ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (592)
  • Signal Transduction  (348)
  • Models, Molecular  (249)
  • 2005-2009  (589)
  • 1975-1979  (3)
Collection
  • Articles  (592)
Keywords
Years
Year
  • 1
    Publication Date: 2009-12-19
    Description: Inward-rectifier potassium (K+) channels conduct K+ ions most efficiently in one direction, into the cell. Kir2 channels control the resting membrane voltage in many electrically excitable cells, and heritable mutations cause periodic paralysis and cardiac arrhythmia. We present the crystal structure of Kir2.2 from chicken, which, excluding the unstructured amino and carboxyl termini, is 90% identical to human Kir2.2. Crystals containing rubidium (Rb+), strontium (Sr2+), and europium (Eu3+) reveal binding sites along the ion conduction pathway that are both conductive and inhibitory. The sites correlate with extensive electrophysiological data and provide a structural basis for understanding rectification. The channel's extracellular surface, with large structured turrets and an unusual selectivity filter entryway, might explain the relative insensitivity of eukaryotic inward rectifiers to toxins. These same surface features also suggest a possible approach to the development of inhibitory agents specific to each member of the inward-rectifier K+ channel family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819303/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819303/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tao, Xiao -- Avalos, Jose L -- Chen, Jiayun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-10/GM/NIGMS NIH HHS/ -- R01 GM043949-11/GM/NIGMS NIH HHS/ -- R01 GM043949-12/GM/NIGMS NIH HHS/ -- R01 GM043949-13/GM/NIGMS NIH HHS/ -- R01 GM043949-14/GM/NIGMS NIH HHS/ -- R01 GM043949-15/GM/NIGMS NIH HHS/ -- R01 GM043949-16/GM/NIGMS NIH HHS/ -- R01 GM043949-17/GM/NIGMS NIH HHS/ -- R01 GM043949-18/GM/NIGMS NIH HHS/ -- R01 GM043949-19/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1668-74. doi: 10.1126/science.1180310.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20019282" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Chickens ; Cloning, Molecular ; Crystallography, X-Ray ; Europium/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Oocytes ; Patch-Clamp Techniques ; Potassium/metabolism ; Potassium Channel Blockers/pharmacology ; Potassium Channels, Inwardly Rectifying/antagonists & ; inhibitors/*chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Rubidium/metabolism ; Sequence Alignment ; Strontium/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Robert H -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1494-5. doi: 10.1126/science.1183842.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurology, Biochemistry and Molecular Pharmacology and Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. robert.brown@umassmed.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007892" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/pathology/*physiopathology ; Animals ; Binding Sites ; Carrier Proteins/metabolism ; Disease Models, Animal ; Histone Deacetylases/metabolism ; Mice ; Mice, Transgenic ; MicroRNAs/genetics/*metabolism ; Muscle Cells/enzymology ; Muscle Denervation ; Muscle, Skeletal/innervation/metabolism ; Myostatin/genetics ; Neuromuscular Junction/*pathology/*physiology ; RNA Interference ; Sequence Analysis, RNA ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-17
    Description: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons, denervation of target muscles, muscle atrophy, and paralysis. Understanding ALS pathogenesis may require a fuller understanding of the bidirectional signaling between motor neurons and skeletal muscle fibers at neuromuscular synapses. Here, we show that a key regulator of this signaling is miR-206, a skeletal muscle-specific microRNA that is dramatically induced in a mouse model of ALS. Mice that are genetically deficient in miR-206 form normal neuromuscular synapses during development, but deficiency of miR-206 in the ALS mouse model accelerates disease progression. miR-206 is required for efficient regeneration of neuromuscular synapses after acute nerve injury, which probably accounts for its salutary effects in ALS. miR-206 mediates these effects at least in part through histone deacetylase 4 and fibroblast growth factor signaling pathways. Thus, miR-206 slows ALS progression by sensing motor neuron injury and promoting the compensatory regeneration of neuromuscular synapses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796560/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796560/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Andrew H -- Valdez, Gregorio -- Moresi, Viviana -- Qi, Xiaoxia -- McAnally, John -- Elliott, Jeffrey L -- Bassel-Duby, Rhonda -- Sanes, Joshua R -- Olson, Eric N -- 1F32NS061464-01A1/NS/NINDS NIH HHS/ -- R01 HL093039/HL/NHLBI NIH HHS/ -- R01 HL093039-01A1/HL/NHLBI NIH HHS/ -- T32HL007360/HL/NHLBI NIH HHS/ -- U24 CA126608/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1549-54. doi: 10.1126/science.1181046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007902" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/pathology/*physiopathology ; Animals ; Axons/physiology ; Carrier Proteins/genetics/metabolism ; Disease Models, Animal ; Disease Progression ; Fibroblast Growth Factors/metabolism ; Histone Deacetylases/genetics/metabolism ; Mice ; Mice, Transgenic ; MicroRNAs/genetics/*metabolism ; Motor Neurons/pathology/*physiology ; Muscle Denervation ; Muscle, Skeletal/innervation/*metabolism/pathology ; MyoD Protein/genetics/metabolism ; Myogenin/genetics/metabolism ; Nerve Regeneration ; Neuromuscular Junction/growth & development/*pathology/*physiology ; RNA Interference ; Signal Transduction ; Transcriptional Activation ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-08
