ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (85)
  • Maps
  • Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung  (46)
  • Washington, D.C. : Mineralogical Society of America  (31)
  • Amsterdam : Elsevier
  • English  (85)
  • 2005-2009  (8)
  • 2000-2004  (54)
  • 1995-1999  (11)
  • 1980-1984  (12)
  • GFZ Library  (85)
Collection
  • Books  (85)
  • Maps
Language
Years
Year
Branch Library
  • 1
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP-168-548 ; ZS-090(548)
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 103 S. : graph. Darst.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 548
    Classification:
    Stratigraphy
    Language: English
    Note: Zugl.: Bremen, Univ., Diss., 2006
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP-168-547 ; ZS-090(547)
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 152 S. : graph. Darst.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 547
    Classification:
    Meteorology and Climatology
    Language: English
    Note: Zugl.: Bremen, Univ., Diss., 2005
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: ZSP-168-549 ; ZS-090(549)
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 214 S. : graph. Darst.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 549
    Classification:
    Oceanology
    Language: English
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP-168-541 ; ZS-090(541
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: XVI, 141 S. : Ill., graph. Darst.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 541
    Classification:
    Meteorology and Climatology
    Language: English
    Note: Zugl.: Greifswald, Univ., Diss., 2005
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP-168-539 ; ZS-090(539)
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 123 S. : Ill., graph. Darst., Kt.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 539
    Language: English
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZSP 168-501 ; ZS-090(501)
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: II, 247 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 501
    Classification:
    Oceanology
    Language: English
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: ZSP-168-500 ; ZS-090(500)
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 302 S. , graph. Darst.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 500
    Classification:
    Oceanology
    Language: English
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: ZSP-168-502 ; ZS-090(502)
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 106 S. , graph. Darst.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 502
    Classification:
    Oceanology
    Language: English
    Location: AWI Reading room
    Location: Lower compact magazine
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: ILP/M 06.0353
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: vi, 271 S. : Ill., graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 381,1-4 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(462) ; ZSP-168-462
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: IV, 120 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 462
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 04.0009
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Since the dawn of life on earth, organisms have played roles in mineral formation in processes broadly known as biomineralization. This biologically-mediated organization of aqueous ions into amorphous and crystalline materials results in materials that are as simple as adventitious precipitates or as complex as exquisitely fabricated structures that meet specialized functionalities. The purpose of this volume of Reviews in Mineralogy and Geochemistry is to provide students and professionals in the earth sciences with a review that focuses upon the various processes by which organisms direct the formation of minerals. Our framework of examining biominerals from the viewpoints of major mineralization strategies distinguishes this volume from most previous reviews. The review begins by introducing the reader to over-arching principles that are needed to investigate biomineralization phenomena and shows the current state of knowledge regarding the major approaches to mineralization that organisms have developed over the course of Earth history. By exploring the complexities that underlie the "synthesis" of biogenic materials, and therefore the basis for how compositions and structures of biominerals are mediated (or not), we believe this volume will be instrumental in propelling studies of biomineralization to a new level of research questions that are grounded in an understanding of the underlying biological phenomena.
    Type of Medium: Monograph available for loan
    Pages: xiii, 381 S.
