ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (774)
  • Copernicus  (774)
  • 2010-2014  (774)
  • 1980-1984
  • 1945-1949
  • 1925-1929
  • 2010  (774)
  • 19026
Collection
  • Articles  (774)
Publisher
  • Copernicus  (774)
Years
  • 2010-2014  (774)
  • 1980-1984
  • 1945-1949
  • 1925-1929
Year
Journal
Topic
  • 1
    Publication Date: 2010-10-20
    Description: Measurements of gas phase soluble bromide in the boundary layer and in firn air, and Br− in aerosol and snow, were made at Summit, Greenland (72.5° N, 38.4° W, 3200 m a.s.l.) as part of a larger investigation into the influence of Br chemistry on HOx cycling. The soluble bromide measurements confirm that photochemical activation of Br− in the snow causes release of active Br to the overlying air despite trace concentrations of Br− in the snow (means 15 and 8 nmol Br− kg−1 of snow in 2007 and 2008, respectively). Mixing ratios of soluble bromide above the snow were also found to be very small (mean
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-19
    Description: Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These changes increase sea level pressure over land in the biomass burning region and spin-up the hydrologic cycle by increasing clouds, atmospheric water vapor, and, to a lesser extent, precipitation. Cloud increases serve to reinforce the surface radiative cooling tendency of the aerosol. Conversely, if the climate over southern Africa were hypothetically forced by high loadings of scattering aerosol, then the change in the low-level circulation and increased subsidence would serve to decrease clouds, precipitation, and atmospheric water vapor. Surface cooling associated with scattering-only aerosols is mitigated by warming from cloud decreases. The direct and semi-direct climate impacts of biomass burning aerosol over southern Africa are sensitive to the total amount of aerosol absorption and how clouds change in response to the aerosol-induced heating of the atmosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-19
    Description: Satellite-based cloud top effective radius retrieved by the CERES Science Team were combined with simulated aerosol concentrations from CCCma CanAM4 to examine relationships between aerosol and cloud that underlie the first aerosol indirect (cloud albedo) effect. Evidence of a strong negative relationship between sulphate, and organic aerosols, with cloud top effective radius was found for low clouds, indicating both aerosol types are contributing to the first indirect effect on a global scale. Furthermore, effects of aerosol on the cloud droplet effective radius are more pronounced for larger cloud liquid water paths. While CanAM4 broadly reproduces the observed relationship between sulphate aerosols and cloud droplets, it does not reproduce the dependency of cloud top droplet size on organic aerosol concentrations nor the dependency on cloud liquid water path. Simulations with a modified version of the model yield a more realistic dependency of cloud droplets on organic carbon. The robustness of the methods used in the study are investigated by repeating the analysis using aerosol simulated by the GOCART model and cloud top effective radii derived from the MODIS Science Team.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-19
    Description: Broadband cavity enhanced absorption spectroscopy (BBCEAS) has been used to measure the sum of concentrations of NO3 and N2O5 from the BT (telecommunications) Tower 160 m above street level in central London during the REPARTEE II campaign in October and November 2007. Substantial variability was observed in these night-time nitrogen compounds: peak NO3+N2O5 mixing ratios reached 800 pptv, whereas the mean night-time NO3+N2O5 was approximately 30 pptv. Additionally, [NO3+N2O5] showed negative correlations with [NO] and [NO2] and a positive correlation with [O3]. Co-measurements of temperature and NO2 from the BT Tower were used to calculate the equilibrium partitioning between NO3 and N2O5 which was always found to strongly favour N2O5 (NO3/N2O5=0.01 to 0.04). Two methods are used to calculate the lifetimes for NO3 and N2O5, the results being compared and discussed in terms of the implications for the night-time oxidation of nitrogen oxides and the night-time sinks for NOy.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-18
    Description: An algorithm is introduced to downscale the 0.6 and 0.8 μm spectral channels of the METEOSTAT SEVIRI satellite imager from 3×3 km2 (LRES) to 1×1 km2 (HRES) resolution utilizing SEVIRI's high-resolution visible channel (HRV). Intermediate steps include the coregistration of low- and high-resolution images, lowpass filtering of the HRV channel with the spatial response function of the narrowband channels, and the estimation of a least-squares linear regression model for linking high-frequency variations in the HRV and narrowband images. The importance of accounting for the sensor spatial response function for matching reflectances at different spatial resolutions is demonstrated, and an estimate of the accuracy of the downscaled reflectances is provided. Based on a 1-year dataset of Meteosat SEVIRI images, it is estimated that on average, the reflectance of a HRES pixel differs from that of an enclosing LRES pixel by standard deviations of 0.049 and 0.052 in the 0.6 and 0.8 μm channels, respectively. By applying our downscaling algorithm, explained variance of 98.2 and 95.3 percent are achieved for estimating these deviations, corresponding to residual standard deviations of only 0.007 and 0.011 for the respective channels. For this dataset, a minor misregistration of the HRV channel relative to the narrowband channels of 0.36±0.11 km in East and 0.06±0.10 km in South direction is observed and corrected for, which should be negligible for most applications.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-10-15
    Description: As a major source region of the hydroxyl radical OH, the Tropics largely control the oxidation capacity of the atmosphere on a global scale. However, emissions of hydrocarbons from the tropical rainforest that react rapidly with OH can potentially deplete the amount of OH and thereby reduce the oxidation capacity. The airborne GABRIEL field campaign in equatorial South America (Suriname) in October 2005 investigated the influence of the tropical rainforest on the HOx budget (HOx = OH + HO2). The first observations of OH and HO2 over a tropical rainforest are compared to steady state concentrations calculated with the atmospheric chemistry box model MECCA. The important precursors and sinks for HOx chemistry, measured during the campaign, are used as constraining parameters for the simulation of OH and HO2. Significant underestimations of HOx are found by the model over land during the afternoon, with mean ratios of observation to model of 12.2 ± 3.5 and 4.1 ± 1.4 for OH and HO2, respectively. The discrepancy between measurements and simulation results is correlated to the abundance of isoprene. While for low isoprene mixing ratios (above ocean or at altitudes 〉3 km), observation and simulation agree fairly well, for mixing ratios 〉200 pptV (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-10-19
    Description: Biomass burning (BB) in southern Africa is the largest emission source of CO and O3 precursors within Africa during the West African Monsoon (WAM) between June and August. The long range transport and chemical processing of such emissions thus has the potential to exert a dominant influence on the composition of the tropical troposphere over Equatorial Africa (EA) and the Tropical Atlantic Ocean (TAO). We have performed simulations using a three-dimensional global chemistry-transport model (CTM) to quantify the effect that continental transport of such BB plumes has on the EA region. BB emissions from southern Africa were found to exert a significant influence over the TAO and EA between 10° S–20° N. The maximum concentrations in CO and O3 occur between 0–5° S near the position of the African Easterly Jet – South as placed by the European Centre for Medium range Weather Forecasts (ECMWF) meteorological analysis data. By comparing co-located model output with in-situ measurements we show that the CTM fails to capture the tropospheric profile of CO in southern Africa near the main source region of the BB emissions, as well as the "extreme" concentrations of both CO and O3 seen between 600–700 hPa over EA around 6° N. For more northerly locations the model exhibits high background concentrations in both CO and O3 related to BB emissions from southern Africa. By altering both the temporal resolution and the vertical distribution of BB emissions in the model we show that changes in temporal resolution have the largest influence on the transport of trace gases near the source regions, EA, and in the outflow towards the west of Central Africa. Using a set of trajectory calculations we show that the performance of the CTM is heavily constrained by the ECMWF meteorological fields used to drive the CTM, which transport biomass burning plumes from southern Africa into the lower troposphere of the TAO rather than up towards the middle troposphere at 650 hPa. Similar trajectory simulations repeated using an updated meteorological dataset, which assimilates additional measurement data taken around EA, show markedly different origins for pollution events and highlight the current limitations in modelling this tropical region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-08
    Description: Increasing evidence suggests that secondary organic aerosol (SOA) is formed through aqueous phase reactions in atmospheric clouds. In the present study, the aqueous oxidation of methyl vinyl ketone (MVK) and methacrolein (MACR) via OH radical were investigated, with an emphasis on the composition and variation of small-molecular-weight organic products. In addition, high-molecular-weight compounds (HMWs) were found, interpreted as the ion abundance and time evolution. Our results provide, for the first time to our knowledge, experimental evidence that aqueous OH-oxidation of MVK contributes to SOA formation. Further, a mechanism primarily involving radical processes was proposed to gain a basic understanding of these two reactions. Based on the assumed mechanism, a kinetic model was developed for comparison with the experimental results. The model reproduced the observed profiles of first-generation intermediates, but failed to simulate the kinetics of most organic acids mainly due to the lack of chemical kinetics parameters for HMWs. A sensitivity analysis was performed in terms of the effect of stoichiometric coefficients for precursors on oxalic acid yields and the result indicates that additional pathways involving HMWs chemistry might play an important role in the formation of oxalic acid. We suggest that further study is needed for better understanding the behavior of multi-functional products and their contribution to the oxalic acid formation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-09-16
    Description: The MYSTIC three-dimensional Monte-Carlo radiative transfer model has been extended to simulate solar and thermal irradiances with a rigorous consideration of topography. Forward as well as backward Monte Carlo simulations are possible for arbitrarily oriented surfaces and we demonstrate that the backward Monte Carlo technique is superior to the forward method for applications involving topography, by greatly reducing the computational demands. MYSTIC is used to simulate the short- and longwave radiation fields during a clear day and night in and around Arizona's Meteor Crater, a bowl-shaped, 165-m-deep basin with a diameter of 1200 m. The simulations are made over a 4 by 4 km2 domain using a 10-m horizontal resolution digital elevation model and meteorological input data collected during the METCRAX (Meteor Crater Experiment) field experiment in 2006. Irradiance (or radiative flux) measurements at multiple locations inside the crater are then used to evaluate the simulations. MYSTIC is shown to realistically model the complex interactions between topography and the radiative field, resolving the effects of terrain shading, terrain exposure, and longwave surface emissions. The effects of surface temperature variations and of temperature stratification within the crater atmosphere on the near-surface longwave irradiance are then evaluated with additional simulations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-09-01
    Description: Recently reported model-measurement discrepancies for the concentrations of the HOx radical species (OH and HO2) in locations characterized by high emission rates of isoprene have indicated possible deficiencies in the representation of OH recycling and formation in isoprene mechanisms currently employed in numerical models; particularly at low levels of NOx. Using version 3.1 of the Master Chemical Mechanism (MCM v3.1) as a base mechanism, the sensitivity of the system to a number of detailed mechanistic changes is examined for a wide range of NOx levels, using a simple box model. The studies consider sensitivity tests in relation to three general areas for which experimental and/or theoretical evidence has been reported in the peer-reviewed literature, as follows: (1) implementation of propagating channels for the reactions of HO2 with acyl and β-oxo peroxy radicals with HO2, with support from a number of studies; (2) implementation of the OH-catalysed conversion of isoprene-derived hydroperoxides to isomeric epoxydiols, as characterised by Paulot et al.~(2009a); and (3) implementation of a mechanism involving respective 1,5 and 1,6 H atom shift isomerisation reactions of the β-hydroxyalkenyl and cis-δ-hydroxyalkenyl peroxy radical isomers, formed from the sequential addition of OH and O2 to isoprene, based on the theoretical study of Peeters et al. (2009). All the considered mechanistic changes lead to simulated increases in the concentrations of OH, with (1) and (2) resulting in respective increases of up to about 7% and 16%, depending on the level of NOx. (3) is found to have potentially much greater impacts, with enhancements in OH concentrations of up to a factor of about 3.3, depending on the level of NOx, provided the (crucial) rapid photolysis of the hydroperoxy-methyl-butenal products of the cis-δ-hydroxyalkenyl peroxy radical isomerisation reactions is represented, as also postulated by Peeters et al.~(2009). Additional tests suggest that the mechanism with the reported parameters cannot be fully reconciled with atmospheric observations and existing laboratory data without some degree of parameter refinement and optimisation which would probably include a reduction in the peroxy radical isomerisation rates and a consequent reduction in the OH enhancement propensity. However, an order of magntitude reduction in the isomerisation rates is still found to yield notable enhancements in OH concentrations of up to a factor of about 2, with the maximum impact at the low end of the considered NOx range. A parameterized representation of the mechanistic changes is optimized and implemented into a reduced variant of the Common Representative Intermediates mechanism (CRI v2-R5), for use in the STOCHEM global chemistry-transport model. The impacts of the modified chemistry in the global model are shown to be consistent with those observed in the box model sensitivity studies, and the results are illustrated and discussed with a particular focus on the tropical forested regions of the Amazon and Borneo where unexpectedly elevated concentrations of OH have recently been reported.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-08-27
    Description: Ultrafine particle (UFP) number and size distributions were simultaneously measured at five urban and rural sites during the summer of 2007 in Ontario, Canada as part of the Border Air Quality and Meteorology Study (BAQS-Met 2007). Particle formation and growth events at these five sites were classified based on their strength and persistence as well as the variation in geometric mean diameter. Regional nucleation and growth events and local short-lived strong nucleation events were frequently observed at the near-border rural sites, upwind of industrial sources. Surprisingly, the particle number concentrations at one of these sites were higher than the concentrations at a downtown site in a major city, despite its high traffic density. Regional nucleation and growth events were favored during intense solar irradiance and in less polluted cooler drier air. The most distinctive regional particle nucleation and growth event during the campaign was observed simultaneously at all five sites, which were up to 350 km apart. Although the ultrafine particle concentrations and size distributions generally were spatially heterogeneous across the region, a more uniform spatial distribution of UFP across the five areas was observed during this regional nucleation event. Thus, nucleation events can cover large regions, contributing to the burden of UFP in cities and potentially to the associated health impacts on urban populations. Local short-lived nucleation events at the three near-border sites during this summer three-week campaign were associated with high SO2, which likely originated from US and Canadian industrial sources. Hence, particle formation in southwestern Ontario appears to often be related to anthropogenic gaseous emissions but biogenic emissions at times also contribute. Longer-term studies are needed to help resolve the relative contributions of anthropogenic and biogenic emissions to nucleation and growth in this region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-08-12
