ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (29)
  • Data
  • 550 - Earth sciences  (29)
  • English  (29)
  • Italian
  • 2010-2014  (15)
  • 2005-2009  (14)
  • 1980-1984
  • 1975-1979
  • 1950-1954
  • 1940-1944
  • 1935-1939
  • 1925-1929
  • 2011  (15)
  • 2009  (14)
  • 1984
  • 1983
  • 1978
  • 1977
  • 1929
  • 1927
  • 1925
Collection
  • Books
  • Articles  (29)
  • Data
Language
Years
  • 2010-2014  (15)
  • 2005-2009  (14)
  • 1980-1984
  • 1975-1979
  • 1950-1954
  • +
Year
  • 1
    Publication Date: 2020-02-12
    Description: We use traveltime data of local earthquakes and controlled sources observed by a large, temporary, amphibious seismic network to reveal the anatomy of the southcentral Chilean subduction zone (37–39°S) between the trench and the magmatic arc. At this location the giant 1960 earthquake (M = 9.5) nucleated and ruptured almost 1000 km of the subduction megathrust. For the three-dimensional tomographic inversion we used 17,148 P wave and 10,049 S wave arrival time readings from 439 local earthquakes and 94 shots. The resolution of the tomographic images was explored by analyzing the model resolution matrix and conducting extensive numerical tests. The downgoing lithosphere is delineated by high seismic P wave velocities. High v p/v s ratio in the subducting slab reflects hydrated oceanic crust and serpentinized uppermost oceanic mantle. The subducting oceanic crust can be traced down to a depth of 80 km, as indicated by a low velocity channel. The continental crust extends to approximately a 50-km depth near the intersection with the subducting plate. This suggests a wide contact zone between continental and oceanic crust of about 150 km, potentially supporting the development of large asperities. Eastward the crustal thickness decreases again to a minimum of about a 30-km depth. Relatively low v p/v s at the base of the forearc does not support a large-scale serpentinization of the mantle wedge. Offshore, low v p and high v p/v s reflect young, fluid-saturated sediments of forearc basins and the accretionary prism.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Results obtained from S and P receiver functions produced a clear image of the top and bottom of the subducting Nazca lithosphere beneath northern Chile. Using data from the teleseismic events recorded at 15 permanent Integrated Plate Boundary Observatory Chile (IPOC) stations, we obtained new constraints on the geometry and thickness of the descending Nazca lithosphere. We observed the subducted crust of the Nazca plate at depths ranging from 50 km beneath the Coastal Cordillera down to 110 km beneath the Western Cordillera. We found significant along‐strike variations in the geometry of the Nazca plate beneath northern Chile. On closer inspection, it appears that the oceanic Nazca plate is divided into two distinct segments as it descends beneath the continental South American plate. The transition from the relatively steeper (∼23°) and deeper slab to the north of 21°S to the flatter southern segment (∼19°) is shown reasonably clearly by our data. This feature could well be associated with variations in the curvature of the plate margin and the geometry of the Chile trench, which is mainly curved to the north of 21°S. We have also mapped the continental Moho of the South American plate at depths ranging between 60 and 70 km to the east of the Longitudinal Valley. Beneath the Coastal Cordillera, this boundary becomes invisible, probably due to the serpentinization of the forearc mantle wedge that reduces the velocity in the uppermost mantle. The base of the subducted Nazca plate was clearly identified as a sharp boundary in the results obtained from the P and S receiver functions. The thickness of the subducted oceanic Nazca plate, which has an age of ∼50 My, is estimated to be ∼50 km. Although this thickness is consistent with that predicted by thermal gradients, the explanation of the sharpness of the lithosphere‐asthenosphere boundary may require another mechanism such as hydration or melting.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Providing quantitative microzonation results that can be taken into account in urban land-use plans is a challenging task that requires collaborative efforts between the seismological and engineering communities. In this study, starting from the results obtained by extensive geophysical and seismological investigations, we propose and apply an approach to the Gubbio basin (Italy) that can be easily implemented for cases of moderate-to-low ground motion and that takes into account not only simple 1D, but also more complicated 3D effects. With this method, the sites inside the basin are classified by their fundamental resonance frequencies, estimated from the horizontal-to-vertical spectral ratio applied to noise recordings (HVNSR). The correspondence between estimates of the fundamental frequency from this method and those derived from earthquake recordings was verified at several calibration sites. The amplification factors used to correct the response spectra are computed by the ratio between the response spectra at sites within the basin and the response spectra at a hard-rock site using data from two seismic transects. Empirical amplification functions are then assigned to the fundamental frequencies after applying an interpolation technique. The suitability of the estimated site-specific correction factors for response spectra was verified by computing synthetic response spectra for stations within the basin, starting from the synthetic recording at a nearby rock station, and comparing them with observed ones.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Journal of Seismology