    Description: Fanconi anemia is a human cancer predisposition syndrome caused by mutations in 13 Fanc genes. The disorder is characterized by genomic instability and cellular hypersensitivity to chemicals that generate DNA interstrand cross-links (ICLs). A central event in the activation of the Fanconi anemia pathway is the mono-ubiquitylation of the FANCI-FANCD2 complex, but how this complex confers ICL resistance remains enigmatic. Using a cell-free system, we showed that FANCI-FANCD2 is required for replication-coupled ICL repair in S phase. Removal of FANCD2 from extracts inhibits both nucleolytic incisions near the ICL and translesion DNA synthesis past the lesion. Reversal of these defects requires ubiquitylated FANCI-FANCD2. Our results show that multiple steps of the essential S-phase ICL repair mechanism fail when the Fanconi anemia pathway is compromised.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909596/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909596/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knipscheer, Puck -- Raschle, Markus -- Smogorzewska, Agata -- Enoiu, Milica -- Ho, The Vinh -- Scharer, Orlando D -- Elledge, Stephen J -- Walter, Johannes C -- GM62267/GM/NIGMS NIH HHS/ -- R01 GM062267/GM/NIGMS NIH HHS/ -- R01 GM062267-09/GM/NIGMS NIH HHS/ -- R37 GM044664/GM/NIGMS NIH HHS/ -- R37 GM044664-23/GM/NIGMS NIH HHS/ -- T32CA09216/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1698-701. doi: 10.1126/science.1182372. Epub 2009 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965384" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell-Free System ; Chromatin/metabolism ; DNA/biosynthesis ; DNA Damage ; *DNA Repair ; *DNA Replication ; Fanconi Anemia/genetics/metabolism ; Fanconi Anemia Complementation Group D2 Protein/*metabolism ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Molecular Sequence Data ; Recombinant Proteins/metabolism ; S Phase ; Signal Transduction ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Xenopus Proteins/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-08
    Description: Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edwards, Marcus J -- Flatman, Ruth H -- Mitchenall, Lesley A -- Stevenson, Clare E M -- Le, Tung B K -- Clarke, Thomas A -- McKay, Adam R -- Fiedler, Hans-Peter -- Buttner, Mark J -- Lawson, David M -- Maxwell, Anthony -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1415-8. doi: 10.1126/science.1179123.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, John Innes Centre, Colney, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965760" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/chemistry/metabolism/pharmacology ; Binding Sites ; Coumarins/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; DNA Gyrase/*chemistry/genetics/*metabolism ; DNA, Bacterial/metabolism ; Drug Resistance, Bacterial ; Escherichia coli/drug effects/*enzymology/genetics ; Glycosides/chemistry/metabolism/pharmacology ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mutagenesis, Site-Directed ; Mutation ; Protein Multimerization ; Protein Structure, Tertiary ; Topoisomerase II Inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-08
    Description: The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhner, Sebastian -- van Noort, Vera -- Betts, Matthew J -- Leo-Macias, Alejandra -- Batisse, Claire -- Rode, Michaela -- Yamada, Takuji -- Maier, Tobias -- Bader, Samuel -- Beltran-Alvarez, Pedro -- Castano-Diez, Daniel -- Chen, Wei-Hua -- Devos, Damien -- Guell, Marc -- Norambuena, Tomas -- Racke, Ines -- Rybin, Vladimir -- Schmidt, Alexander -- Yus, Eva -- Aebersold, Ruedi -- Herrmann, Richard -- Bottcher, Bettina -- Frangakis, Achilleas S -- Russell, Robert B -- Serrano, Luis -- Bork, Peer -- Gavin, Anne-Claude -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1235-40. doi: 10.1126/science.1176343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965468" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*analysis/isolation & purification/metabolism ; Computational Biology ; *Genome, Bacterial ; Mass Spectrometry/methods ; Metabolic Networks and Pathways ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Multiprotein Complexes/*analysis/metabolism ; Mycoplasma pneumoniae/*chemistry/*genetics/metabolism/ultrastructure ; Pattern Recognition, Automated ; Protein Interaction Mapping ; *Proteome ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-08