    Description: This paper presents a general concept and mathematical framework of particle hygroscopicity distribution for the analysis and modeling of aerosol hygroscopic growth and cloud condensation nucleus (CCN) activity. The cumulative distribution function of particle hygroscopicity, H(κ, Dd) is defined as the number fraction of particles with a given dry diameter, Dd, and with an effective hygroscopicity parameter smaller than the parameter κ. From hygroscopicity tandem differential mobility analyzer (HTDMA) and size-resolved CCN measurement data, H(κ, Dd) can be derived by solving the κ-Köhler model equation. Alternatively, H(κ, Dd) can be predicted from measurement or model data resolving the chemical composition of single particles. A range of model scenarios are used to explain and illustrate the concept, and exemplary practical applications are shown with HTDMA and CCN measurement data from polluted megacity and pristine rainforest air. Lognormal distribution functions are found to be suitable for approximately describing the hygroscopicity distributions of the investigated atmospheric aerosol samples. For detailed characterization of aerosol hygroscopicity distributions, including externally mixed particles of low hygroscopicity such as freshly emitted soot, we suggest that size-resolved CCN measurements with a wide range and high resolution of water vapor supersaturation and dry particle diameter should be combined with comprehensive HTDMA measurements and size-resolved or single-particle measurements of aerosol chemical composition, including refractory components. In field and laboratory experiments, hygroscopicity distribution data from HTDMA and CCN measurements can complement mixing state information from optical, chemical and volatility-based techniques. Moreover, we propose and intend to use hygroscopicity distribution functions in model studies investigating the influence of aerosol mixing state on the formation of cloud droplets.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-08-10
    Description: Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-08-17
    Description: The Henry's law constant is a key property needed to address the multiphase behaviour of organics in the atmosphere. Methods that can reliably predict the values for the vast number of organic compounds of atmospheric interest are therefore required. The effective Henry's law constant H* in air-water systems at 298 K was compiled from literature for 488 organic compounds bearing functional groups of atmospheric relevance. This data set was used to assess the reliability of the HENRYWIN bond contribution method and the SPARC approach for the determination of H*. Moreover, this data set was used to develop GROMHE, a new Structure Activity Relationship (SAR) based on a group contribution approach. These methods estimate logH* with a Root Mean Square Error (RMSE) of 0.38, 0.61, and 0.73 log units for GROMHE, SPARC and HENRYWIN respectively. The results show that for all these methods the reliability of the estimates decreases with increasing solubility. The main differences among these methods lie in H* prediction for compounds with H* greater than 103 M atm−1. For these compounds, the predicted values of logH* using GROMHE are more accurate (RMSE = 0.53) than the estimates from SPARC or HENRYWIN.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-08-20
    Description: The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard the European Space Agency's ENVISAT satellite measures ozone, NO2, NO3, H2O, O2, and aerosols using the stellar occultation method. Global coverage, good vertical resolution and the self-calibrating measurement method make GOMOS observations a promising data set for building various climatologies and time series. In this paper we present GOMOS nighttime measurements of ozone, NO2, and NO3 during six years 2002–2008. Using zonal averages we show the time evolution of the vertical profiles as a function of latitude. In order to get continuous coverage in time we restrict the latitudinal region to 50° S–50° N. Time development is analysed by fitting constant, annual and semi-annual terms as well as solar and QBO proxies to the daily time series. Ozone data cover the stratosphere, mesosphere and lower thermosphere (MLT). NO2 and NO3 data cover the stratosphere. In addition to detailed analysis of profiles we derive total column distributions using the fitted time series. The time-independent constant term is determined with a good accuracy (better than 1%) for all the three gases. The median retrieval accuracy for the annual and semi-annual term varies in the range 5–20%. For ozone the annual terms dominate in the stratosphere giving early winter ozone maxima at mid-latitudes. Above the ozone layer the annual terms change the phase which results in ozone summer maximum up to 80 km. In the MLT the annual terms dominate up to 80 km where the semiannual terms start to grow. In the equatorial MLT the semi-annual terms dominate the temporal evolution whereas in the mid-latitude MLT annual and semi-annual terms compete evenly. In the equatorial stratosphere the QBO dominates the time development but the solar term is too weak to be determined. In the MLT above 85 km the solar term grows significantly and ozone has 15–20% dependence on the solar cycle. For NO2 below 32 km the annual summer maxima dominates at mid-latitudes whereas in the equatorial region a strong QBO prevails. In northern mid-latitudes a strong solar term appears in the upper stratosphere. For NO3 the annual variation dominates giving rise to summer maxima. The NO3 distribution is controlled by temperature and ozone.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-08-09
    Description: The contribution of marine organic emissions to the air quality in coastal areas of the western United States is studied using the latest version of the US Environmental Protection Agency (EPA) regional-scale Community Multiscale Air Quality (CMAQv4.7) modeling system. Emissions of marine isoprene, monoterpenes, and primary organic matter (POM) from the ocean are implemented into the model to provide a comprehensive view of the connection between ocean biology and atmospheric chemistry and air pollution. Model simulations show that marine organics can increase the concentration of PM2.5 by 0.1–0.3 μg m−3 (up to 5%) in some coastal cities such as San Francisco, CA. This increase in the PM2.5 concentration is primarily attributed to the POM emissions, with small contributions from the marine isoprene and monoterpenes. When marine organic emissions are included, organic carbon (OC) concentrations over the remote ocean are increased by up to 50% (25% in coastal areas), values consistent with recent observational findings. This study is the first to quantify the air quality impacts from marine POM and monoterpenes for the United States, and it highlights the need for inclusion of marine organic emissions in air quality models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-07-30
    Description: A box model using measurements from the Mexico City Metropolitan Area study in the spring of 2003 (MCMA-2003) is presented to study oxidative capacity (our ability to predict OH radicals) and ROx (ROx=OH+HO2+RO2+RO) radical cycling in a polluted (i.e., very high NOx=NO+NO2) atmosphere. Model simulations were performed using the Master Chemical Mechanism (MCMv3.1) constrained with 10 min averaged measurements of major radical sources (i.e., HCHO, HONO, O3, CHOCHO, etc.), radical sink precursors (i.e., NO, NO2, SO2, CO, and 102 volatile organic compounds (VOC)), meteorological parameters (temperature, pressure, water vapor concentration, dilution), and photolysis frequencies. Modeled HOx (=OH+HO2) concentrations compare favorably with measured concentrations for most of the day; however, the model under-predicts the concentrations of radicals in the early morning. This "missing reactivity" is highest during peak photochemical activity, and is least visible in a direct comparison of HOx radical concentrations. We conclude that the most likely scenario to reconcile model predictions with observations is the existence of a currently unidentified additional source for RO2 radicals, in combination with an additional sink for HO2 radicals that does not form OH. The true uncertainty due to "missing reactivity" is apparent in parameters like chain length. We present a first attempt to calculate chain length rigorously i.e., we define two parameters that account for atmospheric complexity, and are based on (1) radical initiation, n(OH), and (2) radical termination, ω. We find very high values of n(OH) in the early morning are incompatible with our current understanding of ROx termination routes. We also observe missing reactivity in the rate of ozone production (P(O3)). For example, the integral amount of ozone produced could be under-predicted by a factor of two. We argue that this uncertainty is partly accounted for in lumped chemical codes that are optimized to predict ozone concentrations; however, these codes do not reflect the true uncertainty in oxidative capacity that is relevant to other aspects of air quality management, such as the formation of secondary organic aerosol (SOA). Our analysis highlights that apart from uncertainties in emissions, and meteorology, there is an additional major uncertainty in chemical mechanisms that affects our ability to predict ozone and SOA formation with confidence.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-07-30
    Description: A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10–25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-08-03
    Description: Nucleation experiments starting from the reaction of OH radicals with SO2 have been performed in the IfT-LFT flow tube under atmospheric conditions at 293±0.5 K for a relative humidity of 13–61%. The presence of different additives (H2, CO, 1,3,5-trimethylbenzene) for adjusting the OH radical concentration and resulting OH levels in the range (4–300) ×105 molecule cm−3 did not influence the nucleation process itself. The number of detected particles as well as the threshold H2SO4 concentration needed for nucleation was found to be strongly dependent on the counting efficiency of the used counting devices. High-sensitivity particle counters allowed the measurement of freshly nucleated particles with diameters down to about 1.5 nm. A parameterization of the experimental data was developed using power law equations for H2SO4 and H2O vapour. The exponent for H2SO4 from different measurement series was in the range of 1.7–2.1 being in good agreement with those arising from analysis of nucleation events in the atmosphere. For increasing relative humidity, an increase of the particle number was observed. The exponent for H2O vapour was found to be 3.1 representing an upper limit. Addition of 1.2×1011 molecule cm−3 or 1.2×1012 molecule cm−3 of NH3 (range of atmospheric NH3 peak concentrations) revealed that NH3 has a measureable, promoting effect on the nucleation rate under these conditions. The promoting effect was found to be more pronounced for relatively dry conditions, i.e. a rise of the particle number by 1–2 orders of magnitude at RH = 13% and only by a factor of 2–5 at RH = 47% (NH3 addition: 1.2×1012 molecule cm−3). Using the amine tert-butylamine instead of NH3, the enhancing impact of the base for nucleation and particle growth appears to be stronger. Tert-butylamine addition of about 1010 molecule cm−3 at RH = 13% enhances particle formation by about two orders of magnitude, while for NH3 only a small or negligible effect on nucleation in this range of concentration appeared. This suggests that amines can strongly influence atmospheric H2SO4-H2O nucleation and are probably promising candidates for explaining existing discrepancies between theory and observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-07-30
    Description: Multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to analyze the effects of transported background ozone (O3) from the eastern Pacific on California air quality during the ARCTAS-CARB experiment conducted in June, 2008. Previous work has focused on the importance of long-range transport of O3 to North America air quality in springtime. However during this summer experiment the long-range transport of O3 is also shown to be important. Simulated and observed O3 transport patterns from the coast to inland northern California are shown to vary based on meteorological conditions and the O3 profiles over the oceans, which are strongly episodically affected by Asian inflows. Analysis of the correlations of O3 at various altitudes above the coastal site at Trinidad Head and at a downwind surface site in northern California, show that under long-range transport events, high O3 air-masses (O3〉60 ppb) at altitudes between about 2 and 4 km can be transported inland and can significantly influence surface O3 20–30 h later. These results show the importance of characterizing the vertical structure of the lateral boundary conditions (LBC) needed in air quality simulations. The importance of the LBC on O3 prediction during this period is further studied through a series of sensitivity studies using different forms of LBC. It is shown that the use of the LBC downscaled from RAQMS global model that assimilated MLS and OMI data improves the model performance. We also show that the predictions can be further improved through the use of LBC based on NASA DC-8 airborne observations during the ARCTAS-CARB experiment. These results indicate the need to develop observational strategies to provide information on the three-dimensional nature of pollutant distributions, in order to improve our capability to predict pollution levels and to better quantify the influence of these Asian inflows on the US west coast air quality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-08-03
    Description: The first direct laboratory measurements of gaseous hydrogen peroxide uptake by authentic Gobi and Saharan dust aerosol particles as a function of relative humidity (RH) have been carried out in an entrained aerosol flow tube coupled to a chemical ionization mass spectrometer. Gobi dust shows uptake coefficients, γH2 O2 = (3.33±0.26) ×10−4 at 15% RH rising to γH2 O2 = (6.03±0.42) ×10−4 at 70% RH; the corresponding values for Saharan dust are systematically higher (γH2 O2 = (6.20±0.22)×10−4 at 15% RH rising to γH2 O2 = (9.42±0.41) ×10−4 at 70% RH). High resolution X-ray photoelectron spectroscopy (XPS) measurements of the surface chemical composition of the two mineral dust samples together with published water adsorption isotherms of their principal constituents enables rationalization of these observations, which are relevant to nighttime tropospheric chemistry. A box model study performed by incorporating the experimentally determined data set reveals that uptake of H2O2 onto dust can be an important loss process for this species which has been, until now, poorly constrained.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-08-02
    Description: The detailed mechanism of secondary new particle formation in the atmosphere is still under debate. It is proposed that particle formation happens via activation of 1–2 nm atmospheric neutral molecular clusters and/or large molecules. Since traditional instrumentation does not reach these sizes, the hypothesis has not yet been verified. By directly measuring particle size distributions down to mobility diameters of about 1.3 nm with a pulse-height CPC, we provide evidence of the nucleation mechanism in a coastal environment (Mace Head, Ireland) and in a boreal forest (Hyytiälä, Finland). In both places neutral sub-3 nm condensation nuclei (nano-CN) were continuously present, even when no new particle formation was detected. In Mace Head, however, the concentration of the nano-CN was far too low to account for the particle formation rates during particle bursts. Thus the results imply that at coastal sites new particle formation initiates, as previously proposed, via homogenous nucleation from biogenic iodine vapors. In contrast, activation of pre-existing nano-CN remains a possible explanation in the boreal forest, but the observed concentrations are not the limiting factor for the particle formation events.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-07-23
    Description: The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000–2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-km gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above ~5700 m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-07-23
    Description: Systematic changes of the ozone weekend effect are found over broad areas of Japan. These changes are characterized by (1) spatial reversals from a weekend increase in the vicinity of huge precursor source areas to a weekend decrease in the surrounding rural areas, and (2) temporal reversals from a weekend increase under relatively unsuitable meteorological conditions for ozone formation to a weekend decrease under relatively suitable conditions. We developed a simple numerical advection–reaction model to explain the relationship between the duration of advection and the supplied solar energy, which causes the daily maximum ozone concentration to be lower near the precursor source. Ozone isopleth diagrams for individual advection durations (equivalent to the distance from the source) for a wide range of initial precursor conditions show that both VOC-limited and NOx-limited regimes exist for each advection duration, but the area of NOx-limited regime becomes dominant as the advection duration increases because of the increased exposure of the air mass to solar energy. For given initial VOC and NOx concentrations, the area remote from the source becomes a NOx-limited regime even if the precursor source area is in the VOC-limited regime. The rate of reduction of weekend emissions of NOx is larger than that of VOC, causing a weekend increase in ozone inside an area of VOC-limited regime near the source, but a weekend decrease in remote areas with a NOx-limited regime. The boundary between these two ozone formation regimes depends on meteorological conditions: when sunlight intensity and temperature are relatively low, the change from a VOC-limited to a NOx-limited regime occurs at a point more remote from the source than when they are relatively high, which causes a prevailing ozone weekend increase over a wide geographical area on days with lower ozone potential. Therefore, observations of ozone weekend changes can be interpreted in light of the theoretical implications of our model; they can be used for determination of ozone formation regimes, which change in different locations and under different meteorological conditions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-07-23
    Description: The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensation trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve which empirically describes the ISS fraction in any average relative humidity pressure layer. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8–10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-08-03
