metagenomes contain genomic information from a diverse range of bacteria, archaea, eukaryotes and viruses. The data's utility is strengthened by the availability of extensive physical, chemical, and biological measurements associated with each sample. We expect that these metagenomes will facilitate a wide range of comparative studies that seek to illuminate new aspects of marine microbial ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-02-08
    Description: Stable water isotope records from Antarctica are key for our understanding of Quaternary climate variations. However, the exact quantitative interpretation of these important climate proxy records in terms of surface temperature, ice sheet height and other climatic changes is still a matter of debate. Here we report results obtained with an atmospheric general circulation model equipped with water isotopes, run at a high-spatial horizontal resolution of one-by-one degree. Comparing different glacial maximum ice sheet reconstructions, a best model data match is achieved for the PMIP3 reconstruction. Reduced West Antarctic elevation changes between 400 and 800 m lead to further improved agreement with ice core data. Our modern and glacial climate simulations support the validity of the isotopic paleothermometer approach based on the use of present-day observations and reveal that a glacial ocean state as displayed in the GLAMAP reconstruction is suitable for capturing the observed glacial isotope changes in Antarctic ice cores.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Nature Research
    In:  Nature, 561 (7722). p. 175.
    Publication Date: 2018-09-17
    Description: Henning Schmidgen praises a tome on Helmholtz, titan of nineteenth-century science.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-04-26
    Description: The semi-enclosed nature and estuarine characteristics, together with its strongly alternating bathymetry, make the Baltic Sea prone to much stronger interannual variations in the abiotic environment, than other spawning habitats of Atlantic cod (Gadus morhua). Processes determining salinity and oxygen conditions in the basins are influenced both by long term gradual climate change, e.g. global warming, but also by short-term meteorological variations and events. Specifically one main factor influencing cod spawning conditions, the advection of highly saline and well-oxygenated water masses from the North Sea, is observed in irregular frequencies and causes strong interannual variations in stock productivity. This study investigates the possibility to use the available hydrographic process knowledge to predict the annual spawning conditions for Eastern Baltic cod in its most important spawning ground, the Bornholm Basin, only by salinity measurements from a specific location in the western Baltic. Such a prediction could serve as an environmental early warning indicator to inform stock assessment and management. Here we used a hydrodynamic model to hindcast hydrographic property fields for the last 40+ years. High and significant correlations were found for months early in the year between the 33m salinity level in the Arkona Basin and the oxygen-dependent cod spawning environment in the Bornholm Basin. Direct prediction of the Eastern Baltic cod egg survival in the Bornholm Basin based on salinity values in the Arkona Basin at the 33 m depth level is shown to be possible for eggs spawned by mid-age and young females, which currently predominate the stock structure. We recommend to routinely perform short-term predictions of the Eastern Baltic cod spawning environment, in order to generate environmental information highly relevant for stock dynamics. Our statistical approach offers the opportunity to make best use of permanently existing infrastructure in the western Baltic to timely provide scientific knowledge on the spawning conditions of Eastern Baltic cod. Furthermore it could be a tool to assist ecosystem-based fisheries management with a cost-effective implementation by including the short term predictions as a simple indicator in the annual assessments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-05-04
    Description: Methane sources and sinks in the Arctic are poorly quantified. In particular, methane emissions from the Arctic Ocean and the potential sink capacity are still under debate. In this context sea ice impact on and the intense cycling of methane between sea ice and Polar surface water (PSW) becomes pivotal. We report on methane super- and under-saturation in PSW in the Eurasian Basin (EB), strongly linked to sea ice-ocean interactions. In the southern EB under-saturation in PSW is caused by both inflow of warm Atlantic water and short-time contact with sea ice. By comparison in the northern EB long-time sea ice-PSW contact triggered by freezing and melting events induces a methane excess. We reveal the Ttranspolar Drift Stream as crucial for methane transport and show that inter-annual shifts in sea ice drift patterns generate inter-annually patchy methane excess in PSW. Using backward trajectories combined with δ18O signatures of sea ice cores we determine the sea ice source regions to be in the Laptev Sea Polynyas and the off shelf regime in 2011 and 2015, respectively. We denote the Transpolar Drift regime as decisive for the fate of methane released on the Siberian shelves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-12-12