    ISBN: 0-939950-66-9 , 978-0-939950-66-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 54
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. An Overview of Biomineralization Processes and the Problem of the Vital Effect by Steve Weiner and Patricia M. Dove, p. 1 - 30 Chapter 2. Principles of Molecular Biology and Biomacromolecular Chemistry by John S. Evans, p. 31 - 56 Chapter 3. Principles of Crystal Nucleation and Growth by James J. De Yoreo and Peter G. Vekilov, p. 57 - 94 Chapter 4. Biologically Induced Mineralization by Bacteria by Richard B. Frankel and Dennis A. Bazylinskn, p. 95 - 114 Chapter 5. The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies by Jonathan Erez, p. 115 - 150 Chapter 6. Geochemical Perspectives on Coral Mineralization by Anne L. Cohen and Ted A. McConnaughey, p. 151 - 188 Chapter 7. Biomineralization Within Vesicles: The Calcite of Coccoliths by Jeremy R. Young and Karen Henriksen, p. 189 - 216 Chapter 8. Biologically Controlled Mineralization in Prokaryotes by Dennis A. Bazylinski and Richard B. Frankel, p. 217 - 248 Chapter 9. Mineralization in Organic Matrix Frameworks by Arthur Veis, p. 249 - 290 Chapter 10. Silicification: The Processes by Which Organisms Capture and Mineralize Silica by Carole C. Perry, p. 291 - 328 Chapter 11. Biomineralization and Evolutionary History by Andrew H Knoll, p. 329 - 356 Chapter 12. Biomineralization and Global Biogeochemical Cycles by Philippe Van Cappellen, p. 357 -381
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(440) ; ZSP-168-440
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VIII, 155 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 440
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 04.0008
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: In the two decades since J. Alexander Speer's Zircon chapter in Orthosilicates (Reviews in Mineralogy, Vol. 5), much has been learned about the internal textures, trace-element and isotope geochemistry (both radiogenic and stable) and chemical and mechanical stability of zircon. The application of this knowledge and the use of zircon in geologic studies have become widespread. Today, the study of zircon exists as the pseudo-discipline of "zirconology" that involves materials scientists and geoscientists from across a range of sub-disciplines including stable and radiogenic isotopes, sedimentology, petrology, trace elements and experimental mineralogy. Zirconology has become an important field of research, so much so that coverage of the mineral zircon in a review volume that included zircon as one of many accessory minerals would not meet the needs or interests of the zirconology community in terms of depth or breadth of coverage. The sixteen chapters in this volume cover the most important aspects of zircon-related research over the past twenty-years and highlight possible future research avenues. Finch and Hanchar (Chapter 1) review the structure of zircon and other mineral (and synthetic) phases with the zircon structure. In most rock types where zircon occurs it is a significant host of the rare-earth elements, Th and U. The abundances of these elements and the form of chondrite-normalized rare-earth element patterns may provide significant information on the processes that generate igneous and metamorphic rocks. The minor and trace element compositions of igneous, metamorphic and hydrothermal zircons are reviewed by Hoskin and Schaltegger in Chapter 2. The investigation of melt inclusions in zircon is an exciting line of new research. Trapped melt inclusions can provide direct information of the trace element and isotopic composition of the melt from which the crystal formed as a function of time throughout the growth of the crystal. Thomas et a!. (Chapter 3) review the study of melt inclusions in zircon. Hanchar and Watson (Chapter 4) review experimental and natural studies of zircon saturation and the use of zircon saturation thermometry for natural rocks. Cation diffusion and oxygen diffusion in zircon is discussed by Cherniak and Watson (Chapter 5). Diffusion studies are essential for providing constraints on the quality of trace element and isotope data and for providing estimates of temperature exposure in geological environments. Zircon remains the most widely utilized accessory mineral for U- Th-Pb isotope geochronology. Significant instrumental and analytical developments over the past thirty years mean that zircon has an essential role in early Achaean studies, magma genesis, and astrobiology. Four chapters are devoted to different aspects of zircon geochronology. The first of these four, Chapter 6 by Davis et a!., reviews the historical development of zircon geochronology from the mid-1950s to the present; the following three chapters focus on particular techniques for zircon geochronology, namely ID-TIMS (Parrish and Noble, Chapter 7), SIMS (Ireland and Williams, Chapter 8) and ICP-MS (Kosier and Sylvester, Chapter 9). The application of zircon chronology in constraining sediment provenance.and the calibration ofthe geologic time-scale are reviewed by Fedo et al. (Chapter 10) and Bowring and Schmitz (Chapter 11), respectively. Other isotopic systematics are reviewed for zircon by Kinny and Maas (Chapter 12), who discuss the application of Nd-Sm and Lu-Hf isotopes in zircon to petrogenetic studies, and by Valley (Chapter 13), who discusses the importance of oxygen isotopic studies in traditional and emerging fields of geologic study. As a host of U and Th, zircon is subject to radiation damage. Radiation damage is likely responsible for isotopic disturbance and promotes mechanical instability. There is increasing interest in both the effect of radiation damage on the zircon crystal structure and mechanisms of damage and recrystallization, as well as the structure of the damaged phase. These studies contribute to an overall understanding of how zircon may behave as a waste-form for safe disposal of radioactive waste and are discussed by Ewing et a!. (Chapter 14). The spectroscopy of zircon, both crystalline and metamict is reviewed by Nadsala et a!. (Chapter 15). The final chapter, by Corfu et al. (Chapter 16), is an atlas of internal textures of zircon. The imaging of internal textures in zircon is essential for directing the acquisition of geochemical data and to the integrity of conclusions reached once data has been collected and interpreted. This chapter, for the first time, brings into one place textural images that represent common and not so common textures reported in the literature, along with brief interpretations of their significance. There is presently no comparable atlas. It is intended that this chapter will become a reference point for future workers to compare and contrast their own images against. The chapters in this volume of Reviews in Mineralogy and Geochemistry were prepared for presentation at a Short Course, sponsored by the Mineralogical Society of America (MSA) in Freiburg, Germany, April 3-4, 2003. This preceded a joint meeting of the European Union of Geology, the American Geophysical Union and the European Geophysical Society held in Nice, France, April 6-11, 2003.