    Description: The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest for the lowest temperatures investigated (243 and 253 K). The increase in the SOA yields was dominated by water (and temperature) effects on the organic product distribution, whilst physical uptake of water was negligible. This will be demonstrated for the example of pinonaldehyde (PA) which was formed as a major product in the humid experiments with total molar yields of 0.30±0.06 at 303 K and 0.15±0.03 at 243 K. In the dry experiments the molar yields of PA were only 0.07±0.02 at 303 K and 0.02±0.02 at 253 K. The observed partitioning of PA as a function of the SOA mass present at 303 K limited the effective vapour pressure of pure PA pPA0 to the range of 0.01–0.001 Pa, 3–4 orders of magnitude lower than literature values. The corresponding mass partitioning coefficient was determined to KPA=0.005±0.004 m3 μg−1 and the total mass yield αPAtotal=0.37±0.08. At 303 K PA preferably stayed in the gas-phase, whereas at 253 K and 243 K it exclusively partitioned into the particulate phase. PA could thus account at least for half of the water induced gain in SOA mass at 253 K. The corresponding effect was negligible at 303 K because the PA preferably remained in the gas-phase. The yield of OH radicals, which were produced in the ozonolysis, was indirectly determined by means of the yield of cyclohexanone formed in the reaction of OH radicals with cyclohexane. OH yields of the α-pinene ozonolysis were determined to 0.67±0.17 for humid and 0.54±0.13 for dry conditions at 303 K, indicating a water dependent path of OH radical formation. For 253 and 243 K OH yields could be estimated to 0.5 with no significant difference between the dry and humid experiments. This is the first clear indication for OH radical formation by α-pinene ozonolysis at such low temperatures.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-07-23
    Description: It is well-known that aerosols affect clouds and that the effect of aerosols on clouds is critical for understanding human-induced climate change. Most climate model studies have focused on the effect of aerosols on warm stratiform clouds (e.g., stratocumulus clouds) for the prediction of climate change. However, systems like the Asian and Indian Monsoon, storm tracks, and the intertropical convergence zone, play important roles in the global hydrological cycle and in the circulation of energy and are driven by thunderstorm-type convective clouds. Here, we show that the different morphologies of these two cloud types lead to different aerosol-cloud interactions. Increasing aerosols are known to suppress the conversion of droplets to rain (i.e., so-called autoconversion). This increases droplets as a source of evaporative cooling, leading to an increased intensity of downdrafts. The acceleration of the intensity of downdrafts is larger in convective clouds due to their larger cloud depths (providing longer paths for downdrafts to follow to the surface) than in stratiform clouds. More accelerated downdrafts intensify the gust front, leading to significantly increased updrafts, condensation and thus the collection of cloud liquid by precipitation, which offsets the suppressed autoconversion. This leads to an enhancement of precipitation with increased aerosols in convective clouds. However, the downdrafts are less accelerated in stratiform clouds due to their smaller cloud depths, and they are not able to induce changes in updrafts as large as those in convective clouds. Thus, the offset is not as effective, and this allows the suppression of precipitation with increased aerosols. Thus aerosols affect these cloud systems differently. The dependence of the effect of aerosols on clouds on the morphology of clouds should be taken into account for a more complete assessment of climate change.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-07-21
    Description: Rates for large-scale vertical transport of air in the Tropical Tropopause Layer (TTL) were determined using high-resolution, in situ observations of CO2 concentrations in the tropical upper troposphere and lower stratosphere during the NASA Tropical Composition, Cloud and Climate Coupling (TC4) campaign in August 2007. Upward movement of trace gases in the deep tropics was notably slower in TC4 than during the Costa Rica AURA Validation Experiment (CR-AVE), in January 2006. Transport rates in the TTL were combined with in situ measurements of chlorinated and brominated organic compounds from whole air samples to determine chemical loss rates for reactive chemical species, providing empirical vertical profiles for 24-h mean concentrations of hydroxyl radicals (OH) and chlorine atoms in the TTL. The analysis shows that important short-lived species such as CHCl3, CH2Cl2, and CH2Br2 have longer chemical lifetimes than the time for transit of the TTL, implying that these species, which are not included in most models, could readily reach the stratosphere and make significant contributions of chlorine and/or bromine to stratospheric loading.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-07-22
    Description: Six years (2003–2008) of satellite measurements of aerosol parameters from the Moderate Resolution Imaging Spectroradiometer (MODIS) and surface wind speeds from Quick Scatterometer (QuikSCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the Special Sensor Microwave Imager (SSM/I), are used to provide a comprehensive perspective on the link between surface wind speed and marine aerosol optical depth over tropical and subtropical oceanic regions. A systematic comparison between the satellite derived fields in these regions allows to: (i) separate the relative contribution of wind-induced marine aerosol to the aerosol optical depth; (ii) extract an empirical linear equation linking coarse marine aerosol optical depth and wind intensity; and (iii) identify a time scale for correlating marine aerosol optical depth and surface wind speed. The contribution of wind induced marine aerosol to aerosol optical depth is found to be dominated by the coarse mode elements. When wind intensity exceeds 4 m/s, coarse marine aerosol optical depth is linearly correlated with the surface wind speed, with a remarkably consistent slope of 0.009±0.002 s/m. A detailed time scale analysis shows that the linear correlation between the fields is well kept within a 12 h time frame, while sharply decreasing when the time lag between measurements is longer. The background aerosol optical depth, associated with aerosols that are not produced in-situ through wind driven processes, can be used for estimating the contributions of terrestrial and biogenic marine aerosol to over-ocean satellite retrievals of aerosol optical depth.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-07-22
    Description: Estimation of a trend of an atmospheric state variable is usually performed by fitting a linear regression line to a set of data of this variable sampled at different times. Often these data are irregularly sampled in space and time and clustered in a sense that error correlations among data points cause a similar error of data points sampled at similar times. Since this can affect the estimated trend, we suggest to take the full error covariance matrix of the data into account. Superimposed periodic variations can be jointly fitted in a straightforward manner, even if the shape of the periodic function is not known. Global data sets, particularly satellite data, can form the basis to estimate the error correlations. State-dependent amplitudes of superimposed periodic corrections result in a non-linear optimization problem which is solved iteratively.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-07-02
    Description: Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the Northern Hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol. Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. The aerosol optical depth data showed a clear though moderate seasonal cycle with an annual mean of 0.06 ± 0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. AERONET size distributions showed a generally bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of fine dust, biomass burning and marine biogenic material. In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – ion beam analysis and ion chromatography. Ion beam analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated with Si, with the Fe/Al ratio somewhat higher than values reported from Northern Hemisphere sites (as expected). Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. These data may be used to attempt to build a signature of soil in this region of the Australian interior. Ion chromatography was used to quantify water soluble ions for 2 of our sample sets, complementing the picture provided by ion beam analysis. The strong similarities between the MSA and SO42− size distributions argue strongly for a marine origin of much of the SO42−. The similarity of the Na+, Cl− and Mg2+ size distributions also argue for a marine contribution. Further, we believe that both NO3− and NH4+ are the result of surface reactions with appropriate gases.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-07-02
    Description: To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC), organic carbon (OC), elemental carbon (EC) and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region) on 8–9 August, from China (an anthropogenic source region) on 9–10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region) on 10–11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42−, NH4+ and K+) were enriched in fine particles (PM1.1) whereas Ca2+, Mg2+ and Cl− peaked in coarse sizes (〉1.1 μm). Interestingly, OC, most sugar compounds and NO3− showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m−3) were more abundant than those in the aerosols originating from China (209 ng m−3) and ocean (142 ng m−3), whereas SO42− concentrations were highest in the aerosols from China (mean: 3970 ng m−3) followed by marine- (2950 ng m−3) and biomass burning-influenced (1980 ng m−3) aerosols. Higher loadings of WSOC (2430 ng m−3) and OC (4360 ng m−3) were found in the fine mode, where biomass-burning products such as levoglucosan are abundant. This paper presents a case study of long-range transported aerosols illustrating that biomass burning episodes in the Siberian region have a significant influence on the chemical composition of carbonaceous aerosols in the western North Pacific rim.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-07-01
    Description: We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem), to better understand the sources and cycling of hydrogen oxide radicals (HOx≡H+OH+peroxy radicals) and their reservoirs (HOy≡HOx+peroxides) in the springtime Arctic atmosphere. We find that a standard gas-phase chemical mechanism overestimates the observed HO2 and H2O2 concentrations. Computation of HOx and HOy gas-phase chemical budgets on the basis of the aircraft observations also indicates a large missing sink for both. We hypothesize that this could reflect HO2 uptake by aerosols, favored by low temperatures and relatively high aerosol loadings, through a mechanism that does not produce H2O2. We implemented such an uptake of HO2 by aerosol in the model using a standard reactive uptake coefficient parameterization with γ(HO2) values ranging from 0.02 at 275 K to 0.5 at 220 K. This successfully reproduces the concentrations and vertical distributions of the different HOx species and HOy reservoirs. HO2 uptake by aerosol is then a major HOx and HOy sink, decreasing mean OH and HO2 concentrations in the Arctic troposphere by 32% and 31% respectively. Better rate and product data for HO2 uptake by aerosol are needed to understand this role of aerosols in limiting the oxidizing power of the Arctic atmosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-07-01
    Description: We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-07-02
    Description: Intense anthropogenic emissions over the Indian sub-continent lead to the formation of layers of particulate pollution that can be transported to the high altitude regions of the Himalaya-Hindu-Kush (HKH). Aerosol particles contain a substantial fraction of strongly absorbing material, including black carbon (BC), organic compounds (OC), and dust all of which can contribute to atmospheric warming, in addition to greenhouse gases. Using a 3-year record of continuous measurements of aerosol optical properties, we present a time series of key climate relevant aerosol properties including the aerosol absorption (σap) and scattering (σsp) coefficients as well as the single-scattering albedo (w0). Results of this investigation show substantial seasonal variability of these properties, with long range transport during the pre- and post-monsoon seasons and efficient precipitation scavenging of aerosol particles during the monsoon season. The monthly averaged scattering coefficients range from 0.1 Mm−1 (monsoon) to 20 Mm−1 while the average absorption coefficients range from 0.5 Mm−1 to 3.5 Mm−1. Both have their maximum values during the pre-monsoon period (April) and reach a minimum during Monsoon (July–August). This leads to dry w0 values from 0.86 (pre-monsoon) to 0.79 (monsoon) seasons. Significant diurnal variability due to valley wind circulation is also reported. Using aerosol optical depth (AOD) measurements, we calculated the resulting direct local radiative forcing due to aerosols for selected air mass cases. We found that the presence of absorbing particulate material can locally induce an additional top of the atmosphere (TOA) forcing of 10 to 20 W m−2 for the first atmospheric layer (500 m above surface). The TOA positive forcing depends on the presence of snow at the surface, and takes place preferentially during episodes of regional pollution occurring on a very regular basis in the Himalayan valleys. Warming of the first atmospheric layer is paralleled by a substantial decrease of the amount of radiation reaching the surface. The surface forcing is estimated to range from −4 to −20 W m−2 for small-scale regional pollution events and large-scale pollution events, respectively. The calculated surface forcing is also very dependent on surface albedo, with maximum values occurring over a snow-covered surface. Overall, this work presents the first estimates of aerosol direct radiative forcing over the high Himalaya based on in-situ aerosol measurements, and results suggest a TOA forcing significantly greater than the IPCC reported values for green house gases.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-07-02
    Description: The effect of wind speed on aerosol optical depth (AOD) at 0.55 μm over remote ocean regions is investigated. Remote ocean regions are defined by the combination of AOD from satellite observation and wind direction from ECMWF. According to our definition, many ocean regions cannot be taken as remote ocean regions due to long-range transportation of aerosol from continents. Highly correlated linear relationships are found in remote ocean regions with a wind speed range of 0–20 ms−1. The enhancement of AOD at high wind speed is explained as the increase of sea salt aerosol production.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-06-29
    Description: The spatial distribution of the aerosols over 86 Chinese cities was reconstructed from air pollution index (API) records for summer 2000 to winter 2006. PM10 (particulate matter ≤10 μm) mass concentrations were calculated for days when PM10 was the principal pollutant, these accounted for 91.6% of the total 150 428 recorded days. The 83 cities in mid-eastern China (100° E to 130° E) were separated into three latitudinal zones using natural landscape features as boundaries. Areas with high PM10 level in northern China (127 to 192 μg m−3) included Urumchi, Lanzhou-Xining, Weinan-Xi'an, Taiyuan-Datong-Yangquan-Changzhi, Pingdingshan-Kaifeng, Beijing-Tianjin-Shijiazhuang, Jinan, and Shenyang-Anshan-Fushun; in the middle zone, high PM10 (119–147 μg m−3) occurred at Chongqing-Chengdu-Luzhou, Changsha-Wuhan, and Nanjing-Hangzhou; in the southern zone, only four cities (Qujing, Guiyang, Guangzhou and Shaoguan) showed PM10 concentration 〉80 μg m−3. The median PM10 concentration decreased from 108 μg m−3 for the northern cities to 95 μg m−3 and 55 μg m−3 for the middle and southern zones, respectively. PM10 concentration and the APIs both exhibited wintertime maxima, summertime minima, and the second highest values in spring. PM10showed evidence for a decreasing trend for the northern cities while in the other zones urban PM10 levels fluctuated, but showed no obvious change over time. The spatial distribution of PM10 was compared with the emissions, and the relationship between the surface PM10 concentration and the aerosol optical depth (AOD) was also discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-06-29
    Description: Molecular hydrogen (H2), its isotopic signature (deuterium/hydrogen, δD), carbon monoxide (CO), and other compounds were studied in the exhaust of a passenger car engine fuelled with gasoline or methane and run under variable air-fuel ratios and operating modes. H2 and CO concentrations were largely reduced downstream of the three-way catalytic converter (TWC) compared to levels upstream, and showed a strong dependence on the air-fuel ratio (expressed as lambda, λ). The isotopic composition of H2 ranged from δD = −140‰ to δD = −195‰ upstream of the TWC but these values decreased to −270‰ to −370‰ after passing through the TWC. Post-TWC δD values for the fuel-rich range showed a strong dependence on TWC temperature with more negative δD for lower temperatures. These effects are attributed to a rapid temperature-dependent H-D isotope equilibration between H2 and water (H2O). In addition, post TWC δD in H2 showed a strong dependence on the fraction of removed H2, suggesting isotopic enrichment during catalytic removal of H2 with enrichment factors (ε) ranging from −39.8‰ to −15.5‰ depending on the operating mode. Our results imply that there may be considerable variability in real-world δD emissions from vehicle exhaust, which may mainly depend on TWC technology and exhaust temperature regime. This variability is suggestive of a δD from traffic that varies over time, by season, and by geographical location. An earlier-derived integrated pure (end-member) δD from anthropogenic activities of −270‰ (Rahn et al., 2002) can be explained as a mixture of mainly vehicle emissions from cold starts and fully functional TWCs, but enhanced δD values by 〉50‰ are likely for regions where TWC technology is not fully implemented. Our results also suggest that a full hydrogen isotope analysis on fuel and exhaust gas may greatly aid at understanding process-level reactions in the exhaust gas, in particular in the TWC.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-06-25