    Description: Autotrophic theories for the origin of life propose that CO2 was the carbon source for primordial biosynthesis. Among the six known CO2 fixation pathways in nature, the acetyl-CoA (AcCoA; or Wood–Ljungdahl) pathway is the most ancient, and relies on transition metals for catalysis. Modern microbes that use the AcCoA pathway typically fix CO2 with electrons from H2, which requires complex flavin-based electron bifurcation. This presents a paradox: how could primitive metabolic systems have fixed CO2 before the origin of proteins? Here, we show that native transition metals (Fe0, Ni0 and Co0) selectively reduce CO2 to acetate and pyruvate—the intermediates and end-products of the AcCoA pathway—in near millimolar concentrations in water over hours to days using 1–40 bar CO2 and at temperatures from 30 to 100 °C. Geochemical CO2 fixation from native metals could have supplied critical C2 and C3 metabolites before the emergence of enzymes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-03-22
    Description: Brachiopod shells are the most widely used geological archive for the reconstruction of the temperature and the oxygen isotope composition of Phanerozoic seawater. However, it is not conclusive whether brachiopods precipitate their shells in thermodynamic equilibrium. In this study, we investigated the potential impact of kinetic controls on the isotope composition of modern brachiopods by measuring the oxygen and clumped isotope compositions of their shells. Our results show that clumped and oxygen isotope compositions depart from thermodynamic equilibrium due to growth rate-induced kinetic effects. These departures are in line with incomplete hydration and hydroxylation of dissolved CO2. These findings imply that the determination of taxon-specific growth rates alongside clumped and bulk oxygen isotope analyses is essential to ensure accurate estimates of past ocean temperatures and seawater oxygen isotope compositions from brachiopods.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-04-19
    Description: El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño–Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-05-06
    Description: While archaeological records indicate an intensive Mesolithic occupation of dune areas situated along river valleys, relatively little knowledge exists about environmental interactions in the form of land-use strategies and their possible local impacts. The combination of geoarchaeological, chronological, geochemical and palaeoecological research methods and their application both on a Mesoltihic site situated on top of a dune and the adjacent palaeochannel sediments allows for a detailed reconstruction of the local environmental development around the Soven site in the Jeetzel valley (Northern Germany) since ~10.5 ka cal BP. Based on the results, we identified four phases that may be related to local human impact twice during the Mesolithic, the Neolithic and the Iron Ages and are discussed on the backdrop of the regional settlement history. Although nearby Mesolithic occupation is evident on archaeological grounds, the identification of synchronous impacts on the vegetation in the local environmental records remains tentative even in respect of the broad methodical spectrum applied. Vice versa, human impact is strongly indicated by palaeoecological and geochemical proxies during the Neolithic period, but cannot be connected to archaeological records in the area so far. A younger phase of human impact – probably consisting of seasonal livestock farming in the wetlands – is ascribed to the Iron Age economy and comprises local soil erosion, raised concentrations of phosphates and urease, and the facilitation of grazing related taxa.
    Description: research
    Keywords: 551.7 ; aeolian sand ; pollen ; mesolithic ; iron age ; charcoal ; human impact ; OSL ; Neolithisation
    Language: English
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-05-06
    Description: Remarkable polygenetical structures were observed at a refinery rehabilitation site in Wedel/Holstein. The polygonal shaped, channel-like structures are incised in mid-Saalian clayey, chalk-rich till. They are symmetrically semicircular shaped and filled with calcareous, silty sands that can be interpreted as sandy reworked till with aeolian components. The width reaches from approx. 0.3 to 1.5 metres, the depth up to approx. 0.8 metres. Horizontal cracks up to more than 10 meters in lengths, occurring as narrow belts of sand with reddish colour, are often centrally aligned in the channel-like structures. The present-day red colour is not natural but related to pollution. These belts reach down to the bottom of the channel like structures. At the lower site of the channel-like structures glacitectonic fissures with a width up to a few centimetres were to be traced into a depth of several metres to the basis of the excavat ion. The genesis of the channel-like structures is discussed. e. g. a possible relation with the pre-existing glacitectonic joints resp. the expected periglacial paleohydrogeological setting.