    Type of Medium: Monograph available for loan
    Pages: XVII, 500 S.
    ISBN: 0-939950-65-0 , 978-0-939950-65-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 53
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structure and chemistry of zircon and zircon-group minerals by Robert J. Finch and John M. Hanchar, p. 1 - 26 Chapter 2. The composition of zircon and igneous and metamorphic petrogenesis by Paul W. O. Hoskin and Urs Schaltegger, p. 27 - 62 Chapter 3. Melt inclusions in zircon by J. B. Thomas, Robert J. Bodnar, Nobumichi Shimizu, and Craig A. Chesner, p. 63 - 88 Chapter 4. Zircon saturation thermometry by John M. Hanchar and E. Bruce Watson, p. 89 - 112 Chapter 5. Diffusion in zircon by Daniele J. Cherniak and E. Bruce Watson, p. 113 - 144 Chapter 6. Historical development of zircon geochronology by Donald W. Davis, Ian S. Williams, and Thomas E. Krogh, p. 145 - 182 Chapter 7. Zircon U-Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS) by Randall R. Parrish and Stephen R. Noble, p. 183 - 214 Chapter 8. Considerations in zircon geochronology by SIMS by Trevor R. Ireland and Ian S. Williams, p. 215 - 242 Chapter 9. Present trends and the future of zircon in geochronology: laser ablation ICPMS by Jan Kosler and Paul J. Sylvester, p. 243 - 276 Chapter 10. Detrital zircon analysis of the sedimentary record by Christopher M. Fedo, Keith N. Sircombe, and Robert H. Rainbird, p. 277 - 304 Chapter 11. High-precision U-Pb zircon geochronology and the stratigraphic record by Samuel A. Bowring and Mark D. Schmitz, p. 305 - 326 Chapter 12. Lu-Hf and Sm-Nd isotope systems in zircon by Peter D. Kinny and Roland Maas, p. 327 - 342 Chapter 13. Oxygen isotopes in zircon by John W. Valley, p. 343 - 386 Chapter 14. Radiation effects in zircon by Rodney C. Ewing, Alkiviathes Meldrum, LuMin Wang, William J. Weber, and L. René Corrales, p. 387 - 426 Chapter 15. Spectroscopic methods applied to zircon by Lutz Nasdala, Ming Zhang, Ulf Kempe, Gérard Panczer, Michael Gaft, Michael Andrut, and Michael Plotze, p. 427 - 468 Chapter 16. Atlas of zircon textures by Fernando Corfu, John M. Hanchar, Paul W.O. Hoskin, and Peter Kinny, p. 469 - 500
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Call number: ZS-090(466) ; ZSP-168-466
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: iv, 341 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 466
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Series available for loan
    Series available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0180
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Exactly 100 years before the publication of this volume, the first paper which calculated the half-life for the newly discovered radioactive substance U-X (now called 234Th), was published. Now, in this volume, the editors Bernard Bourdon, Gideon Henderson, Craig Lundstrom and Simon Turner have integrated a group of contributors who update our knowledge of U-series geochemistry, offer an opportunity for non-specialists to understand its basic principles, and give us a view of the future of this active field of research. In this volume, for the first time, all the methods for determining the uranium and thorium decay chain nuclides in Earth materials are discussed. It was prepared in advance of a two-day short course (April 3-4, 2003) on U-series geochemistry, jointly sponsored by GS and MSA and presented in Paris, France prior to the joint EGS/AGU/EUG meeting in Nice. The discovery of the 238U decay chain, of course, started with the seminal work of Marie Curie in identifying and separating 226Ra. Through the work of the Curies and others, all the members of the 238U decay chain were identified. An important milestone for geochronometrists was the discovery of 230Th (called Ionium) by Bertram Boltwood, the Yale scientist who also made the first age determinations on minerals using the U-Pb dating method (Boltwood in 1906 established the antiquity of rocks and even identified a mineral from Sri Lanka-then Ceylon as having an age of 2.1 billion years!) The application of the 238U decay chain to the dating of deep sea sediments was by Piggott and Urry in 1942 using the "Ionium" method of dating. Actually they measured 222Ra (itself through 222Rn) assuming secular equilibrium had been established between 230Th and 226Ra. Although 230Th was measured in deep sea sediments by Picciotto and Gilvain in 1954 using photographic emulsions, it was not until alpha spectrometry was developed in the late 1950's that 20Th was routinely measured in marine deposits. Alpha spectrometry and gamma spectrometry became the work horses for the study of the uranium and thorium decay chains in a variety of Earth materials. These ranged from 222Rn and its daughters in the atmosphere, to the uranium decay chain nuclides