    Description: We present carbon dioxide (CO2) estimates from the Tropospheric Emission Spectrometer (TES) on the EOS-Aura satellite launched in 2004. For observations between 40° S and 45° N, we find about 1 degree of freedom with peak sensitivity at 511 hPa. The estimated error is ~10 ppm for a single target and 1.3–2.3 ppm for monthly averages on spatial scales of 20°×30°. Monthly spatially-averaged TES data from 2005–2008 processed with a uniform initial guess and prior are compared to CONTRAIL aircraft data over the Pacific ocean, aircraft data at the Southern Great Plains (SGP) ARM site in the southern US, and the Mauna Loa and Samoa surface stations. Comparisons to Mauna Loa data show a correlation of 0.92, a standard deviation of 1.3 ppm, a predicted error of 1.2 ppm, and a ~2% low bias, which is subsequently corrected. Comparisons to SGP aircraft data over land show a correlation of 0.67 and a standard deviation of 2.3 ppm. TES data between 40° S and 45° N for 2006–2007 are compared to surface flask data, GLOBALVIEW, the Atmospheric Infrared Sounder (AIRS), and CarbonTracker. Comparison to GLOBALVIEW-CO2 ocean surface sites shows a correlation of 0.60 which drops when TES is offset in latitude, longitude, or time. At these same locations, TES shows a 0.62 and 0.67 correlation to CarbonTracker at the surface and 5 km, respectively. We also conducted an observing system simulation experiment to assess the potential utility of the TES data for inverse modeling of CO2 fluxes. We find that if biases in the data and model are well characterized, the averaged data have the potential to provide sufficient information to significantly reduce uncertainty on annual estimates of regional CO2 sources and sinks. Averaged pseudo-data at 10°×10° reduced uncertainty in flux estimates by as much as 70% for some tropical regions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-06-16
    Description: Formaldehyde of known, near-natural isotopic composition was photolyzed in the SAPHIR atmosphere simulation chamber under ambient conditions. The isotopic composition of the product H2 was used to determine the isotope effects in formaldehyde photolysis. The experiments are sensitive to the molecular photolysis channel, and the radical channel has only an indirect effect and cannot be effectively constrained. The molecular channel kinetic isotope effect KIEmol, the ratio of photolysis frequencies j(HCHO→CO+H2)/j(HCDO→CO+HD) at surface pressure, is determined to be KIEmol=1.63−0.046+0.038. This is similar to the kinetic isotope effect for the total removal of HCHO from a recent relative rate experiment (KIEtot=1.58±0.03), which indicates that the KIEs in the molecular and radical photolysis channels at surface pressure (≈100 kPa) may not be as different as described previously in the literature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-06-16
    Description: In this paper we describe measurements of volatile organic compounds (VOC) made using a Proton Transfer Reaction Mass Spectrometer (PTR-MS) aboard the UK Facility for Atmospheric Airborne Measurements during the African Monsoon Multidisciplinary Analyses (AMMA) campaign. Observations were made during approximately 85 h of flying time between 17 July and 17 August 2006, above an area between 4° N and 18° N and 3° W and 4° E, encompassing ocean, mosaic forest, and the Sahel desert. High time resolution observations of counts at mass to charge (m/z) ratios of 42, 59, 69, 71, and 79 were used to calculate mixing ratios of acetonitrile, acetone, isoprene, the sum of methyl vinyl ketone and methacrolein, and benzene respectively using laboratory-derived humidity-dependent calibration factors. Strong spatial associations between vegetation and isoprene and its oxidation products were observed in the boundary layer, consistent with biogenic emissions followed by rapid atmospheric oxidation. Acetonitrile, benzene, and acetone were all enhanced in airmasses which had been heavily influenced by biomass burning. Benzene and acetone were also elevated in airmasses with urban influence from cities such as Lagos, Cotonou, and Niamey. The observations provide evidence that both deep convection and mixing associated with fair-weather cumulus were responsible for vertical redistribution of VOC emitted from the surface. Profiles over the ocean showed a depletion of acetone in the marine boundary layer, but no significant decrease for acetonitrile.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-06-10
    Description: As part of the Fire Lab at Missoula Experiments (FLAME) in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH) conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA) for dry particle sizes of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-06-11
    Description: In this study, the influence of radiative cooling and small eddies on cirrus formation is investigated. For this purpose the non-hydrostatic, anelastic model EULAG is used with a recently developed and validated ice microphysics scheme (Spichtinger and Gierens, 2009a). Additionally, we implemented a fast radiative transfer code (Fu et al., 1998). Using idealized profiles with high ice supersaturations up to 144% and weakly stable stratifications with Brunt-Vaisala frequencies down to 0.0018 s−1 within a supersaturated layer, the influence of radiation on the formation of cirrus clouds is remarkable. Due to the radiative cooling at the top of the ice supersaturated layer with cooling rates down to −3.5 K/d, the stability inside the ice supersaturated layer decreases with time. During destabilization, small eddies induced by Gaussian temperature fluctuations start to grow and trigger first nucleation. These first nucleation events then induce the growth of convective cells due to the radiative destabilization. The effects of increasing the local relative humidity by cooling due to radiation and adiabatic lifting lead to the formation of a cirrus cloud with IWC up to 33 mg/m3 and mean optical depths up to 0.36. In a more stable environment, radiative cooling is not strong enough to destabilize the supersaturated layer within 8 h; no nucleation occurs in this case. Overall triggering of cirrus clouds via radiation works only if the supersaturated layer is destabilized by radiative cooling such that small eddies can grow in amplitude and finally initialize ice nucleation. Both processes on different scales, small-scale eddies and large-scale radiative cooling are necessary.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-06-16
    Description: Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning organic aerosol (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact factor (FIF) correlates well with the observed BBOA, acetonitrile (CH3CN), levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100–150 pptv, and PM2.5 potassium having a background of ~160 ng m−3 (two-thirds of its average concentration), which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and FLEXPART-predicted FIFs. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated organic aerosol (OA) factor (OOA, mostly secondary OA or SOA) does not show an increase during the fire periods or a correlation with fire counts, FLEXPART-predicted FIFs or fire tracers, indicating that it is dominated by urban and/or regional sources and not by the fires near the MCMA. A new 14C aerosol dataset is presented. Both this new and a previously published dataset of 14C analysis suggest a similar BBOA contribution as the AMS and chemical mass balance (CMB), resulting in 13% higher non-fossil carbon during the high vs. low regional fire periods. The new dataset has ~15% more fossil carbon on average than the previously published one, and possible reasons for this discrepancy are discussed. During the low regional fire period, 38% of organic carbon (OC) and 28% total carbon (TC) are from non-fossil sources, suggesting the importance of urban and regional non-fossil carbon sources other than the fires, such as food cooking and regional biogenic SOA. The ambient BBOA/ΔCH3CN ratio is much higher in the afternoon when the wildfires are most intense than during the rest of the day. Also, there are large differences in the contributions of the different OA components to the surface concentrations vs. the integrated column amounts. Both facts may explain some apparent disagreements between BB impacts estimated from afternoon aircraft flights vs. those from 24-h ground measurements. We show that by properly accounting for the non-BB sources of K, all of the BB PM estimates from MILAGRO can be reconciled. Overall, the fires from the region near the MCMA are estimated to contribute 15–23% of the OA and 7–9% of the fine PM at T0 during MILAGRO, and 2–3% of the fine PM as an annual average. The 2006 MCMA emissions inventory contains a substantially lower impact of the forest fire emissions, although a fraction of these emissions occur just outside of the MCMA inventory area.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-06-15
    Description: Organic aerosol (OA) represents approximately half of the submicron aerosol in Mexico City and the Central Mexican Plateau. This study uses the high time resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region. An examination of the OA/ΔCO ratio evolution as a function of photochemical age shows distinct behavior in the presence or absence of substantial open biomass burning (BB) influence, with the latter being consistent with other studies in polluted areas. In addition, we present results from Positive Matrix Factorization (PMF) analysis of 12-s High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) OA spectra. Four components were resolved. Three of the components contain substantial organic oxygen and are termed semivolatile oxygenated OA (SV-OOA), low-volatility OOA (LV-OOA), and biomass burning OA (BBOA). A reduced "hydrocarbon-like OA" (HOA) component is also resolved. LV-OOA is highly oxygenated (atomic O/C~1) and is aged organic aerosol linked to regional airmasses, with likely contributions from pollution, biomass burning, and other sources. SV-OOA is strongly correlated with ammonium nitrate, Ox, and the Mexico City Basin. We interpret SV-OOA as secondary OA which is nearly all (〉90%) anthropogenic in origin. In the absence of biomass burning it represents the largest fraction of OA over the Mexico City basin, consistent with other studies in this region. BBOA is identified as arising from biomass burning sources due to a strong correlation with HCN, and the elevated contribution of the ion C2H4O2+ (m/z 60, a marker for levoglucosan and other primary BB species). WRF-FLEXPART calculated fire impact factors (FIF) show good correlation with BBOA mass concentrations within the basin, but show location offsets in the far field due to model transport errors. This component is small or absent when forest fires are suppressed by precipitation. Since PMF factors represent organic species grouped by chemical similarity, additional postprocessing is needed to more directly apportion OA amounts to sources, which is done here based on correlations to different tracers. The postprocessed AMS results are similar to those from an independent source apportionment based on multiple linear regression with gas-phase tracers. During a flight with very high forest fire intensity near the basin OA arising from open BB represents ~66% of the OA mass in the basin and contributes similarly to OA mass in the outflow. Aging and SOA formation of BB emissions is estimated to add OA mass equivalent to about ~32–42% of the primary BBOA over several hours to a day.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
  • 47
    Publication Date: 2010-06-04
    Description: Black carbon (BC) particles accumulated in the Arctic troposphere and deposited on snow have been calculated to have significant effects on radiative forcing of the Arctic regional climate. Applying cluster analysis technique on 10-day backward trajectories, seven distinct transport pathways (or clusters) affecting Alert (82.5° N, 62.5° W), Nunavut in Canada are identified in this work. Transport frequency associated with each pathway is obtained as the fraction of trajectories in that cluster. Based on atmospheric transport frequency and BC surface flux from surrounding regions (i.e. North America, Europe, and former USSR), a linear regression model is constructed to investigate the inter-annual variations of BC observed at Alert in January and April, representative of winter and spring respectively, between 1990 and 2005. Strong correlations are found between BC concentrations predicted with the regression model and measurements at Alert for both seasons (R2 equals 0.77 and 0.81 for winter and spring, respectively). Results imply that atmospheric transport and BC emission are the major contributors to the inter-annual variations in BC concentrations observed at Alert in the cold seasons for the 16-year period. Other factors, such as deposition, could also contribute to the variability in BC concentrations but were not considered in this analysis. Based on the regression model the relative contributions of regional BC emissions affecting Alert are attributed to the Eurasian sector, composed of the European Union and the former USSR, and the North American sector. Considering both seasons, the model suggests that former USSR is the major contributor to the near-surface BC levels at the Canadian high Arctic site with an average contribution of about 67% during the 16-year period, followed by European Union (18%) and North America (15%). In winter, the atmospheric transport of BC aerosols from Eurasia is found to be even more predominant with a multi-year average of 94%. The model estimates smaller contribution from the Eurasian sector in spring (70%) than that in winter. It is also found that the inter-annual variation in Eurasian contributions depends mainly on the reduction of emissions, while the changes in both emission and atmospheric transport contributed to the inter-annual variation of North American contributions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-12-23
    Description: We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC). While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm) occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere), as well as a group of compounds considered to be fatty acid oxidation products. These results suggest that one important function of some VOCs in creosotebush is as an antioxidant. We also find that emissions of nitriles from creosotebush could represent a significant but previously unaccounted nitrogen loss from this arid ecosystem. Our results demonstrate the richness of creosotebush volatile emissions and highlight the need for further research into their atmospheric and ecological impacts.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-12-23
    Description: The NCEP Global Forecast System (GFS) model has an important systematic error shared by many other models: stratocumuli are missed over the subtropical eastern oceans. It is shown that this error can be alleviated in the GFS by introducing a consideration of the low-level inversion and making two modifications in the model's representation of vertical mixing. The modifications consist of (a) the elimination of background vertical diffusion above the inversion and (b) the incorporation of a stability parameter based on the cloud-top entrainment instability (CTEI) criterion, which limits the strength of shallow convective mixing across the inversion. A control simulation and three experiments are performed in order to examine both the individual and combined effects of modifications on the generation of the stratocumulus clouds. Individually, both modifications result in enhanced cloudiness in the Southeast Pacific (SEP) region, although the cloudiness is still low compared to the ISCCP climatology. If the modifications are applied together, however, the total cloudiness produced in the southeast Pacific has realistic values. This nonlinearity arises as the effects of both modifications reinforce each other in reducing the leakage of moisture across the inversion. Increased moisture trapped below the inversion than in the control run without modifications leads to an increase in cloud amount and cloud-top radiative cooling. Then a positive feedback due to enhanced turbulent mixing in the planetary boundary layer by cloud-top radiative cooling leads to and maintains the stratocumulus cover. Although the amount of total cloudiness obtained with both modifications has realistic values, the relative contributions of low, middle, and high layers tend to differ from the observations. These results demonstrate that it is possible to simulate realistic marine boundary clouds in large-scale models by implementing direct and physically based improvements in the model parameterizations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-12-23
    Description: Secondary aerosol produced from marine biogenic sources in algal-rich coastal locations will initially be composed of iodine oxide species, most likely I2O5, or its hydrated form HIO3, formed as a result of iodine gas-phase chemistry. At present, there is no quantitative hygroscopic data for these compounds and very little data available for iodate solutions (HIO3 and I2O5 share a common aqueous phase). With increased interest in the role of such aerosol in the marine atmosphere, we have conducted studies of (i) the deliquescence behaviour of crystalline HIO3 and I2O5 at 273–303 K, (ii) the efflorescence behaviour of aqueous iodate solution droplets, and (iii) properties (water activity, density, and viscosity) of subsaturated and saturated iodate solutions. The deliquescence of I2O5 crystals at 293 K was observed to occur at a relative humidity (DRH) of 80.8±1.0%, whereas for HIO3, a DRH of 85.0±1.0% was measured. These values are consistent with measured water activity values for saturated I2O5 and HIO3 solutions at 293 K of 0.80±0.01 and 0.84±0.01 respectively. At all temperatures, DRH values for HIO3 crystals were observed to be higher than for those of I2O5. The temperature-dependent DRH data, along with solubility and water activity data were used to evaluate the enthalpy of solution (ΔHsol) for HIO3 and I2O5. A ΔHsol value of 8.3±0.7 kJ mol−1 was determined for HIO3 which is consistent with a literature value of 8.8 kJ mol−1. For I2O5, we report for the first time its solubility at various temperatures and ΔHsol = 12.4±0.6 kJ mol−1. The measured water activity values confirm that aqueous iodate solutions are strongly non-ideal, consistent with previous reports of complex ion formation and molecular aggregation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-12-23