    Description: research
    Keywords: 551.7 ; periglacial channels ; Weichselian periglacial ; frost wedges ; glacitectonism ; paleohydrogeology ; talik ; Elbe spillway
    Language: German
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-05-06
    Description: Hochterrassen (High or Higher Terraces) are a prominent geomorphological feature of the Northern Alpine Foreland and have traditionally been attributed to the Rissian glaciation. However, distinct morphological sublevels observed for this feature have often raised the question of their age. This issue is exemplarily investigated here on the Langweider and Rainer Hochterrassen in the lower Lech valley using different relative and numerical dating techniques. The lowest sublevel, the Übergangsterrasse is only preserved in small patches at the western rim of the Rainer Hochterrasse and is most probably of early Würmian age. The sublevel of the Jüngere Hochterrasse is older than the Last Interglacial, as indicated by luminescence ages of overlying loess/palaeosol sequence and the development of a luvisol on top of the terrace gravel. This terrace is composed of stacked gravel units that represent at least two accumulation phases correlating with Marine Isotope Stage (MIS) 6 for the top gravel and MIS 7 to MIS 10 (or older) for the basal gravel. It is not yet clear, if the deposition of the basal gravel unit corresponds to one or more aggradation phases during the Middle Pleistocene. The highest sublevel, the Ältere Hochterrasse also shows a compositon of two stacked gravel units but so far, no numerical ages have been achieved for these units.
    Description: research
    Keywords: 551.7 ; northern alpine foreland ; middle pleistocene ; luminescence dating ; Hochterrassen ; fluvial terraces
    Language: English
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2021-05-06
    Description: Crocuta crocuta spelaea (Goldfuss 1823) cranial and postcranial remains of the Pößneck region in the Zechstein Karst region of the Thuringian Mountains (Central Germany) were excavated historically in the Wüste Scheuer Cavity at Döbritz. Nearby, at the Krölpa gypsum karst open air site, additionally a woolly rhinoceros, partially scavenged by Ice Age spotted hyenas, was found. The amount at Wüste Scheuer Cavity includes chew damaged Coelodonta antiquitatis remains and is classified herein as communal den type. At both den/scavenging sites, only a small amount of prey material of Late Pleistocene megafauna of rare M. primigenius, mainly C. antiquitatis, E. c. przewalskii, and fewer B. priscus and R. tarandus was accumulated. The dominance of woolly rhinoceros, bison and Przewalski horse bones are typical for hyena bone assemblages in European low mountain regions, where mammoth was nearly absent as a result of topography. In the Thuringian Karst Mountains nine Late Pleistocene Ice Age spotted hyena den sites are identified. Solely hyena dens are present in Zechstein open air gypsum and limestone karstic regions of Bad Köstritz, Krölpa and Fuchsluken Cavities near Saalfeld. In the Wüste Scheuer their remains overlap with Middle Palaeolithic Neanderthal human camp sites, similar as in the Ilsen Cave at Ranis and Lindenthal Cave in Gera, which demonstrates competition for prey and shelter cavities. At such cave sites, bone remains were historically misinterpreted as „solely of Neanderthal human kitchen rubbish” or even as “bone tools” (e.g. “bone scrapers” = woolly rhinoceros tibia bones chewed by hyenas).
    Description: research
    Keywords: 551.7 ; late pleistocene ; Ice Age spotted hyenas ; den types ; Thuringian Mountains ; Central Germany
    Language: English
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-03-29
    Description: Eine durch einen Bodenschurf aufgeschlossene Boden-Sediment-Folge einer alten Seeterrasse im Einzugsgebiet des Priesterbäker Sees zeigt deutliche Fazieswechsel im Uferbereich des Gewässers. Die Abfolge von liegenden humosen Sanden, welche einen ehemaligen Verlandungssaum nachzeichnen, limnischen Sanden mit Bodenbildung und hangenden Flugsanden belegt Änderungen in der Sedimentation, welche mit säkularen Grundwasser- bzw. Seespiegelschwankungen zu erklären sind. Mit Hilfe von geophysikalischen Datierungen lassen sich gegenüber dem heutigen Niveau höhere Wasserstände für den Priesterbäker See bzw. die so genannten „Specker Seen“ östlich der Müritz während des 7.–9. und 12.–14. Jahrhunderts ableiten.