    Publication Date: 2020-02-12
    Description: An early detection of the presence of rupture directivity plays a major role in the correct estimation of ground motions and risks associated to the earthquake occurrence. We present here a simple method for a fast detection of rupture directivity, which may be additionally used to discriminate fault and auxiliary planes and have first estimations of important kinematic source parameters, such as rupture length and rupture time. Our method is based on the inversion of amplitude spectra from P-wave seismograms to derive the apparent duration at each station and on the successive modelling of its azimuthal behaviour. Synthetic waveforms are built assuming a spatial point source approximation, and the finite apparent duration of the spatial point source is interpreted in terms of rupture directivity. Since synthetic seismograms for a point source are calculated very quickly, the presence of directivity may be detected within few seconds, once a focal mechanism has been derived. The method is here first tested using synthetic datasets, both for linear and planar sources, and then successfully applied to recent Mw 6.2–6.8 shallow earthquakes in Peloponnese, Greece. The method is suitable for automated application and may be used to improve kinematic waveform modelling approaches.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: On 2001 May 7, following unintentional water injection, a moderate size induced earthquake struck the Ekofisk oil field, North Sea. Despite of its relatively moderate magnitude, clear low-frequency waveforms could be recorded up to more than 2000 km epicentral distance, suggesting a slow rupture at very shallow depth and wave propagation through low-velocity shallow structures. The event poses a rare opportunity to constrain rupture velocity, duration and rise time of a superficial M 〉 4 event occurring on a horizontal plane in soft, water-saturated sediments. Two previous studies discussed the earthquake point source finding vertical dip-slip focal mechanisms with opposite senses of P and T axes. A further investigation was thus required to provide a basis for a deeper discussion of the failure dynamics. We significantly improve the used data set, test different earth models and derive a point source as well as a kinematic rupture model. We carefully discuss parameter uncertainties and effects related to shallow sources and wave propagation through different crustal structures to resolve the previous controversy. We additionally provide a kinematic rupture model, based on apparent source times derived from Rayleigh and Love waves. The waveforms resolve a predominant unilateral rupture along a horizontal plane at about 2 km depth. We derive an unusually slow rupture, consequence of a slow rupture velocity of about 500 m s –1 and a long rise time of about 7 s. An independent modelling of GPS- based static displacements allows to confirm the focal mechanism polarity and to locate the centroid at the eastern side of the field, resulting in a much larger seismic moment in comparison with dynamic seismic moment. The rupture directivity is confirmed by the relative location of the centroid with respect to the epicentre, which is set at the site of water injection.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: The Dead Sea Transform (DST) is a major left-lateral strike-slip fault that accommodates the relative motion between the African and Arabian plates, connecting a region of extension in the Red Sea to the Taurus collision zone in Turkey over a length of about 1100 km. The Dead Sea Basin (DSB) is one of the largest basins along the DST. The DSB is a morphotectonic depression along the DST, divided into a northern and a southern sub-basin, separated by the Lisan salt diapir. We report on a receiver function study of the crust within the multidisciplinary geophysical project, DEad Sea Integrated REsearch (DESIRE), to study the crustal structure of the DSB. A temporary seismic network was operated on both sides of the DSB between 2006 October and 2008 April. The aperture of the network is approximately 60 km in the E—W direction crossing the DSB on the Lisan peninsula and about 100 km in the N—S direction. Analysis of receiver functions from the DESIRE temporary network indicates that Moho depths vary between 30 and 38 km beneath the area. These Moho depth estimates are consistent with results of near-vertical incidence and wide-angle controlled-source techniques. Receiver functions reveal an additional discontinuity in the lower crust, but only in the DSB and west of it. This leads to the conclusion that the internal crustal structure east and west of the DSB is different at the present-day. However, if the 107 km left-lateral movement along the DST is taken into account, then the region beneath the DESIRE array where no lower crustal discontinuity is observed would have lain about 18 Ma ago immediately adjacent to the region under the previous DESERT array west of the DST where no lower crustal discontinuity is recognized.