ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-28
    Description: The AlpArray experiment and the deployment of Swath-D together with the dense permanent network in Italy allow for detailed imaging of the spatio-temporal imaging complexity of seismic wave-fields within the greater Alpine region. The distance of any point within the area to the nearest station is less than 30 km, resulting in an average inter-station distance of about 45 km. With a much denser deployment in a smaller region of the Alps (320 km in length and 140 km wide), the Swath-D network possesses an average inter-station distance of about 15 km. We show that seismogram sections with a spatial sampling of less than 5 km can be obtained using recordings of these regional arrays for just a single event. Multiply reflected body waves can be observed for up to 2 h after source time. In addition, we provide and describe animations of long-period seismic wave-fields using recordings of about 1300–1600 broadband stations for six representative earthquakes. These illustrate the considerable spatio-temporal variability of the wave-field’s properties at a high lateral resolution. Within denser station distributions like those provided by Swath-D, even shorter period body and surface wave features can be recovered. The decrease of the horizontal wavelength from P to S to surface waves, deviations from spherically symmetric wavefronts, and the capability to detect multi-orbit arrivals are demonstrated qualitatively by the presented wave-field animations, which are a valuable tool for educational, quality control, and research purposes. We note that the information content of the acquired datasets can only be adequately explored by application of appropriate quantitative methods accounting for the considerable complexity of the seismic wave-fields as revealed by the now available station configuration.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Christian-Albrechts-Universität zu Kiel (3094)
    Keywords: ddc:551.22 ; Seismology ; Wave-fields ; Animations ; Alps ; AlpArray ; Swath-D
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-18
    Description: We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be done using different mathematical approaches. Since kernels are stored on disk, it can be repeated many times for different regularization parameters without need to solve the forward problem, making the approach accessible to Occam's method. Changes of choice of misfit functional, weighting of data and selection of data subsets are still possible at this stage. We have coded our approach to FWI into a program package called ASKI (Analysis of Sensitivity and Kernel Inversion) which can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. It is written in modern FORTRAN language using object-oriented concepts that reflect the modular structure of the inversion procedure. We validate our FWI method by a small-scale synthetic study and present first results of its application to high-quality seismological data acquired in the southern Aegean.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉An existing nodal discontinuous Galerkin (NDG) method for the simulation of seismic waves in heterogeneous media is extended to media containing fractures with various rheological behaviour. Fractures are treated as two-dimensional surfaces where Schoenberg’s linear slip or displacement discontinuity condition is applied as an additional boundary condition to the elastic wave equation which is in turn implemented as an additional numerical flux within the NDG formulation. Explicit expressions for the new numerical flux are derived by considering the Riemann problem for the elastic wave equation at fractures with varying rheologies. In all cases, we obtain further first order differential equations that fully describe the temporal evolution of the particle velocity jump at the fracture. Our flux formulation allows to separate the effect of a fracture from flux contributions due to simple welded interfaces enabling us to easily declare element faces as parts of a fracture. We make use of this fact by first generating the numerical mesh and then building up fractures by selecting appropriate element faces instead of adjusting the mesh to pre-defined fracture surfaces. The implementation of the new numerical fluxes into NDG is verified in 1D by comparison to an analytical solution and in 2D by comparing the results of a simulation valid in 1D and 2D. Further numerical examples address the effect of fracture systems on seismic wave propagation in 1D and 2D featuring effective anisotropy and coda generation. Finally, a study of the reflective and transmissive behaviour of fractures indicates that reflection and transmission coefficients are controlled by the ratio of signal frequency and relaxation frequency of the fracture.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-15
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉An existing nodal discontinuous Galerkin (NDG) method for the simulation of seismic waves in heterogeneous media is extended to media containing fractures with various rheological behaviour. Fractures are treated as 2-D surfaces where Schoenberg’s linear slip or displacement discontinuity condition is applied as an additional boundary condition to the elastic wave equation which is in turn implemented as an additional numerical flux within the NDG formulation. Explicit expressions for the new numerical flux are derived by considering the Riemann problem for the elastic wave equation at fractures with varying rheologies. In all cases, we obtain further first order differential equations that fully describe the temporal evolution of the particle velocity jump at the fracture. Our flux formulation allows to separate the effect of a fracture from flux contributions due to simple welded interfaces enabling us to easily declare element faces as parts of a fracture. We make use of this fact by first generating the numerical mesh and then building up fractures by selecting appropriate element faces instead of adjusting the mesh to pre-defined fracture surfaces. The implementation of the new numerical fluxes into NDG is verified in 1-D by comparison to an analytical solution and in 2-D by comparing the results of a simulation valid in 1-D and 2-D. Further numerical examples address the effect of fracture systems on seismic wave propagation in 1-D and 2-D featuring effective anisotropy and coda generation. Finally, a study of the reflective and transmissive behaviour of fractures indicates that reflection and transmission coefficients are controlled by the ratio of signal frequency and relaxation frequency of the fracture.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-13