    Description: We use the GEOS-Chem chemistry-transport model (CTM) to interpret the spatial and temporal variations of tropical tropospheric CO observed by the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES). In so doing, we diagnose and evaluate transport in the GEOS-4 and GEOS-5 assimilated meteorological fields that drive the model, with a particular focus on vertical mixing at the end of the dry season when convection moves over the source regions. The results indicate that over South America, deep convection in both GEOS-4 and GEOS-5 decays at too low an altitude early in the wet season, and the source of CO from isoprene in the model (MEGAN v2.1) is too large, causing a lag in the model's seasonal maximum of CO compared to MLS CO in the upper troposphere (UT). TES and MLS data reveal problems with excessive transport of CO to the eastern equatorial Pacific and lofting in the ITCZ in August and September, particularly in GEOS-4. Over southern Africa, GEOS-4 and GEOS-5 simulations match the phase of the observed CO variation from the lower troposphere (LT) to the UT fairly well, although the magnitude of the seasonal maximum is underestimated considerably due to low emissions in the model. A sensitivity run with increased emissions leads to improved agreement with observed CO in the LT and middle troposphere (MT), but the amplitude of the seasonal variation is too high in the UT in GEOS-4. Difficulty in matching CO in the LT and UT implies there may be overly vigorous vertical mixing in GEOS-4 early in the wet season. Both simulations and observations show a time lag between the peak in fire emissions (July and August) and in CO (September and October). We argue that it is caused by the prevailing subsidence in the LT until convection moves south in September, as well as the low sensitivity of TES data in the LT over the African Plateau. The MLS data suggest that too much CO has been transported from fires in northern Africa to the UT in the model during the burning season, as does MOZAIC aircraft data, perhaps as a result of the combined influence of too strong Harmattan winds in the LT and too strong vertical mixing over the Gulf of Guinea in the model.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-12-23
    Description: Measurements of nitrous acid (HONO) were performed as part of the 2007 Border Air Quality and Meteorology Study (BAQS-Met) at the Harrow, Ontario, Canada supersite between 20 June and 10 July 2007. Nitrous acid is an important precursor of the hydroxyl radical and understanding its chemistry is important to understanding daytime oxidation chemistry. The HONO measurements were made using a custom built Long Path Absorption Photometer (LOPAP). The goal of this work was to shed light on sources of daytime HONO in the border region. During the course of the campaign HONO mixing ratios consistently exceeded expected daytime values by more than a factor of 6. Mean daytime mixing ratios of 61 pptv were observed. While HONO decay began at sunrise, minimum HONO values were measured during the late afternoon. There was little difference between the daytime (mean = 1.5%) and night-time (mean = 1.7%) ratios of HONO/NO2, thus there was a very strong daytime source of HONO which is consistent with other recent studies. Correlations of daytime HONO production with a variety of chemical and meteorological parameters indicate that production is dependent on UV radiation, NO2 and water vapour but is not consistent with a simple gas phase process. Apparent rate constants for the production of HONO from photolyticaly excited NO2 and water vapour vary from 2.8–7.8×10−13 cm3 molec−1 s−1, during the campaign. These results appear to be consistent with the heterogeneous conversion of NO2 enhanced by photo-excitation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-12-20
    Description: GOMOS on ENVISAT (launched in February, 2002) is the first space instrument dedicated to the study of the atmosphere of the Earth by the technique of stellar occultations (Global Ozone Monitoring by Occultation of Stars). Its polar orbit makes good latitude coverage possible. Because it is self-calibrating, it is particularly well adapted to long time trend monitoring of stratospheric species. With 4 spectrometers, the wavelength coverage of 248 nm to 942 nm enables monitoring ozone, H2O, NO2, NO3, air density, aerosol extinction, and O2. Two additional fast photometers (with 1 kHz sampling rate) enable the correction of the effects of scintillations, as well as the study of the structure of air density irregularities resulting from gravity waves and turbulence. A high vertical resolution profile of the temperature may also be obtained from the time delay between the red and the blue photometer. Noctilucent clouds (Polar Mesospheric Clouds, PMC) are routinely observed in both polar summers and global observations of OClO and sodium are achieved. The instrument configuration, dictated by the scientific objectives' rationale and technical constraints, is described, together with the typical operations along one orbit, along with the statistics from over 6 years of operation. Typical atmospheric transmission spectra are presented and some retrieval difficulties are discussed, in particular for O2 and H2O. An overview is presented of a number of scientific results already published or found in more detail as companion papers in the same ACP GOMOS special issue. This paper is particularly intended to provide an incentive for the exploitation of GOMOS data available to the whole scientific community in the ESA data archive, and to help GOMOS data users to better understand the instrument, its capabilities and the quality of its measurements, thus leading to an increase in the scientific return.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-12-17
    Description: Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br) as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model) and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model). We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM) concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model comparisons to observed wet deposition fluxes of mercury in the US and Europe show general consistency. However the Hg + Br model does not capture the summer maximum over the southeast US because of low subtropical Br concentrations while the Hg + OH/O3 model does. Vertical profiles measured from aircraft show a decline of Hg0 above the tropopause that can be captured by both the Hg + Br and Hg + OH/O3 models, except in Arctic spring where the observed decline is much steeper than simulated by either model; we speculate that oxidation by Cl species might be responsible. The Hg + Br and Hg + OH/O3 models yield similar global budgets for the cycling of mercury between the atmosphere and surface reservoirs, but the Hg + Br model results in a much larger fraction of mercury deposited to the Southern Hemisphere oceans.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-12-17
    Description: The decrease of the concentration of ozone depleting substances (ODSs) in the stratosphere over the past decade raises the question to what extent observed changes in stratospheric ozone over this period are consistent with known changes in the chemical composition and possible changes in atmospheric transport. Here we present a series of ozone sensitivity calculations with a stratospheric chemistry transport model (CTM) driven by meteorological reanalyses from the European Centre for Medium-Range Weather Forecasts, covering the period 1978–2009. In order to account for the reversal in ODS trends, ozone trends are analysed as piecewise linear trends over two periods, 1979–1999 and 2000–2009. Modelled column ozone (TO3) inter-annual variability and trends are in excellent agreement with observations from the Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter UV (SBUV/2) as well as the Global Ozone Monitoring Experiment (GOME/GOME2) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instruments. In the period 1979–1999, modelled TO3 trends at mid-latitudes are dominated by changes in in situ gas-phase chemistry, which contribute to about 50% or more of the TO3 trend in most seasons. Changes in meteorology contribute around 35% to mid-latitude TO3 trends, with strong differences between different seasons. In springtime, export of ozone depleted air from polar latitudes contributes about 35–50% to the modelled TO3 trend at SH mid-latitudes and about 15–30% at NH mid-latitudes. Over the period 2000–2009 positive linear trends in modelled TO3, which agree well with observed TO3 trends, are dominated by changes in meteorology, as expected for the yet small decrease in stratospheric halogen loading over this period. While the TO3 trends themselves are not statistically significant over the period 2000–2009, changes in linear trends between 1978–1999 and 2000–2009 are significant at mid- and high latitudes of both hemisphere during most seasons. However, changes in meteorology have contributed substantially to these TO3 trend changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-12-17
    Description: Glyoxal vertical column densities have been retrieved from nadir backscattered radiances measured from 2007 to 2009 by the spaceborne GOME-2/METOP-A sensor. The retrieval algorithm is based on the DOAS technique and optimized settings have been used to determine glyoxal slant columns. The liquid water absorption is accounted for using a two-step DOAS approach, leading to a drastic improvement of the fit quality over remote clear water oceans. Air mass factors are calculated by means of look-up tables of weighting functions pre-calculated with the LIDORT v3.3 radiative transfer model and using a priori glyoxal vertical distributions provided by the IMAGESv2 chemical transport model. The total error estimate comprises random and systematic errors associated to the DOAS fit, the air mass factor calculation and the cloud correction. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source, most probably of biogenic origin.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-12-17
    Description: We present trajectory-based estimates of Ozone Depletion Potentials (ODPs) for very short-lived halogenated source gases as a function of surface emission location. The ODPs are determined by the fraction of source gas and its degradation products which reach the stratosphere, depending primarily on tropospheric transport and chemistry, and the effect of the resulting reactive halogen in the stratosphere, which is determined by stratospheric transport and chemistry, in particular by stratospheric residence time. Reflecting the different timescales and physico-chemical processes in the troposphere and stratosphere, the estimates are based on calculation of separate ensembles of trajectories for the troposphere and stratosphere. A methodology is described by which information from the two ensembles can be combined to give the ODPs. The ODP estimates for a species with a fixed 20 d lifetime, representing a compound like n-propyl bromide, are presented as an example. The estimated ODPs show strong geographical and seasonal variation, particularly within the tropics. The values of the ODPs are sensitive to the inclusion of a convective parametrization in the trajectory calculations, but the relative spatial and seasonal variation is not. The results imply that ODPs are largest for emissions from south and south-east Asia during Northern Hemisphere summer and from the western Pacific during Northern Hemisphere winter. Large ODPs are also estimated for emissions throughout the tropics with non-negligible values also extending into northern mid-latitudes, particularly in the summer. These first estimates, whilst made under some simplifying assumptions, show larger ODPs for certain emission regions, particularly south Asia in NH summer, than have typically been reported by previous studies which used emissions distributed evenly over land surfaces.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-12-01
    Description: Atmospheric deposition of nutrients (N and P species) can intensify anthropogenic eutrophication of coastal waters. It was found that the atmospheric wet and dry depositions of nutrients was remarkable in the Southeast Asian region during the course of smoke haze events, as discussed in a companion paper on field observations (Sundarambal et al., 2010b). The importance of atmospheric deposition of nutrients in terms of their biological responses in the coastal waters of the Singapore region was investigated during hazy days in relation to non-hazy days. The influence of atmospherically-derived, bio-available nutrients (both inorganic and organic nitrogen and phosphorus species) on the coastal water quality between hazy and non-hazy days was studied. A numerical modeling approach was employed to provide qualitative and quantitative understanding of the relative importance of atmospheric and ocean nutrient fluxes in this region. A 3-D eutrophication model, NEUTRO, was used with enhanced features to simulate the spatial distribution and temporal variations of nutrients, plankton and dissolved oxygen due to atmospheric nutrient loadings. The percentage increase of the concentration of coastal water nutrients relative to the baseline due to atmospheric deposition was estimated between hazy and non-hazy days. Model computations showed that atmospheric deposition fluxes of nutrients might account for up to 17 to 88% and 4 to 24% of total mass of nitrite + nitrate-nitrogen in the water column, during hazy days and non-hazy days, respectively. The results obtained from the modeling study could be used for a better understanding of the energy flow in the coastal zone system, exploring various possible scenarios concerning the atmospheric deposition of nutrients onto the coastal zone and studying their impacts on water quality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-12-01
    Description: Atmospheric nutrients have recently gained considerable attention as a significant additional source of new nitrogen (N) and phosphorus (P) loading to the ocean. The effect of atmospheric macro nutrients on marine productivity depends on the biological availability of both inorganic and organic N and P forms. During October 2006, the regional smoke haze episodes in Southeast Asia (SEA) that resulted from uncontrolled forest and peat fires in Sumatra and Borneo blanketed large parts of the region. In this work, we determined the chemical composition of nutrients in aerosols and rainwater during hazy and non-hazy days to assess their impacts on aquatic ecosystem in SEA for the first time. We compared atmospheric dry and wet deposition of N and P species in aerosol and rainwater in Singapore between hazy and non-hazy days. Air mass back trajectories showed that large-scale forest and peat fires in Sumatra and Kalimantan were a significant source of atmospheric nutrients to aquatic environments in Singapore and SEA region on hazy days. It was observed that the average concentrations of nutrients increased approximately by a factor of 3 to 8 on hazy days when compared with non-hazy days. The estimated mean dry and wet atmospheric fluxes (mg/m2/day) of total nitrogen (TN) were 12.72 ± 2.12 and 2.49 ± 1.29 during non-hazy days and 132.86 ± 38.39 and 29.43 ± 10.75 during hazy days; the uncertainty estimates are represented as 1 standard deviation (1σ) here and throughout the text. The estimated mean dry and wet deposition fluxes (mg/m2/day) of total phosphorous (TP) were 0.82 ± 0.23 and 0.13 ± 0.03 for non-hazy days and 7.89 ± 0.80 and 1.56 ± 0.65 for hazy days. The occurrences of higher concentrations of nutrients from atmospheric deposition during smoke haze episodes may have adverse consequences on receiving aquatic ecosystems with cascading impacts on water quality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2010-11-30
    Description: Reactive nitrogen compounds, specifically NOx and NO3, likely influence global organic aerosol levels. To assess these interactions, GEOS-Chem, a chemical transport model, is updated to include improved biogenic emissions (following MEGAN v2.1/2.04), a new organic aerosol tracer lumping scheme, aerosol from nitrate radical (NO3) oxidation of isoprene, and NOx-dependent monoterpene and sesquiterpene aerosol yields. As a result of significant nighttime terpene emissions, fast reaction of monoterpenes with the nitrate radical, and relatively high aerosol yields from NO3 oxidation, biogenic hydrocarbon-NO3 reactions are expected to be a major contributor to surface level aerosol concentrations in anthropogenically influenced areas such as the United States. By including aerosol from nitrate radical oxidation in GEOS-Chem, terpene (monoterpene + sesquiterpene) aerosol approximately doubles and isoprene aerosol is enhanced by 30 to 40% in the Southeast United States. In terms of the global budget of organic aerosol, however, aerosol from nitrate radical oxidation is somewhat minor (slightly more than 3 Tg/yr) due to the relatively high volatility of organic-NO3 oxidation products in the yield parameterization. Globally, 69 to 88 Tg/yr of organic aerosol is predicted to be produced annually, of which 14–15 Tg/yr is from oxidation of monoterpenes and sesquiterpenes and 8–9 Tg/yr from isoprene.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2010-11-30
    Description: Total atmospheric OH reactivities (kOH) have been measured as reciprocal OH lifetimes by a newly developed instrument at a rural site in the densely populated Pearl River Delta (PRD) in Southern China in summer 2006. The deployed technique, LP-LIF, uses laser flash photolysis (LP) for artificial OH generation and laser-induced fluorescence (LIF) to measure the time-dependent OH decay in samples of ambient air. The reactivities observed at PRD covered a range from 10 s−1 to 120 s−1, indicating a large load of chemical reactants. On average, kOH exhibited a pronounced diurnal profile with a mean maximum value of 50 s−1 at daybreak and a mean minimum value of 20 s−1 at noon. The comparison of reactivities calculated from measured trace gases with measured kOH reveals a missing reactivity of about a factor of 2 at day and night. The reactivity explained by measured trace gases was dominated by anthropogenic pollutants (e.g., CO, NOx, light alkenes and aromatic hydrocarbons) at night, while it was strongly influenced by local, biogenic emissions of isoprene during the day. Box model calculations initialized by measured parameters reproduce the observed OH reactivity well and suggest that the missing reactivity is contributed by unmeasured, secondary chemistry products (mainly aldehydes and ketones) that were photochemically formed by hydrocarbon oxidation. Overall, kOH was dominated by organic compounds, which had a maximum contribution of 85% in the afternoon. The paper demonstrates the usefulness of direct reactivity measurements, emphasizes the need for direct measurements of oxygenated organic compounds in atmospheric chemistry studies, and discusses uncertainties of the modelling of OVOC reactivities.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2010-12-03