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: We analyse data from seismic stations surrounding the Alboran Sea between Spain and North Africa to constrain variations of the lithosphere–asthenosphere boundary (LAB) in the region. The technique used is the receiver function technique, which uses S-to-P converted teleseismic waves at the LAB below the seismic stations. We confirm previous data suggesting a shallow (60–90 km) LAB beneath the Iberian Peninsula and we observe a similarly shallow LAB beneath the Alboran Sea where the lithosphere becomes progressively thinner towards the east. A deeper LAB (90–100 km) is observed beneath the Betics, the south of Portugal and Morocco. The structure of the LAB in the entire region does not seem to show any indication of subduction related features. We also observe good P receiver function signals from the seismic discontinuities at 410 and 660 km depth which do not indicate any upper-mantle anomaly beneath the entire region. This is in agreement with the sparse seismic activity in the mantle transition zone suggesting the presence of only weak and regionally confined anomalies.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: We implement the effects of gravitational self-attraction and loading (SAL) into a global baroclinic ocean circulation model and investigate effects on sea level patterns, ocean circulation, and density distributions. We compute SAL modifications as an additional force on the water masses at every time step by decomposing the field of ocean bottom pressure anomalies into spherical harmonic functions and then applying Love numbers to account for the elastic properties of the solid Earth. Considering SAL in the postprocessing turns out to be insufficient, especially in coastal waters and on subweekly time scales, where SAL modifies local sea level by around 0.6–0.8 cm on average; in the open ocean, changes mostly remain around 0.3 cm. Modifications of water velocities as well as of heat and salt distributions are modeled, yet they are small. Simple parameterizations of SAL effects currently used in a number of ocean circulation models suffer from the process's inhomogeneity in space and time. These parameterizations improve the modeled sea level patterns but fail to reproduce SAL impacts on circulation and density distributions. We therefore suggest to explicitly consider the full SAL effect in ocean circulation models, especially when investigating sea level variations faster than around 4 days.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: Frequent landsliding is one of the greatest natural hazards facing the inhabitants of Central Asia's Fergana Basin and the surrounding mountain ranges. Active tectonics in the region is rapidly building the Tien Shan, one of the highest mountain ranges on Earth, and the extreme topographic relief promotes frequent landslide activity, which causes major losses of life and property. In southwestern Kyrgyzstan alone, on average 10 people die and seven houses are destroyed each year in these sudden and rapidly moving landslides.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-02-12
    Description: Structural features of volcanic and hydrothermal systems can be used to infer the location of magma chambers or productive geothermal areas. The Hengill volcanic triple-junction complex has a well-developed geothermal system, which is being exploited to extract hot fluids that are used for electrical power and heat production. In the framework of the I-GET project, a 4-month temporary seismological network including seven high-dynamic broadband instruments was deployed and 1D transient electromagnetic soundings (TEM) and 3D magnetotelluric (MT) surveys were performed to improve the understanding of the relationships between structural features, seismic activity and fluid production at the Hengill geothermal system. The MT and TEM data set are analysed elsewhere. The analysis of the seismological data set allowed the detection and classification of more than 600 earthquakes, among which long-period (LP) earthquakes were observed for the first time in this area. This work focuses first on a joint inversion for the 3D velocity structure and determination of the locations of the hypocentres from about 250 local volcano-tectonic earthquakes with clear P- and S-wave arrival times. The results confirm those from earlier tomography studies in this area. Integrating the seismic velocity and resistivity models in a semi-quantitative approach by cross-plotting the resistivity model with the velocity ratio VP/VS delineates a structural body with a high seismic velocity ratio and low resistivity that is interpreted as the main heat source of the geothermal system.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-12
    Description: We examine shear-wave splitting of SKS waveforms collected by a temporary array of 68 stations in the region of the Dead Sea basin. The observed splitting parameters exhibit systematic variations along a dense, EW-trending 60 km profile across the basin. The delay times vary significantly between 1.0 and 2.8 seconds with smaller values in the very center of the profile. The fast polarizations are oriented more-or-less parallel to the strike of the Dead Sea transform fault and vary between −10 and 20 degrees with respect to North. Finite-frequency waveform modeling reveals that the source-region of the small-scale lateral variations is likely located within the crust. The modeling further shows that purely isotropic velocity variations affect shear-wave splitting: To a large degree, the observed variations of splitting parameters can be explained by the sedimentary fill of the basin and its low isotropic seismic velocities, whereas the mantle is uniformly anisotropic. Our study indicates that precaution must be taken when interpreting short-scale lateral variations of shear wave splitting in terms of anisotropic structures in the crust or upper mantle.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-12