    Description: To understand basic principles of bacterial metabolism organization and regulation, but also the impact of genome size, we systematically studied one of the smallest bacteria, Mycoplasma pneumoniae. A manually curated metabolic network of 189 reactions catalyzed by 129 enzymes allowed the design of a defined, minimal medium with 19 essential nutrients. More than 1300 growth curves were recorded in the presence of various nutrient concentrations. Measurements of biomass indicators, metabolites, and 13C-glucose experiments provided information on directionality, fluxes, and energetics; integration with transcription profiling enabled the global analysis of metabolic regulation. Compared with more complex bacteria, the M. pneumoniae metabolic network has a more linear topology and contains a higher fraction of multifunctional enzymes; general features such as metabolite concentrations, cellular energetics, adaptability, and global gene expression responses are similar, however.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yus, Eva -- Maier, Tobias -- Michalodimitrakis, Konstantinos -- van Noort, Vera -- Yamada, Takuji -- Chen, Wei-Hua -- Wodke, Judith A H -- Guell, Marc -- Martinez, Sira -- Bourgeois, Ronan -- Kuhner, Sebastian -- Raineri, Emanuele -- Letunic, Ivica -- Kalinina, Olga V -- Rode, Michaela -- Herrmann, Richard -- Gutierrez-Gallego, Ricardo -- Russell, Robert B -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1263-8. doi: 10.1126/science.1177263.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra, Avenida Dr. Aiguader 88, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965476" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacterial Proteins/*metabolism ; Culture Media ; Energy Metabolism ; Enzymes/genetics/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; *Genome, Bacterial ; Glycolysis ; *Metabolic Networks and Pathways ; Mycoplasma pneumoniae/*genetics/growth & development/*metabolism ; RNA, Bacterial/genetics/metabolism ; Signal Transduction ; Systems Biology ; Transcription, Genetic ; rRNA Operon
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-08
    Description: The extracellular matrix (ECM) and ECM proteins are important in phenomena as diverse as developmental patterning, stem cell niches, cancer, and genetic diseases. The ECM has many effects beyond providing structural support. ECM proteins typically include multiple, independently folded domains whose sequences and arrangement are highly conserved. Some of these domains bind adhesion receptors such as integrins that mediate cell-matrix adhesion and also transduce signals into cells. However, ECM proteins also bind soluble growth factors and regulate their distribution, activation, and presentation to cells. As organized, solid-phase ligands, ECM proteins can integrate complex, multivalent signals to cells in a spatially patterned and regulated fashion. These properties need to be incorporated into considerations of the functions of the ECM.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536535/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536535/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hynes, Richard O -- P01 HL066105/HL/NHLBI NIH HHS/ -- R01 CA017007/CA/NCI NIH HHS/ -- U54 CA126515/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1216-9. doi: 10.1126/science.1176009.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. rohynes@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965464" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; *Cell Physiological Processes ; Extracellular Matrix/*physiology ; Extracellular Matrix Proteins/chemistry/*metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Models, Biological ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Signal Transduction ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-12-08
    Description: Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate that Torso, a receptor tyrosine kinase that regulates embryonic terminal cell fate in Drosophila, is the PTTH receptor. Trunk, the embryonic Torso ligand, is related to PTTH, and ectopic expression of PTTH in the embryo partially rescues trunk mutants. In larvae, torso is expressed specifically in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation of the Torso/ERK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rewitz, Kim F -- Yamanaka, Naoki -- Gilbert, Lawrence I -- O'Connor, Michael B -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1403-5. doi: 10.1126/science.1176450.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965758" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bombyx/*genetics/metabolism ; Cell Line ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/embryology/genetics/*growth & development/metabolism ; Embryo, Nonmammalian/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Insect Hormones/chemistry/*metabolism ; Larva/growth & development ; Ligands ; *Metamorphosis, Biological ; Molecular Sequence Data ; Neurons/metabolism ; Phosphorylation ; Pupa/growth & development ; RNA Interference ; Receptor Protein-Tyrosine Kinases/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...