    Description: Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNedlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnredlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNedlnτa and dlnredlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2010-12-06
    Description: Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC 〈 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23–0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.21 to 0.37.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2010-11-30
    Description: Sulphuric acid and organic vapours have been identified as the key components in the ubiquitous secondary new particle formation in the atmosphere. In order to assess their relative contribution and spatial variability, we analysed altogether 36 new particle formation events observed at four European measurement sites during EUCAARI campaigns in 2007–2009. We tested models of several different nucleation mechanisms coupling the formation rate of neutral particles (J) with the concentration of sulphuric acid ([H2SO4]) or low-volatility organic vapours ([org]) condensing on sub-4 nm particles, or with a combination of both concentrations. Furthermore, we determined the related nucleation coefficients connecting the neutral nucleation rate J with the vapour concentrations in each mechanism. The main goal of the study was to identify the mechanism of new particle formation and subsequent growth that minimizes the difference between the modelled and measured nucleation rates. At three out of four measurement sites – Hyytiälä (Finland), Melpitz (Germany) and San Pietro Capofiume (Italy) – the nucleation rate was closely connected to squared sulphuric acid concentration, whereas in Hohenpeissenberg (Germany) the low-volatility organic vapours were observed to be dominant. However, the nucleation rate at the sulphuric acid dominant sites could not be described with sulphuric acid concentration and a single value of the nucleation coefficient, as K in J=K [H2SO4]2, but the median coefficients for different sites varied over an order of magnitude. This inter-site variation was substantially smaller when the heteromolecular homogenous nucleation between H2SO4 and organic vapours was assumed to take place in addition to homogenous nucleation of H2SO4 alone, i.e., J=KSA1[H2SO4]2+KSA2[H2SO4][org]. By adding in this equation a term describing homomolecular organic vapour nucleation, Ks3[org]2, equally good results were achieved. In general, our results suggest that organic vapours do play a role, not only in the condensational growth of the particles, but also in the nucleation process, with a site-specific degree.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2010-11-30
    Description: A single coherent total ozone dataset, called the Multi Sensor Reanalysis (MSR), has been created from all available ozone column data measured by polar orbiting satellites in the near-ultraviolet Huggins band in the last thirty years. Fourteen total ozone satellite retrieval datasets from the instruments TOMS (on the satellites Nimbus-7 and Earth Probe), SBUV (Nimbus-7, NOAA-9, NOAA-11 and NOAA-16), GOME (ERS-2), SCIAMACHY (Envisat), OMI (EOS-Aura), and GOME-2 (Metop-A) have been used in the MSR. As first step a bias correction scheme is applied to all satellite observations, based on independent ground-based total ozone data from the World Ozone and Ultraviolet Data Center. The correction is a function of solar zenith angle, viewing angle, time (trend), and effective ozone temperature. As second step data assimilation was applied to create a global dataset of total ozone analyses. The data assimilation method is a sub-optimal implementation of the Kalman filter technique, and is based on a chemical transport model driven by ECMWF meteorological fields. The chemical transport model provides a detailed description of (stratospheric) transport and uses parameterisations for gas-phase and ozone hole chemistry. The MSR dataset results from a 30-year data assimilation run with the 14 corrected satellite datasets as input, and is available on a grid of 1× 1 1/2° with a sample frequency of 6 h for the complete time period (1978–2008). The Observation-minus-Analysis (OmA) statistics show that the bias of the MSR analyses is less than 1% with an RMS standard deviation of about 2% as compared to the corrected satellite observations used.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2010-11-29
    Description: In spite of being located at the heart of the highest mountain range in the world, the Himalayan Nepal Climate Observatory (5079 m a.s.l.) at the Ev-K2-CNR Pyramid is shown to be affected by the advection of pollution aerosols from the populated regions of southern Nepal and the Indo-Gangetic plains. Such an impact is observed along most of the period April 2006–March 2007 addressed here, with a minimum in the monsoon season. Backtrajectory-analysis indicates long-range transport episodes occurring in this year to originate mainly in the west Asian deserts. At this high altitude site, the measured aerosol optical depth is observed to be about one order of magnitude lower than the one measured at Ghandi College (60 m a.s.l.), in the Indo-Gangetic basin. As for Ghandi College, and in agreement with the in situ ground observations at the Pyramid, the fine mode aerosol optical depth maximizes during winter and minimizes in the monsoon season. Conversely, total optical depth maximizes during the monsoon due to the occurrence of elevated, coarse particle layers. Possible origins of these particles are wind erosion from the surrounding peaks and hydrated/cloud-processed aerosols. Assessment of the aerosol radiative forcing is then expected to be hampered by the presence of these high altitude particle layers, which impede an effective, continuous measurement of anthropogenic aerosol radiative properties from sky radiance inversions and/or ground measurements alone. Even though the retrieved absorption coefficients of pollution aerosols were rather large (single scattering albedo of the order of 0.6–0.9 were observed in the month of April 2006), the corresponding low optical depths (~0.03 at 500 nm) are expected to limit the relevant radiative forcing. Still, the high specific forcing of this aerosol and its capability of altering snow surface albedo provide good reasons for continuous monitoring.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2010-11-26
    Description: From 13 July–9 August 2007, 25 ozonesondes were launched from Las Tablas, Panama as part of the Tropical Composition, Cloud, and Climate Coupling (TC4) mission. On 5 August, a strong convective cell formed in the Gulf of Panama. World Wide Lightning Location Network (WWLLN) data indicated 563 flashes (09:00–17:00 UTC) in the Gulf. NO2 data from the Ozone Monitoring Instrument (OMI) show enhancements, suggesting lightning production of NOx. At 15:05 UTC, an ozonesonde ascended into the southern edge of the now dissipating convective cell as it moved west across the Azuero Peninsula. The balloon oscillated from 2.5–5.1 km five times (15:12–17:00 UTC), providing a unique examination of ozone (O3) photochemistry on the edge of a convective cell. Ozone increased at a rate of ~1.6–4.6 ppbv/hr between the first and last ascent, resulting cell wide in an increase of ~(2.1–2.5) × 106 moles of O3. This estimate agrees to within a factor of two of our estimates of photochemical lightning O3 production from the WWLLN flashes, from the radar-inferred lightning flash data, and from the OMI NO2 data (~1.2, ~1.0, and ~1.7 × 106 moles, respectively), though all estimates have large uncertainties. Examination of DC-8 in situ and lidar O3 data gathered around the Gulf that day suggests 70–97% of the O3 change occurred in 2.5–5.1 km layer. A photochemical box model initialized with nearby TC4 aircraft trace gas data suggests these O3 production rates are possible with our present understanding of photochemistry.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-11-25
    Description: Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg−1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 ± 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2010-11-25
    Description: A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (fNFTC) ranged from 0.37 to 0.67 at the downtown location, and from 0.50 to 0.86 at the suburban site. Substantially lower values (i.e. 0.24–0.49) were found for PM10 filters downtown by an independent set of measurements (Swiss team), which are inconsistent with the modeled and known differences between the size ranges, suggesting higher than expected uncertainties in the measurement techniques of 14C. An increase in the non-fossil organic carbon (OC) fraction (fNFOC) by 0.10–0.15 was observed for both sets of filters during periods with enhanced wildfire activity in comparison to periods when fires were suppressed by rain, which is consistent with the wildfire impacts estimated with other methods. Model results show that the relatively high fraction of non-fossil carbon found in Mexico City seems to arise from the combination in about equal proportions of regional biogenic SOA, biomass burning POA and SOA, as well as non-fossil urban POA and SOA. Predicted spatial and temporal variations for fNFOCare similar to those in the measurements between the urban vs. suburban sites, and high-fire vs. low-fire periods. The absolute modeled values of fNFOC are consistent with the Swiss dataset but lower than the US dataset. Resolving the 14C measurement discrepancies is necessary for further progress in model evaluation. The model simulations that included secondary organic aerosol (SOA) formation from semi-volatile and intermediate volatility (S/IVOC) vapors showed improved closure for the total OA mass compared to simulations which only included SOA from VOCs, providing a more realistic basis to evaluate the fNF predictions. fNFOC urban sources of modern carbon are important in reducing or removing the difference in fNF between model and measurements, even though they are often neglected on the interpretation of 14C datasets. An underprediction of biomass burning POA by the model during some mornings also explains a part of the model-measurement differences. The fNF of urban POA and SOA precursors is an important parameter that needs to be better constrained by measurements. Performing faster (≤3 h) 14C measurements in future campaigns is critical to further progress in this area. To our knowledge this is the first time that radiocarbon measurements are used together with aerosol mass spectrometer (AMS) organic components to assess the performance of a regional model for organic aerosols.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2010-04-27
    Description: During the Indian summer monsoon period 2008, regular measurement flights were performed by the CARIBIC aircraft between Germany and India. Measurements included whole air sampling and subsequent analysis for greenhouse gases (CH4, CO2, N2O, SF6) and in-situ measurements of CO, O3, and H2O. For all these tracers a distinct monsoon signature was observed in the longitude range 50–80° E south of 40° N at flight altitudes 8–12.5 km. The formation of a monsoon plume with enhanced mixing ratios was observed for CH4, N2O, SF6, CO and H2O. The plume began to develop in May and persisted through September, and maximum mixing ratios and maximum spatial extension of the plume were observed in August. For CO2 and O3 a minimum was observed. The amplitude of the CO2 seasonal cycle was larger than at comparable latitudes outside the monsoon region, and the CO2 spring maximum was observed with a delay of one month. Different tracer relationships show strong spatial variations across the plume. The comparison with NOAA ground station data shows a clear enhancement for CH4, N2O, SF6 and CO and a decrease in CO2 mixing ratios. Assuming seasonally invariant SF6 emissions based on the EDGAR 4.0 inventory, monthly emissions were estimated for the period June–September for CH4, N2O, and CO, and the CO2 uptake was estimated. While for N2O an emission decrease during the monsoon period was derived, emissions of CH4 were highest in September indicating a different seasonal cycle of emissions. Net CO2 uptake by the vegetation was largest in September.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2010-04-16
    Description: During El Niño years, fires in tropical forests and peatlands in equatorial Asia create large regional smoke clouds. We characterized the sensitivity of these clouds to regional drought, and we investigated their effects on climate by using an atmospheric general circulation model. Satellite observations during 2000–2006 indicated that El Niño-induced regional drought led to increases in fire emissions and, consequently, increases in aerosol optical depths over Sumatra, Borneo and the surrounding ocean. Next, we used the Community Atmosphere Model (CAM) to investigate how climate responded to this forcing. We conducted two 30 year simulations in which monthly fire emissions were prescribed for either a high (El Niño, 1997) or low (La Niña, 2000) fire year using a satellite-derived time series of fire emissions. Our simulations included the direct and semi-direct effects of aerosols on the radiation budget within the model. We assessed the radiative and climate effects of anthropogenic fire by analyzing the differences between the high and low fire simulations. Fire aerosols reduced net shortwave radiation at the surface during August–October by 19.1±12.9 W m−2 (10%) in a region that encompassed most of Sumatra and Borneo (90° E–120° E, 5° S–5° N). The reductions in net shortwave radiation cooled sea surface temperatures (SSTs) and land surface temperatures by 0.5±0.3 and 0.4±0.2 °C during these months. Tropospheric heating from black carbon (BC) absorption averaged 20.5±9.3 W m−2 and was balanced by a reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9±0.6 mm d−1 (10%). The vulnerability of ecosystems to fire was enhanced because the decreases in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning in the region intensifies drought stress during El Niño.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2010-04-16
    Description: Interannual variations in AIRS and MOPITT retrieved CO burdens are validated, corrected, and compared with CO emissions from wild fires from the Global Fire Emission Dataset (GFED2) inventory. Validation of daily mean CO total column (TC) retrievals from MOPITT version 3 and AIRS version 5 is performed through comparisons with archived TC data from the Network for Detection of Atmospheric Composition Change (NDACC) ground-based Fourier Transform Spectrometers (FTS) between March 2000 and December 2007. MOPITT V3 retrievals exhibit an increasing temporal bias with a rate of 1.4–1.8% per year; thus far, AIRS retrievals appear to be more stable. For the lowest CO values in the Southern Hemisphere (SH), AIRS TC retrievals overestimate FTS TC by 20%. MOPITT's bias and standard deviation do not depend on CO TC absolute values. Empirical corrections are derived for AIRS and MOPITT retrievals based on the observed annually averaged bias versus the FTS TC. Recently published MOPITT V4 is found to be in a good agreement with MOPITT V3 corrected by us (with exception of 2000–2001 period). With these corrections, CO burdens from AIRS V5 and MOPITT V3 (as well as MOPITT V4) come into good agreement in the mid-latitudes of the Northern Hemisphere (NH) and in the tropical belt. In the SH, agreement between AIRS and MOPITT CO burdens is better for the larger CO TC in austral winter and worse in austral summer when CO TC are smaller. Before July 2008, all variations in retrieved CO burden can be explained by changes in fire emissions. After July 2008, global and tropical CO burdens decreased until October before recovering by the beginning of 2009. The NH CO burden also decreased but reached a minimum in January 2009 before starting to recover. The decrease in tropical CO burdens is explained by lower than usual fire emissions in South America and Indonesia. This decrease in tropical emissions also accounts for most of the change in the global CO burden. However, no such diminution of NH biomass burning is indicated by GFED2. Thus, the CO burden decrease in the NH could result from a combination of lower fossil fuel emissions during the global economic recession and transport of CO-poor air from the tropics. More extensive modeling will be required to fully resolve this issue.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2010-04-16
    Description: Most parameterizations for precipitating convection in use today are bulk schemes, in which an ensemble of cumulus elements with different properties is modelled as a single, representative entraining-detraining plume. We review the underpinning mathematical model for such parameterizations, in particular by comparing it with spectral models in which elements are not combined into the representative plume. The chief merit of a bulk model is that the representative plume can be described by an equation set with the same structure as that which describes each element in a spectral model. The equivalence relies on an ansatz for detrained condensate introduced by Yanai et al. (1973) and on a simplified microphysics. There are also conceptual differences in the closure of bulk and spectral parameterizations. In particular, we show that the convective quasi-equilibrium closure of Arakawa and Schubert (1974) for spectral parameterizations cannot be carried over to a bulk parameterization in a straightforward way. Quasi-equilibrium of the cloud work function assumes a timescale separation between a slow forcing process and a rapid convective response. But, for the natural bulk analogue to the cloud-work function, the relevant forcing is characterised by a different timescale, and so its quasi-equilibrium entails a different physical constraint. Closures of bulk parameterizations that use a parcel value of CAPE do not suffer from this timescale issue. However, the Yanai et al. (1973) ansatz must be invoked as a necessary ingredient of those closures.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2010-04-16