    Description: The passive margin of the South Atlantic shows typical features of a rifted volcanic continental margin, encompassing seaward dipping reflectors, continental flood basalts and high-velocity/density lower crust at the continent–ocean transition, probably emplaced during initial seafloor spreading in the Early Cretaceous. The Springbok profile offshore western South Africa is a combined transect of reflection and refraction seismic data. This paper addresses the analysis of the seismic velocity structure in combination with gravity modelling and isostatic modelling to unravel the crustal structure of the passive continental margin from different perspectives. The velocity modelling revealed a segmentation of the margin into three distinct parts of continental, transitional and oceanic crust. As observed at many volcanic margins, the lower crust is characterised by a zone of high velocities with up to 7.4 km/s. The conjunction with gravity modelling affirms the existence of this body and at the same time substantiated its high densities, found to be 3100 kg/m3. Both approaches identified the body to have a thickness of about 10 km. Yet, the gravity modelling predicted the transition between the high-density body towards less dense material farther west than initially anticipated from velocity modelling and confirmed this density gradient to be a prerequisite to reproduce the observed gravity signal. Finally, isostatic modelling was applied to predict average crustal densities if the margin was isostatically balanced. The results imply isostatic equilibrium over large parts of the profile, smaller deviations are supposed to be compensated regionally. The calculated load distribution along the profile implies that all pressures are hydrostatic beneath a depth of 45 km.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-02-12
    Description: In the past decade the analysis of seismic noise has become an efficient tool to recover the Green's function between pairs of receivers by cross-correlation of seismic traces. Most studies focus on the investigation of the surface wave component of the ambient noise. Several attempts to recover the body wave part of the Green's function have been documented. In this paper I present the results of cross-correlation of seismic noise and the retrieval of refracted and reflected P-waves along a seismic line in the Karoo region (Republic of South Africa). Body wave refractions (direct phases) and reflections have been observed in the Green's functions derived from ambient noise records of up to 60 hours. The results are compared with shot gathers from a controlled source experiment (borehole explosions), carried out along the same line. The significant potential of ambient noise analysis, especially with respect to P-wave reflections will be shown and discussed.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Geochemistry Geophysics Geosystems (G3)
    Publication Date: 2020-02-12
    Description: In this study we present the new tomographic code ANITA which provides 3-D anisotropic P and isotropic S velocity distribution based on P and S traveltimes from local seismicity. For the P anisotropic model, we determine four parameters for each parameterization cell. This represents an orthorhombic anisotropy with one predefined direction oriented vertically. Three of the parameters describe slowness variations along three horizontal orientations with azimuths of 0°, 60°, and 120°, and one is a perturbation along the vertical axis. The nonlinear iterative inversion procedure is similar to that used in the LOTOS code. We have implemented this algorithm for the updated data set of central Java, part of which was previously used for the isotropic inversion. It was obtained that the crustal and uppermost mantle velocity structure beneath central Java is strongly anisotropic with 7–10% of maximal difference between slow and fast velocity in different directions. In the forearc (area between southern coast and volcanoes), the structure of both isotropic and anisotropic structure is strongly heterogeneous. Variety of anisotropy orientations and highly contrasted velocity patterns can be explained by a complex block structure of the crust. Beneath volcanoes we observe faster velocities in vertical direction, which is probably an indicator for vertically oriented structures (channels, dykes). In the crust beneath the middle part of central Java, north to Merapi and Lawu volcanoes, we observe a large and very intense anomaly with a velocity decrease of up to 30% and 35% for P and S models, respectively. Inside this anomaly E-W orientation of fast velocity takes place, probably caused by regional extension stress regime. In a vertical section we observe faster horizontal velocities inside this anomaly that might be explained by layering of sediments and/or penetration of quasi-horizontal lenses with molten magma. In the mantle, trench parallel anisotropy is observed throughout the study area. Such anisotropy in the slab entrained corner flow may be due to presence of B-type olivine having predominant axis parallel to the shear direction, which appears in conditions of high water or/and melting content.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-12