in the oceanic water column, and volcanic rocks and many other systems in which either chronometry or element partitioning, were explored. Much of what we learned about the 238U, 235U and 232Th decay chain nuclides as chronometers and process indicators we owe to these seminal studies based on the measurement of radioactivity. The discovery that mass spectrometry would soon usurp many of the tasks performed by radioactive counting was in itself serendipitous. It came about because a fundamental issue in cosmochemistry was at stake. Although variation in 235U/238U had been reported for meteorites the results were easily discredited as due to analytical difficulties. One set of results, however, was published by a credible laboratory long involved in quality measurements of high mass isotopes such as the lead isotopes. The purported discovery of 235U/238U variations in meteorites, if true, would have consequences in defining the early history of the formation of the elements and the development of inhomogeneity of uranium isotopes in the accumulation of the protoplanetary materials of the Solar System. Clearly the result was too important to escape the scrutiny of falsification implicit in the way we do science. The Lunatic Asylum at Caltech under the leadership of Jerry Wasserburg took on that task. Jerry Wasserburg and Jim Chen clearly established the constancy and Earth-likeness of 235U/238U in the samplable universe. In the hands of another member of the Lunatic Asylum, Larry Edwards, the methodology was transformed into a tool for the study of the 238U decay chain in marine systems. Thus the mass spectrometric techniques developed provided an approach to measuring the U and Th isotopes in geological materials as well as cosmic materials with the same refinement and accommodation for small sample size. Soon after this discovery the harnessing of the technique to the measurement of all the U isotopes and all the Th isotopes with great precision immediately opened up the entire field of uranium and thorium decay chain studies. This area of study was formerly the poaching ground for radioactive measurements alone but now became part of the wonderful world of mass spectrometric measurements. (The same transformation took place for radiocarbon from the various radioactive counting schemes to 'accelerator mass spectrometry.) No Earth material was protected from this assault. The refinement of dating corals, analyzing volcanic rocks for partitioning and chronometer studies and extensions far and wide into ground waters and ocean bottom dwelling organisms has been the consequence of this innovation. Although Ra isotopes, 210Pb and 210Po remain an active pursuit of those doing radioactive measurements, many of these nuclides have also become subject to the mass spectrometric approach. In this volume, for the first time, all the methods for determining the uranium and thorium decay chain nuclides in Earth materials are discussed. The range of problems solvable with this approach is remarkable-a fitting, tribute to the Curies and the early workers who discovered them for us to use.
    Type of Medium: Series available for loan
    Pages: xx, 656 S.
    ISBN: 0-939950-64-2 , 978-0-939950-64-5
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 52
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Introduction to U-series Geochemistry by Bernard Bourdon, Simon Turner, Gideon M. Henderson and Craig C. Lundstrom, p. 1 - 22 Chapter 2. Techniques for Measuring Uranium-series Nuclides: 1992-2002 by Steven J. Goldstein and Claudine H. Stirling, p. 23 - 58 Chapter 3. Mineral-Melt Partitioning of Uranium, Thorium and Their Daughters by Jonathan Blundy and Bernard Wood, p. 59 - 124 Chapter 4. Timescales of Magma Chamber Processes and Dating of Young Volcanic Rocks by Michel Condomines, Pierre-Jean Gauthier, and Olgeir Sigmarsson, p. 125 - 174 Chapter 5. Uranium-series Disequilibria in Mid-ocean Ridge Basalts: Observations and Models of Basalt Genesis by Craig C. Lundstrom, p. 175 - 214 Chapter 6. U-series Constraints on Intraplate Basaltic Magmatism by Bernard Bourdon and Kenneth W. W. Sims, p. 215 - 254 Chapter 7. Insights into Magma Genesis at Convergent Margins from U-series Isotopes by Simon Turner, Bernard Bourdon and Jim Gill, p. 255 - 316 Chapter 8. The Behavior of U- and Th-series Nuclides in Groundwater by Donald Porcelli and Peter W. Swarzenski, p. 317 - 362 Chapter 9. Uranium-series Dating of Marine and Lacustrine Carbonates by R. L. Edwards, C. D. Gallup, and H. Cheng, p. 363 - 406 Chapter 10. Uranium-series Chronology and Environmental Applications of Speleothems by David A. Richards and Jeffrey A. Dorale, p. 407 - 460 Chapter 11. Short-lived U/Th Series Radionuclides in the Ocean: Tracers for Scavenging Rates, Export Fluxes and Particle Dynamics by J. K. Cochran and P. Masquè, p. 461 - 492 Chapter 12. The U-series Toolbox for Paleoceanography by Gideon M. Henderson and Robert F. Anderson, p. 493 - 532 Chapter 13. U-Th-Ra Fractionation During Weathering and River Transport by F. Chabaux, J. Riotte and O. Dequincey, p. 533 - 576 Chapter 14. The Behavior of U- and Th-series Nuclides in the Estuarine Environment by Peter W. Swarzenski, Donald Porcelli, Per S. Andersson and Joseph M. Smoakv, p. 577 - 606 Chapter 15. U-series Dating and Human Evolution by A. W. G. Pike and P. B. Pettitt, p. 607 - 630 Chapter 16. Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology by K. R. Ludwig, p. 631 - 656