    Description: We use measurements by the 52 MHz wind-profiling radar ESRAD, situated near Kiruna in Arctic Sweden, and simulations using the Advanced Research and Weather Forecasting model, WRF, to study vertical winds and turbulence in the troposphere in mountain-wave conditions on 23, 24 and 25 January 2003. We find that WRF can accurately match the vertical wind signatures at the radar site when the spatial resolution for the simulations is 1 km. The horizontal and vertical wavelengths of the dominating mountain-waves are ~10–20 km and the amplitudes in vertical wind 1–2 m/s. Turbulence below 5500 m height, is seen by ESRAD about 40% of the time. This is a much higher rate than WRF predictions for conditions of Richardson number (Ri)
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2010-04-16
    Description: The emissions of three hydrochlorofluorocarbons, HCFC-22 (CHClF2), HCFC-141b (CH3CCl2F) and HCFC-142b (CH3CClF2) and three hydrofluorocarbons, HFC-23 (CHF3), HFC-134a (CH2FCF3) and HFC-152a (CH3CHF2) from four East Asian countries and the Taiwan region for the year 2008 are determined by inverse modeling. The inverse modeling is based on in-situ measurements of these halocarbons at the Japanese stations Cape Ochi-ishi and Hateruma, the Chinese station Shangdianzi and the South Korean station Gosan. For every station and every 3 h, 20-day backward calculations were made with the Lagrangian particle dispersion model FLEXPART. The model output, the measurement data, bottom-up emission information and corresponding uncertainties were fed into an inversion algorithm to determine the regional emission fluxes. The model captures the observed variation of halocarbon mixing ratios very well for the two Japanese stations but has difficulties explaining the large observed variability at Shangdianzi, which is partly caused by small-scale transport from Beijing that is not adequately captured by the model. Based on HFC-23 measurements, the inversion algorithm could successfully identify the locations of factories known to produce HCFC-22 and emit HFC-23 as an unintentional byproduct. This lends substantial credibility to the inversion method. We report national emissions for China, North Korea, South Korea and Japan, as well as emissions for the Taiwan region. Halocarbon emissions in China are much larger than the emissions in the other countries together and contribute a substantial fraction to the global emissions. Our estimates of Chinese emissions for the year 2008 are 65.3±6.6 kt/yr for HCFC-22 (17% of global emissions extrapolated from Montzka et al., 2009), 12.1±1.6 kt/yr for HCFC-141b (22%), 7.3±0.7 kt/yr for HCFC-142b (17%), 6.2±0.7 kt/yr for HFC-23 (〉50%), 12.9±1.7 kt/yr for HFC-134a (9% of global emissions estimated from Velders et al., 2009) and 3.4±0.5 kt/yr for HFC-152a (7%).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2010-11-10
    Description: In the context of rising greenhouse gas concentrations, and the potential feedbacks between climate and the carbon cycle, there is an urgent need to monitor the exchanges of carbon between the atmosphere and both the ocean and the land surfaces. In the so-called top-down approach, the surface fluxes of CO2 are inverted from the observed spatial and temporal concentration gradients. The concentrations of CO2 are measured in-situ at a number of surface stations unevenly distributed over the Earth while several satellite missions may be used to provide a dense and better-distributed set of observations to complement this network. In this paper, we compare the ability of different CO2 concentration observing systems to constrain surface fluxes. The various systems are based on realistic scenarios of sampling and precision for satellite and in-situ measurements. It is shown that satellite measurements based on the differential absorption technique (such as those of SCIAMACHY, GOSAT or OCO) provide more information than the thermal infrared observations (such as those of AIRS or IASI). The OCO observations will provide significantly better information than those of GOSAT. A CO2 monitoring mission based on an active (lidar) technique could potentially provide an even better constraint. This constraint can also be realized with the very dense surface network that could be built with the same funding as that of the active satellite mission. Despite the large uncertainty reductions on the surface fluxes that may be expected from these various observing systems, these reductions are still insufficient to reach the highly demanding requirements for the monitoring of anthropogenic emissions of CO2 or the oceanic fluxes at a spatial scale smaller than that of oceanic basins. The scientific objective of these observing system should therefore focus on the fluxes linked to vegetation and land ecosystem dynamics.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2010-11-18
    Description: Recent work has hypothesized that tropical cyclones in the deep Atlantic and eastern Pacific basins develop from within the cyclonic Kelvin cat's eye of a tropical easterly wave critical layer located equatorward of the easterly jet axis. The cyclonic critical layer is thought to be important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing flow and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the developing proto-vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. This genesis sequence and the overarching framework for describing how such hybrid wave-vortex structures become tropical depressions/storms is likened to the development of a marsupial infant in its mother's pouch, and for this reason has been dubbed the "marsupial paradigm". Here we conduct the first multi-scale test of the marsupial paradigm in an idealized setting by revisiting the Kurihara and Tuleya problem examining the transformation of an easterly wave-like disturbance into a tropical storm vortex using the WRF model. An analysis of the evolving winds, equivalent potential temperature, and relative vertical vorticity is presented from coarse (28 km), intermediate (9 km) and high resolution (3.1 km) simulations. The results are found to support key elements of the marsupial paradigm by demonstrating the existence of a rotationally dominant region with minimal strain/shear deformation near the center of the critical layer pouch that contains strong cyclonic vorticity and high saturation fraction. This localized region within the pouch serves as the "attractor" for an upscale "bottom up" development process while the wave pouch and proto-vortex move together. Implications of these findings are discussed in relation to an upcoming field experiment for the most active period of the Atlantic hurricane season in 2010 that is to be conducted collaboratively between the National Oceanic and Atmospheric Administration (NOAA), the National Science Foundation (NSF), and the National Aeronautics and Space Adminstration (NASA).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2010-04-12
    Description: We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a−1, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a−1, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a−1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a−1) and anthropogenic emissions (2 Tg a−1). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow, suggesting a missing source in polluted air. Ubiquitous high measured concentrations in the free troposphere are not captured by the model, and based on present understanding are not consistent with concurrent measurements of PAN and NOx: we find no compelling evidence for a widespread missing acetaldehyde source in the free troposphere. We estimate the current US source of ethanol and acetaldehyde (primary + secondary) at 1.3 Tg a−1 and 7.8 Tg a−1, approximately 60{%} and 480% of the corresponding increases expected for a national transition from gasoline to ethanol fuel.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2010-04-01
    Description: Results from a measurement study performed in the Tropical Atlantic on board the RHaMBLe Discovery Cruise D319 are presented. Measurements of aerosol composition, hygroscopicity and CCN activity were used to test the ability of a single parameter model to describe water uptake in sub- and supersaturated conditions. It was found that the magnitude and temporal variability of the sub-saturated water uptake could be well represented using the non-refractory composition to derive the model input for 2 periods when the large majority of the aerosol mass was non-refractory. As may be expected, when a significant fraction of the aerosol volume is refractory the sub-saturated water uptake is not well predicted by the non-refractory composition. When predicting the cloud activation potential from the composition and the hygroscopicity there is a consistent under-prediction of the CCN activity. The prediction of CCN activity from the sub-saturated water uptake gives a better prediction of the CCN activity than the composition when the non-refractory components are not fully representative of the aerosol composition. Based on these observations it appears that a single parameter cannot always capture the behavior fully across the sub- and supersaturated regimes. Measurements made at relative humidities (RHs) up to 94% showed that the water activity appears satisfactorily represented by a single parameter derived at 90% RH. It therefore appears that the change in the observed hygroscopicity take place between 94% RH and the point of activation. This change may be due in part to a change solution non-ideality, surface tension effects or the presence of sparingly soluble compounds for example, but cannot be reconciled without measurements at higher RHs.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2010-04-06
    Description: We present a comparison of tropospheric NO2 from OMI measurements to the median of an ensemble of Regional Air Quality (RAQ) models, and an intercomparison of the contributing RAQ models and two global models for the period July 2008–June 2009 over Europe. The model forecasts were produced routinely on a daily basis in the context of the European GEMS ("Global and regional Earth-system (atmosphere) Monitoring using Satellite and in-situ data") project. The tropospheric vertical column of the RAQ ensemble median shows a spatial distribution which agrees well with the OMI NO2 observations, with a correlation r=0.8. This is higher than the correlations from any one of the individual RAQ models, which supports the use of a model ensemble approach for regional air pollution forecasting. The global models show high correlations compared to OMI, but with significantly less spatial detail, due to their coarser resolution. Deviations in the tropospheric NO2 columns of individual RAQ models from the mean were in the range of 20–34% in winter and 40–62% in summer, suggesting that the RAQ ensemble prediction is relatively more uncertain in the summer months. The ensemble median shows a stronger seasonal cycle of NO2 columns than OMI, and the ensemble is on average 50% below the OMI observations in summer, whereas in winter the bias is small. On the other hand the ensemble median shows a somewhat weaker seasonal cycle than NO2 surface observations from the Dutch Air Quality Network, and on average a negative bias of 14%. Full profile information was available for two RAQ models and for the global models. For these models the retrieval averaging kernel was applied. Minor differences are found for area-averaged model columns with and without applying the kernel, which shows that the impact of replacing the a priori profiles by the RAQ model profiles is on average small. However, the contrast between major hotspots and rural areas is stronger for the direct modeled vertical columns than the columns where the averaging kernels are applied, related to a larger relative contribution of the free troposphere and the coarse horizontal resolution in the a priori profiles compared to the RAQ models. In line with validation results reported in the literature, summertime concentrations in the lowermost boundary layer in the a priori profiles from the DOMINO product are significantly larger than the RAQ model concentrations and surface observations over the Netherlands. This affects the profile shape, and contributes to a high bias in OMI tropospheric columns over polluted regions. The global models indicate that the upper troposphere may contribute significantly to the total column and it is important to account for this in comparisons with RAQ models. A combination of upper troposphere model biases, the a priori profile effects and DOMINO product retrieval issues could explain the discrepancy observed between the OMI observations and the ensemble median in summer.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2010-04-01
    Description: An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the boundary layer with low θe air are tied to a quasi-stationary, azimuthal wave number 1 convective asymmetry outside of the eyewall. This convective asymmetry and the associated downdraft pattern extends outwards to approximately 150 km. Downdrafts occur on the vortex scale and form when precipitation falls out from sloping updrafts and evaporates in the unsaturated air below. It is argued that, to zero order, the formation of the convective asymmetry is forced by frictional convergence associated with the azimuthal wave number 1 vortex Rossby wave structure of the outer-vortex tilt. This work points to an important connection between the thermodynamic impact in the near-core boundary layer and the asymmetric balanced dynamics governing the TC vortex evolution.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2010-03-31
    Description: The variance-covariance matrix (VCM) and the averaging kernel matrix (AKM) are widely used tools to characterize atmospheric vertical profiles retrieved from remote sensing measurements. Accurate estimation of these quantities is essential for both the evaluation of the quality of the retrieved profiles and for the correct use of the profiles themselves in subsequent applications such as data comparison, data assimilation and data fusion. We propose a new method to estimate the VCM and AKM of vertical profiles retrieved using the Levenberg-Marquardt iterative technique. We apply the new method to the inversion of simulated limb emission measurements. Then we compare the obtained VCM and AKM with those resulting from other methods already published in the literature and with accurate estimates derived using statistical and numerical estimators. The proposed method accounts for all the iterations done in the inversion and provides the most accurate VCM and AKM. Furthermore, it correctly estimates the VCM and the AKM also if the retrieval iterations are stopped when a physically meaningful convergence criterion is fulfilled, i.e. before achievement of the numerical convergence at machine precision. The method can be easily implemented in any Levenberg-Marquardt iterative retrieval scheme, either constrained or unconstrained, without significant computational overhead.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2010-03-31
    Description: Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550) is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550) are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different models (Mie-derived refractive indices, but also filter sampling composition assuming both internal and external mixing). Our calculations indicate that Mie-derived values of ni550 and the externally mixed dust where the iron oxide-clay aggregate corresponds to the goethite-kaolinite combination result in the best agreement with irradiance measurements. The radiative effect of the dust is found to be very sensitive to the mineral combination (and hence refractive index) assumed, and to whether the dust is assumed to be internally or externally mixed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2010-03-31
    Description: An inverse model using atmospheric CO2 observations from a European network of stations to reconstruct daily CO2 fluxes and their uncertainties over Europe at 50 km resolution has been developed within a Bayesian framework. We use the pseudo-data approach in which we try to recover known fluxes using a range of perturbations to the input. In this study, the focus is put on the sensitivity of flux accuracy to the inverse setup, varying the prior flux errors, the pseudo-data errors and the network of stations. We show that, under a range of assumptions about prior error and data error we can recover fluxes reliably at the scale of 1000 km and 10 days. At smaller scales the performance is highly sensitive to details of the inverse set-up. The use of temporal correlations in the flux domain appears to be of the same importance as the spatial correlations. We also note that the use of simple, isotropic correlations on the prior flux errors is more reliable than the use of apparently physically-based errors. Finally, increasing the European atmospheric network density improves the area with significant error reduction in the flux retrieval.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2010-04-07
    Description: Polar ecosystems are considered to be the last pristine environments of the earth relatively uninfluenced by human activities. Antarctica in particular, compared to the Arctic is considered to be even less affected by any kind of anthropogenic influences. Once contaminants reach the Polar Regions, their lifetime in the troposphere depends on local removal processes. Atmospheric mercury, in particular, has unique characteristics that include long-range transport to Polar Regions and the transformation to more toxic and water-soluble compounds that may potentially become bioavailable. These chemical-physical properties have placed mercury on the priority list of an increasing number of International, European and National conventions, and agreements, aimed at the protection of the ecosystems including human health (i.e. GEO, UNEP, AMAP, UN-ECE, HELCOM, OSPAR). This interest, in turn, stimulates a significant amount of research including measurements of gaseous elemental mercury reaction rate constant with atmospheric oxidants, experimental and modelling studies in order to understand the cycling of mercury in Polar Regions, and its impact to these ecosystems. Special attention in terms of contamination of Polar Regions is paid to the consequences of the springtime phenomena, referred to as "Atmospheric Mercury Depletion Events" (AMDEs), during which elemental mercury through a series of photochemically-initiated reactions involving halogens, may be converted to a reactive form that may accumulate in polar coastal, or sea ice, ecosystems. The discovery of the AMDEs, first noted in the Arctic, has also been observed at both poles and was initially considered to result in an important net input of atmospheric mercury into the polar surfaces. However, recent studies point out that complex processes take place after deposition that may result in less significant net-inputs from the atmosphere since a fraction, sometimes significant, of deposited mercury may be recycled. Therefore, the contribution of this unique reactivity occurring in polar atmospheres to the global budget of atmospheric mercury, and the role played by snow and ice surfaces of these regions, are important issues. This paper presents a review of atmospheric mercury studies conducted in the Antarctic troposphere, both at coastal locations and on the Antarctic Plateau since 1985. Our current understanding of atmospheric reactivity in this region is also presented.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2010-03-31