    Description: The North Anatolian Fault Zone (NAFZ) below the Sea of Marmara forms a “seismic gap” where a major earthquake is expected to occur in the near future. This segment of the fault lies between the 1912 Ganos and 1999 İzmit ruptures and is the only NAFZ segment that has not ruptured since 1766. To monitor the microseismic activity at the main fault branch offshore of Istanbul below the Çınarcık Basin, a permanent seismic array (PIRES) was installed on the two outermost Prince Islands, Yassiada and Sivriada, at a few kilometers distance to the fault. In addition, a temporary network of ocean bottom seismometers was deployed throughout the Çınarcık Basin. Slowness vectors are determined combining waveform cross correlation and P wave polarization. We jointly invert azimuth and traveltime observations for hypocenter determination and apply a bootstrap resampling technique to quantify the location precision. We observe seismicity rates of 20 events per month for M 〈 2.5 along the basin. The spatial distribution of hypocenters suggests that the two major fault branches bounding the depocenter below the Çınarcık Basin merge to one single master fault below ∼17 km depth. On the basis of a cross-correlation technique we group closely spaced earthquakes and determine composite focal mechanisms implementing recordings of surrounding permanent land stations. Fault plane solutions have a predominant right-lateral strike-slip mechanism, indicating that normal faulting along this part of the NAFZ plays a minor role. Toward the west we observe increasing components of thrust faulting. This supports the model of NW trending, dextral strike-slip motion along the northern and main branch of the NAFZ below the eastern Sea of Marmara.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-12
    Description: We use Global Positioning System (GPS) velocities and kinematic Finite Element models (FE-models) to infer the state of locking between the converging Nazca and South America plates in South-Central Chile (36[degree sign]S - 46[degree sign]S) and to evaluate its spatial and temporal variability. GPS velocities provide information on earthquake-cycle deformation over the last decade in areas affected by the megathrust events of 1960 (Mw= 9.5) and 2010 (Mw= 8.8). Our data confirm that a change in surface velocity patterns of these two seismotectonic segments can be related to their different stages in the seismic cycle: Accordingly, the northern (2010) segment was in a final stage of interseismic loading whereas the southern (1960) segment is still in a postseismic stage and undergoes a prolonged viscoelastic mantle relaxation. After correcting the signals for mantle relaxation, the residual GPS velocity pattern suggests that the plate interface accumulates slip deficit in a spatially and presumably temporally variable way towards the next great event. Though some similarity exist between locking and 1960 coseismic slip, extrapolating the current, decadal scale slip deficit accumulation towards the ~ 300-yr recurrence times of giant events here does neither yield the slip distribution nor the moment magnitude of the 1960 earthquake. This suggests that either the locking pattern is evolving in time (to reconcile a slip deficit distribution similar to the 1960 earthquake) or that some asperities are not persistent over multiple events. The accumulated moment deficit since 1960 suggests that highly locked patches in the 1960 segment are already capable of producing a M ~ 8 event if triggered to fail by stress transfer from the 2010 event.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Bulletin of the Seismological Society of America
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-02-12
    Description: We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) “master template,” located using P and S wave arrivals to be ∼26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at “clusters” of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ∼10 km below the deepest regular earthquakes on the fault.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-02-12
    Description: The western Bohemian Massif is known for geodynamic phenomena such as earthquake swarms, CO2 dominated free gas emanations of upper-mantle origin, and Tertiary/ Quaternary volcanism. Among other explanations, a small-scale mantle plume has been suggested. We used data from the international passive seismic experiment BOHEMA (2001-2004) and of a previous seismic experiment to investigate the structure of the upper-mantle discontinuities at 410 km and 660 km depth (the ‘410’ and the ‘660’) beneath the Bohemian Massif with the P receiver function method. More than 4500 high-quality receiver function traces could be utilized. Two stacking techniques were used: stacking by station (common station method, CSM) and stacking by piercing points in the mantle transition zone (common conversion point method, CCM). Since the station spacing is very close, rays from different stations have similar piercing points in the mantle transition zone. Therefore CCM is sensitive in the transition zone and CSM is sensitive to the uppermost structure of the mantle. The CSM shows delayed conversion times from the 410 km discontinuity beneath the western Bohemia earthquake region, which indicate a slow uppermost mantle. When stacking our data by CCM, we observe thickening of the transition zone towards the Alpine foreland, which agrees with tomographic results by Piromallo and Morelli. The thickness of the mantle transition zone beneath the western Bohemian Massif is normal, with a faint hint to thinning in the northern part. Our conclusion is that a plume-like structure may exist in the upper mantle below the western Bohemia earthquake region, but with no or only weak imprint on the 410 km discontinuity.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-02-12