    Description: research
    Keywords: 551 ; 554.3 ; seespiegelschwankungen ; mecklenburg ; Seeterrasse ; Priesterbäker See ; Slawenzeit
    Language: German
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-05-06
    Description: C/O-stable isotope composition (VPDB) of speleothems from the Makkaronihalle of the Hüttenbläserschacht Cave in Iserlohn shows a clear separation between glacial and interglacial calcites. In contrast to normal speleothems (stalagmites, excentriques, crystals in cave ponds, draperies; δ18O: –4.0 to –6.1 ‰, δ13C: –4.9 to –10.9 ‰), rhombohedral crystal sinter and spherulitic speleoparticles are characterised by lower δ18O (–8.9 to –17.9 ‰) and higher δ13C values (+0.7 to –6.1 ‰). This suggests that these speleogenetic particles were formed in slowly freezing waterpools on ice during the transition from a stadial to an interstadial phase. Precise 230Th/U-dating shows younger Weichselian ages of 28.6 to 33.0 ka for these speleogenetic particles from north-west Germany. These formation periods indicate freezing conditions overlain by 34 m of hostrock and provide the minimum depth of permafrost penetration for the younger Weichselian in the area of the northern Sauerland (north-west Germany).
    Description: research
    Keywords: 551.7 ; permafrost ; Cryogenic calcites ; C/O isotopes ; Upper Weichselian ; ice caves ; north-western Germany
    Language: German
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-05-06
    Description: On the basis of the work done by Strahl et al. (1994), the mollusc specimens in the Late Saalian glacial and Eemian interglacial sediments from the cliff outcrop of Klein Klütz Höved (NW Mecklenburg) were re-examined and, in the process, a few vertebrates (fishes, micromammals) were also found. The mollusc specimens from the Late Saalian sand and mud alone comprise approximately 40 species among which terrestrial varieties, e.g. Succinella oblonga, Pupilla loessica, P. pratensis, Vallonia tenuilabris or Vertigo genesii, are clearly predominant as far as the number of individual specimens is concerned. Among the limnic varieties were also found the glacial index species Pisidium obtusale f. lapponicum and P. stewarti. It was also possible to prove the northern-most presence for Germany of the steppe lemming Lagurus lagurus in the Late Saalian. In the Eemian mud, the molluscs found were almost exclusively limnic. This about 20 species comprising fauna is characte-ristic of a river system with calmer areas, oxbow lakes and in-coming springs. These fluvial conditions were confirmed by the freshwater bivalves Pisidium amnicum, P. supinum, P. moitessierianum, P. ponderosum and Unio tumidus. For the first time in Mecklenburg-Western Pomerania, evidence was found of the spring snail Belgrandia germanica as an interglacial index species. The limnic-fluvial section of the Eemian is topped by a cryoturbate structures. Its sandy, gravelly pockets contain marine molluscs. The index species for the marine Eemian found in the southern Baltic region are Polititapes senescens and Bittium reticulatum.
    Description: research
    Keywords: 551.7 ; molluscs ; Saalian deposits ; limnic and marine Eemian facies ; Belgrandia germanica ; micromammals ; Lagurus lagurus ; Mecklenburg-Western Pomerania
    Language: German
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-03-29
    Description: Tendenziell fallende Grundwasserstände können vielfältige Ursachen haben, z.B. die Änderung der klimatischen Bedingungen, Modifikationen der Landnutzung oder die Entnahme von Grundwasser. Am Beispiel Südwest-Usedoms wird dargestellt, wie mögliche Einflussfaktoren analysiert und quantifiziert werden können. Für das Untersuchungsgebiet zeigte sich, dass die über Jahrzehnte gesunkenen Grundwasserstände überwiegend aus der Kahlschlagbewirtschaftung des Waldes resultieren und damit weniger einen Trend als eine überjährliche Schwankung ausweisen.