    Description: Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2010-04-01
    Description: We introduce a global-to-regional nesting scheme for atmospheric transport models used in simulating concentrations of green house gases from globally distributed surface fluxes. The coupled system of the regional Stochastic Time-Inverted Lagrangian Transport (STILT) model and the global atmospheric transport model (TM3) is designed to resolve atmospheric trace gas concentrations at high temporal and spatial resolutions in a specified domain e.g. for regional inverse applications. The nesting technique used for the coupling is based on a decomposition of the atmospheric concentration signal into a far-field and a near-field contribution enabling the usage of different model types for global (Eulerian) and regional (Lagrangian) scales. For illustrating the performance of the coupled TM3-STILT system we compare simulated mixing ratios of carbon dioxide with available observations at 10 sites in Europe. For all chosen sites the TM3-STILT provided higher correlations between the modelled and the measured time series than the TM3 global model. Autocorrelation analysis demonstrated that the TM3-STILT model captured temporal variability of measured tracer concentrations better than TM3 at most sites.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2010-03-31
    Description: We identify solar cycle signals in 155 years of global sea level pressure (SLP) and sea surface temperature (SST) data using a multiple linear regression approach. In SLP we find in the North Pacific a statistically significant weakening of the Aleutian Low and a northward shift of the Hawaiian High in response to higher solar activity, confirming the results of previous authors using different techniques. We also find a weak but broad reduction in pressure across the equatorial Pacific. In SST we identify a weak El Niño-like pattern in the tropics for the 155 year period, unlike the strong La Niña-like signal found recently by some other authors. We show that the latter have been influenced by the technique of compositing data from peak years of the sunspot cycle because these years have often coincided with the negative phase of the ENSO cycle. Furthermore, the date of peak annual sunspot number (SSN) generally falls a year or more in advance of the broader maximum of the 11-year solar cycle so that analyses which incorporate data from all years represent more coherently the difference between periods of high and low solar activity on these timescales. We also find that studies of the solar signal in SST over the second half of the 20th century may alias as ENSO signal if this is not properly taken into account.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2010-03-30
    Description: A critical module of air quality models is the photochemical mechanism. In this study, the impact of the three photochemical mechanisms (CB4, CB05, SAPRC-99) on the Eta-Community Multiscale Air Quality (CMAQ) model's forecast performance for O3, and its related precursors has been assessed over the eastern United States with observations obtained by aircraft (NOAA P-3 and NASA DC-8) flights, ship and two surface networks (AIRNow and AIRMAP) during the 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) study. The results show that overall none of the mechanisms performs systematically better than the others. On the other hand, at the AIRNow surface sites, CB05 has the best performance with the normalized mean bias (NMB) of 3.9%, followed by CB4 (NMB=−5.7%) and SAPRC-99 (NMB=10.6%) for observed O3≥75 ppb, whereas CB4 has the best performance with the least overestimation for observed O3
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2010-03-31
    Description: The electron-excited chemistry of sulfur dioxide oxidation induced by UV irradiation of air with trace O3 and SO2 is considered. The importance of this mechanism is evaluated based on recent laboratory experiments on SO2 oxidation in a laminar tube with air induced by UV irradiation. Results show that under respective conditions the route of SO2 oxidation involving electron excited oxygen molecules may present an additional source of gaseous H2SO4 production to known OH-radical mechanism.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2010-03-30
    Description: A DUALER (dual-channel airborne peroxy radical chemical amplifier) instrument has been developed and optimised for the airborne measurement of the total sum of peroxy radicals during the AMMA (African Monsoon Multidisciplinary Analyses) measurement campaign which took place in Burkina Faso in August 2006. The innovative feature of the instrument is that both reactors are sampling simultaneously from a common pre-reactor nozzle while the whole system is kept at a constant pressure to ensure more signal stability and accuracy. Laboratory experiments were conducted to characterise the stability of the NO2 detector signal and the chain length with the pressure. The results show that airborne measurements using chemical amplification require constant pressure at the luminol detector. Wall losses of main peroxy radicals HO2 and CH3O2 were investigated. The chain length was experimentally determined for different ambient mixtures and compared with simulations performed by a chemical box model. The DUALER instrument was successfully mounted within the German DLR-Falcon. The analysis of AMMA data utilises a validation procedure based on the O3 mixing ratios simultaneously measured onboard. The validation and analysis procedure is illustrated by means of the data measured during the AMMA campaign. The detection limit and the accuracy of the ambient measurements are also discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2010-03-29
    Description: This paper presents a summary of the measurements made during the heavily-instrumented Reactive Halogens in the Marine Boundary Layer (RHaMBLe) coastal study in Roscoff on the North West coast of France throughout September 2006. It was clearly demonstrated that iodine-mediated coastal particle formation occurs, driven by daytime low tide emission of molecular iodine, I2, by macroalgal species fully or partially exposed by the receding waterline. Ultrafine particle concentrations strongly correlate with the rapidly recycled reactive iodine species, IO, produced at high concentrations following photolysis of I2. The heterogeneous macroalgal I2 sources lead to variable relative concentrations of iodine species observed by path-integrated and in situ measurement techniques. Apparent particle emission fluxes were associated with an enhanced apparent depositional flux of ozone, consistent with both a direct O3 deposition to macroalgae and involvement of O3 in iodine photochemistry and subsequent particle formation below the measurement height. The magnitude of the particle formation events was observed to be greatest at the lowest tides with the highest concentrations of ultrafine particles growing to the largest sizes, probably by the condensation of anthropogenically-formed condensable material. At such sizes the particles should be able to act as cloud condensation nuclei at reasonable atmospheric supersaturations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2010-10-25
    Description: Crystal sublimation/loss is a dominant feature of the contrail evolution during the vortex phase and has a substantial impact on the later contrail-to-cirrus transition. Previous studies showed that the fraction of crystals surviving the vortex phase depends primarily on relative humidity, temperature and the aircraft type. An existing model for contrail vortex phase simulations (with a 2-moment bulk microphysics scheme) was upgraded with a newly developed state-of-the-art microphysics module (LCM) which uses Lagrangian particle tracking. This allows for explicit process-oriented modelling of the ice crystal size distribution in contrast to the bulk approach. We show that it is of great importance to employ an advanced microphysics scheme to determine the crystal loss during the vortex phase. The LCM-model shows even larger sensitivities to the above mentioned key parameters than previously estimated with the bulk model. The impact of the initial crystal number is studied and for the first time also the initial width of the crystal size distribution. Both are shown to be relevant. This corroborates the need for a realistic representation of microphysical processes and knowledge of the ice phase characteristics.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2010-10-25
    Description: Climate models contain closure parameters to which the model climate is sensitive. These parameters appear in physical parameterization schemes where some unresolved variables are expressed by predefined parameters rather than being explicitly modeled. Currently, best expert knowledge is used to define the optimal closure parameter values, based on observations, process studies, large eddy simulations, etc. Here, parameter estimation, based on the adaptive Markov chain Monte Carlo (MCMC) method, is applied for estimation of joint posterior probability density of a small number (n=4) of closure parameters appearing in the ECHAM5 climate model. The parameters considered are related to clouds and precipitation and they are sampled by an adaptive random walk process of the MCMC. The parameter probability densities are estimated simultaneously for all parameters, subject to an objective function. Five alternative formulations of the objective function are tested, all related to the net radiative flux at the top of the atmosphere. Conclusions of the closure parameter estimation tests with a low-resolution ECHAM5 climate model indicate that (i) adaptive MCMC is a viable option for parameter estimation in large-scale computational models, and (ii) choice of the objective function is crucial for the identifiability of the parameter distributions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2010-11-03
    Description: A large number of calculations of the absorptive partitioning of organic compounds have been made using a number of methods to predict the component vapour pressures, p0, and activity coefficients, γi, required in the calculations. The sensitivities of the predictions in terms of the condensed component masses, volatility, O:C ratio, molar mass and functionality distributions to the choice of p0 and γi models and to the number of components to represent the organic mixture have been systematically compared. The condensed component mass was found to be highly sensitive to the vapour pressure model, and less sensitive to both the activity coefficient model and the number of components used to represent the mixture although the sensitivity to the change in property estimation method increased substantially with increased simplification in the treatment of the organic mixture. This was a general finding and was also clearly evident in terms of the predicted component functionality, O:C ratio, molar mass and volatility distributions of the condensed organic components. Within the limitations of the study, this clearly demonstrates the requirement for more accurate representation of the p0 and γi of the semi-volatile organic proxy components used in simplified models as the degree of simplification increases. This presents an interesting paradox, since such reduction in complexity necessarily leads to divergence from the complex behaviour of real multicomponent atmospheric aerosol.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2010-10-25
    Description: It is pointed out that the graphical, aerosol classification method of Gobbi et al. (2007) can be interpreted as a manifestation of fundamental analytical relations whose existance depends on the simple assumption that the optical effects of aerosols are essentially bimodal in nature. The families of contour lines in their "Ada" curvature space are essentially empirical and discretized illustrations of analytical parabolic forms in (α, α') space (the space formed by the continuously differentiable Angstrom exponent and its spectral derivative).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2010-03-29
    Description: A detailed multiple-year inventory of mercury emissions from anthropogenic activities in China has been developed. Coal combustion and nonferrous metals production continue to be the two leading mercury sources in China, together contributing ~80% of total mercury emissions. However, many uncertainties still remain in our knowledge of primary anthropogenic releases of mercury to the atmosphere in China. In situations involving large uncertainties, our previous mercury emission inventory that used a deterministic approach could produce results that might not be a true reflection of reality; and in such cases stochastic simulations incorporating uncertainties need to be performed. Within our inventory, a new comprehensive sub-module for estimation of mercury emissions from coal-fired power plants in China is constructed as an uncertainty case study. The new sub-module integrates up-to-date information regarding mercury content in coal by province, coal washing and cleaning, coal consumption by province, mercury removal efficiencies by control technology or technology combinations, etc. Based on these detailed data, probability-based distribution functions are built into the sub-module to address the uncertainties of these key parameters. The sub-module incorporates Monte Carlo simulations to take into account the probability distributions of key input parameters and produce the mercury emission results in the form of a statistical distribution. For example, the best estimate for total mercury emissions from coal-fired power plants in China in 2003 is 90.5 Mg, with the uncertainty range from 57.1 Mg (P10) to 154.6 Mg (P90); and the best estimate for elemental mercury emissions is 43.0 Mg, with the uncertainty range from 25.6 Mg (P10) to 75.7 Mg (P90). The results further indicate that the majority of the uncertainty in mercury emission estimation comes from two factors: mercury content of coal and mercury removal efficiency.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2010-03-29
    Description: The Airborne Mobile Aerosol Lidar (AMALi) is an instrument developed at the Alfred Wegener Institute for Polar and Marine Research for reliable operation under the challenging weather conditions at the Earth's polar regions. Since 2003 the AMALi has been successfully deployed for measurements in ground-based installation and zenith- or nadir-pointing airborne configurations during several scientific campaigns in the Arctic. The lidar provides backscatter profiles at two wavelengths (355/532 nm or 1064/532 nm) together with the linear depolarization at 532 nm, from which aerosol and cloud properties can be derived. This paper presents the characteristics and capabilities of the AMALi system and gives examples of its usage for airborne and ground-based operations in the Arctic. As this backscatter lidar normally does not operate in aerosol-free layers special evaluation schemes are discussed, the nadir-pointing iterative inversion for the case of an unknown boundary condition and the two-stream approach for the extinction profile calculation if a second lidar system probes the same air mass. Also an intercomparison of the AMALi system with an established ground-based Koldewey Aerosol Raman Lidar (KARL) is given.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2010-03-26
    Description: Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200 °C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 s to 24 h) in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and they can't necessarily be applied on a regional or global ocean scale. Nevertheless, considering the order of magnitude discrepancy between this and previous studies, further research with independent measurement techniques and a variety of different seawaters is required to better quantify how much organic material is present in accumulation mode SSA.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2010-10-26
    Description: Volcanic emissions from the Eyjafjallajökull volcano eruption on the Southern fringe of Iceland in April 2010 were detected at the Global Atmosphere Watch (GAW) station Zugspitze/Hohenpeissenberg (Germany) by means of in-situ measurements, ozone sondes and ceilometers. Information from the German Meteorological Service (DWD) ceilometer network (Flentje et al., 2010) aided identifying the air mass origin. We discuss ground level in-situ measurements of sulphur dioxide (SO2), sulphuric acid (H2SO4) and particulate matter as well as ozone sonde profiles and column measurements of SO2 by a Brewer spectrometer. At Hohenpeissenberg, a number of reactive gases, e.g. carbon monoxide and nitrogen oxides, and particle properties, e.g. size distribution and ionic composition, were additionally measured during this period. Our results describe the arrival of the volcanic plume at Zugspitze and Hohenpeissenberg during 16 and 17 April 2010 and its residence in the planetary boundary layer (PBL) for several days thereafter. The ash plume was first seen in the ceilometer backscatter profiles at Hohenpeissenberg in about 6–7 km altitude. After entrainment into the PBL at noon of 17 April, largely enhanced values of sulphur dioxide, sulphuric acid and super-micron-particle number concentration were recorded at Zugspitze/Hohenpeissenberg till 21 April.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...