    Description: On 8 January 2006, an intermediate-depth earthquake occurred at the western part of the Hellenic trench close to the island of Kythera (southern Greece). This is the first intermediate-depth earthquake in the broader Aegean area that has produced such an extensive set of useful recordings, as it was recorded by the main permanent seismological networks and numerous acceleration sensors operating in Greece, as well as by EGELADOS, a large-scale temporary amphibian broadband seismological network deployed in the southern Aegean area. An effort to combine all the available data (broadband velocity and acceleration sensor) was made to study the properties of ground-motion attenuation of this earthquake. The combination of both types of data revealed interesting properties of the earthquake wave field, which would remain hidden if only one type of data was used. Moreover, the data have been used for a validation of existing peak ground-motion empirical prediction relations and the preliminary study of the very inhomogeneous attenuation pattern of the southern Aegean intermediate-depth events at both near- and far-source distances
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-12
    Description: Teleseismic data recorded during one and a half years are investigated with the receiver function technique to determine the crustal and upper-mantle structures underneath the highly elevated Altiplano and Puna plateaus in the central Andes. A series of converting interfaces are determined along two profiles at 21°S and 25.5°S, respectively, with a station spacing of approximately 10 km. The data provide the highest resolution gained from a passive project in this area, so far. The oceanic Nazca plate is detected down to 120 km beneath the Altiplano whereas beneath the Puna, the slab can unexpectedly be traced down to 200 km depth at longer periods. A shallow crustal low-velocity zone is determined beneath both plateaus exhibiting segmentation. In the case of the Altiplano, the segments present vertical offsets and are separated by inclined interfaces, which coincide with major fault systems at the surface. An average depth to Moho of about 70 km is determined for the Altiplano plateau. A strong negative velocity anomaly located directly below the Moho along with local crustal thinning is interpreted beneath the volcanic arc of the Altiplano plateau between 67°W and 68.5°W. A deep section of the Puna profile reveals thinning of the mantle transition zone. Although poorly resolved, the detected anomaly may suggest the presence of a mantle plume, which may constitute the origin of the anomalous temperatures at the depth of the upper-mantle discontinuities.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-02-12
    Description: To study the applicability of the passive seismic interferometry technique to near-surface geological studies, seismic noise recordings from a small scale 2-D array of seismic stations were performed in the test site of Nauen (Germany). Rayleigh wave Green's functions were estimated for different frequencies. A tomographic inversion of the traveltimes estimated for each frequency from the Green's functions is then performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved at engineering–geotechnical scales. Furthermore, a 2-D S-wave velocity cross-section is obtained by combining 1-D velocity structures derived from the inversion of the dispersion curves extracted at several points along a profile where other geophysical analyses were performed. It is shown that the cross-section from passive seismic interferometry provides a clear image of the local structural heterogeneities that are in excellent agreement with georadar and geoelectrical results. Such findings indicate that the interferometry analysis of seismic noise is potentially of great interest for deriving the shallow 3-D velocity structure in urban areas.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-02-12
    Description: As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1 100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E–W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo-mechanical modelling of the DSB supports such a scenario. As the DESIRE seismic profile crosses the DST about 100 km north of where the DESERT seismic profile crosses the DST, it has been possible to construct a crustal cross-section of the region before the 107 km left-lateral shear on the DST occurred.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-12
    Description: In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-02-12
    Description: The lithosphere-asthenosphere boundary corresponds to the base of the “rigid” plates – the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the Teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285–301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surfacewave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The Lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...