    Description: We infer seismic azimuthal anisotropy from ambient-noise-derived Rayleigh waves in the wider Vienna Basin region. Cross-correlations of the ambient seismic field are computed for 1953 station pairs and periods from 5 to 25? s to measure the directional dependence of interstation Rayleigh-wave group velocities. We perform the analysis for each period on the whole data set, as well as in overlapping 2°-cells to regionalize the measurements, to study expected effects from isotropic structure, and isotropic–anisotropic trade-offs. To extract azimuthal anisotropy that relates to the anisotropic structure of the Earth, we analyse the group velocity residuals after isotropic inversion. The periods discussed in this study (5–20? s) are sensitive to crustal structure, and they allow us to gain insight into two distinct mechanisms that result in fast orientations. At shallow crustal depths, fast orientations in the Eastern Alps are S/N to SSW/NNE, roughly normal to the Alps. This effect is most likely due to the formation of cracks aligned with the present-day stress-field. At greater depths, fast orientations rotate towards NE, almost parallel to the major fault systems that accommodated the lateral extrusion of blocks in the Miocene. This is coherent with the alignment of crystal grains during crustal deformation occurring along the fault systems and the lateral extrusion of the central part of the Eastern Alps.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2013-10-24
    Description: The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located earthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini-Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW–SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE–SSW. Intermediate depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east-west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW–SE compression. The lateral and depth variations of the stress field reflect the various agents that influence tectonics in the Aegean: subduction of the Hellenic slab, incipient collision with continental African lithosphere, roll back of the slab in the south-east, segmentation of the slab, arc volcanism and extension of the Aegean crust.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-11
    Description: Historic analogue seismograms of the large 1956 Amorgos twin earthquakes which occurred in the volcanic arc of the Hellenic Subduction Zone (HSZ) were collected, digitized and reanalyzed to obtain refined estimates of their depth and focal mechanism. In total, 80 records of the events from 29 European stations were collected and, if possible, digitized. In addition, bulletins were searched for instrument parameters required to calculate transfer functions for instrument correction. A grid search based on matching the digitized historic waveforms to complete synthetic seismograms was then carried out to infer optimal estimates for depth and focal mechanism. Owing to incomplete or unreliable information on instrument parameters and frequently occurring technical problems during recording such as writing needles jumping off mechanical recording systems, much less seismograms than collected proved suitable for waveform matching. For the first earthquake, only 7 seismograms from three different stations (STU, GTT, COP) could be used. Nevertheless, the grid search produces stable optimal values for both source depth and focal mechanism. Our results indicate a shallow hypocenter at about 25 km depth. The best-fitting focal mechanism is a SW–NE-trending normal fault dipping either by 30° towards SE or 60° towards NW. This finding is consistent with the local structure of the Santorini–Amorgos graben. For the second earthquake, 4 seismograms from three different stations (JEN, GTT, COP) proved suitable for waveform matching. Whereas it was impossible to obtain meaningful results for the focal mechanism owing to surface wave coda of the first event overlapping body wave phases of the second event, waveform matching and time-frequency analysis point to a considerably deeper hypocenter located within the Wadati–Benioff-zone of the subducting African plate at about 120–160 km depth.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-02
    Description: Return flow in a deep subduction channel (DSC) has been proposed to explain rapid exhumation of high pressure-low temperature metamorphic rocks, entirely based on the fossil rock record. Supported by thermo-mechanical models, the DSC is envisioned as a thin layer on top of the subducted plate reaching down to minimum depths of about 150 km. We perform numerical simulations of high-frequency seismic wave propagation (1 to 6 Hz) to explore potential seismological evidence for the in-situ existence of a DSC. Motivated by field observations, for modeling purposes we assume a simple block-in-matrix structure with eclogitic blocks floating in a serpentinite matrix. Homogenization calculations for block-in-matrix structures demonstrate that effective seismic velocities in such composites are lower than in the surrounding oceanic crust and mantle, with nearly constant values along the entire length of the DSC. Synthetic seismograms for receivers at the surface computed for intermediate depth earthquakes in the subducted oceanic crust for models with and without DSC turn out to be markedly influenced by its presence or absence. In models with channel, P and S waveforms are dominated by delayed high-amplitude guided waves emanating from the waveguide formed by oceanic crust and DSC. Simulated patterns allow for definition of typical signatures and discrimination between models with and without DSC. These signatures stably recur in slightly modified form for earthquakes at different depths inside subducted oceanic crust. Comparison with available seismological data from intermediate depth earthquakes recorded in the forearc of the Hellenic subduction zone reveal similar multi-arrival patterns as observed in the synthetic seismograms for models with DSC. According to our results, observation of intermediate depth earthquakes along a profile across the forearc may allow to test the hypothesis of a DSC and to identify situations where such processes could be active today.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...