    Description: research
    Keywords: 551 ; 554.3 ; forest ; Sickerwasser ; Grundwasser ; Grundwasserneubildung ; Wald ; Landschaftswasserhaushalt ; Trend ; Grundwasserentnahme ; geohydraulisches Modell ; Landscape water regime ; Groundwater ; Groundwater recharge ; percolate water ; Groundwater extraction ; Groundwater modelling ; Geohydraulic model ; Grundwasserströmung ; Modellierung
    Language: German
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-05-06
    Description: A soil-sediment sequence in NE Germany has provided information about the duration and intensity of formation of a Bw horizon in Holocene slope deposits. With a combination of optically stimulated luminescence (OSL), 14C- and archaeological dating methods, colluvial layers taken from a former castle wall trench constructed during the Bronze Age were dated. With this chronology, the relative age of the postsedimentary Bw horizon formation within the colluvial sediments was derived, resulting in the first valid pedochronological data (maximum and minimum age) for a Holocene Bw horizon in NE Germany. The horizon was formed within 2400 years. Weathering and brunification have altered the Holocene parent material. However, the geochemical characteristics of the Holocene soil formation are weak compared to Bw horizons from the Late Glacial and the Late Glacial to Holocene. The results presented here enhance our understanding of soil formation processes in northern Germany, while highlighting the role of colluvial layers as sedimentological tracers of Holocene soil formation processes.
    Description: research
    Keywords: 551.7 ; holocene ; ne germany ; dating ; Bw horizon ; Slope deposits ; soil formation
    Language: English
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-05-06
    Description: A radiocarbon-dated peat profile from Rond Pertuis supérieure mire in the uplands of the Northern Vosges is studied using palynological methods. The profile dates from the middle Atlantic period (4500–3100 B.C.) to recent times. During the middle of the Atlantic period an oak forest rich in pine covered the Northern Vosges. Fir and beech immigrated at the end of the Atlantic leading to the decline of oak and pine in the forest. This also marked the onset of decisive human influence on the development of the terrestrial vegetation. Five land use phases were detected, the first one at the end of the Neolithic period (~4000–2200 B.C.). Subsequently, continuous land use is evident from the Bronze Age (2200–800 B.C.) up to now. In the late Middle Ages (A.D. 900–1500) and the early Modern Era (since A.D. 1500), the woodlands were completely altered by human activities. During the 19th century modern forestry introduced spruce into the investigated area in the Northern Vosges. Spruce afforestation then accelerated in the middle of the 20th century.
    Description: research
    Keywords: 551.7 ; holocene ; pollen analysis ; france ; human impact ; Northern Vosges
    Language: English
    Type: article , Verlagsversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-09-23
    Description: We estimated the relative contribution of atmosphere (ic Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton δ15N (~2‰). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton δ15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-09-23
    Description: Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-10-26
    Description: Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-12-16
    Description: Benthic suspension feeding mussels are an important functional guild in coastal and estua-rine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-13
    Description: Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of 〈 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values 〈20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-09-23
    Description: The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-13
    Description: The unabated rise in anthropogenic CO2 emissions is predicted to strongly influence the ocean's environment, increasing the mean sea-surface temperature by 4°C and causing a pH decline of 0.3 units by the year 2100. These changes are likely to affect the nutritional value of marine food sources since temperature and CO2 can influence the fatty (FA) and amino acid (AA) composition of marine primary producers. Here, essential amino (EA) and polyunsaturated fatty (PUFA) acids are of particular importance due to their nutritional value to higher trophic levels. In order to determine the interactive effects of CO2 and temperature on the nutritional quality of a primary producer, we analyzed the relative PUFA and EA composition of the diatom Cylindrotheca fusiformis cultured under a factorial matrix of 2 temperatures (14 and 19°C) and 3 partial pressures of CO2 (180, 380, 750 μatm) for 〉250 generations. Our results show a decay of ∼3% and ∼6% in PUFA and EA content in algae kept at a pCO2 of 750 μatm (high) compared to the 380 μatm (intermediate) CO2 treatments at 14°C. Cultures kept at 19°C displayed a ∼3% lower PUFA content under high compared to intermediate pCO2, while EA did not show differences between treatments. Algae grown at a pCO2 of 180 μatm (low) had a lower PUFA and AA content in relation to those at intermediate and high CO2 levels at 14°C, but there were no differences in EA at 19°C for any CO2 treatment. This study is the first to report adverse effects of warming and acidification on the EA of a primary producer, and corroborates previous observations of negative effects of these stressors on PUFA. Considering that only ∼20% of essential biomolecules such as PUFA (and possibly EA) are incorporated into new biomass at the next trophic level, thepotential impacts of adverse effects of ocean warming and acidification at the base of the food web may be amplified towards higher trophic levels, which rely on them as source of essential biomolecules.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-13
    Description: While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15°C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...