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0010
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Several years ago, John Rakovan and John Hughes (colleagues at Miami of Ohio), and later Matt Kohn (at South Carolina), separately proposed short courses on phosphate minerals to the Council of the Mineralogical Society of America (MSA). Council suggested that they join forces. Thus this volume, Phosphates: Geochemical, Geobiological, and Materials Importance, was organized. It was prepared in advance of a short course of the same title, sponsored by MSA and presented at Golden, Colorado, October 25-27. We are pleased to present this volume entitled Phosphates: Geochemical, Geobiological and Materials Importance. Phosphate minerals are an integral component of geological and biological systems. They are found in virtually all rocks, are the major structural component of vertebrates, and when dissolved are critical for biological activity. This volume represents the work of many authors whose research illustrates how the unique chemical and physical behavior of phosphate minerals permits a wide range of applications that encompasses phosphate mineralogy, petrology, biomineralization, geochronology, and materials science. While diverse, these fields are all linked structurally, crystal-chemically and geochemically. As geoscientists turn their attention to the intersection of the biological, geological, and material science realms, there is no group of compounds more germane than the phosphates. The chapters of this book are grouped into five topics: Mineralogy and Crystal Chemistry, Petrology, Biomineralization, Geochronology, and Materials Applications. In the first section, three chapters are devoted to mineralogical aspects of apatite, a phase with both inorganic and organic origins, the most abundant phosphate mineral on earth, and the main mineral phase in the human body. Monazite and xenotime are highlighted in a fourth chapter, which includes their potential use as solid-state radioactive waste repositories. The Mineralogy and Crystal Chemistry section concludes with a detailed examination of the crystal chemistry of 244 other naturally-occurring phosphate phases and a listing of an additional 126 minerals. In the Petrology section, three chapters detail the igneous, metamorphic, and sedimentary aspects of phosphate minerals. A fourth chapter provides a close look at analyzing phosphates for major, minor, and trace elements using the electron microprobe. A final chapter treats the global geochemical cycling of phosphate, a topic of intense, current geochemical interest. The Biomineralization section begins with a summary of the current state of research on bone, dentin and enamel phosphates, a topic that crosses disciplines that include mineralogical, medical, and dental research. The following two chapters treat the stable isotope and trace element compositions of modern and fossil biogenic phosphates, with applications to paleontology, paleoclimatology, and paleoecology. The Geochronology section focuses principally on apatite and monazite for U-ThPb, (U- Th)/He, and fission-track age determinations; it covers both classical geochronologic techniques as well as recent developments. The final section-Materials Applications-highlights how phosphate phases play key roles in fields such as optics, luminescence, medical engineering and prosthetics, and engineering of radionuclide repositories. These chapters provide a glimpse of the use of natural phases in engineering and biomedical applications and illustrate fruitful areas of future research in geochemical, geobiological and materials science. We hope all chapters in this volume encourage researchers to expand their work on all aspects of natural and synthetic phosphate compounds.
    Type of Medium: Monograph available for loan
    Pages: xv, 742 S.
    ISBN: 0-939950-60-X , 978-0-939950-60-7
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 48
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl) by John M. Hughes and John Rakovan, p. 1 - 12 Chapter 2. Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors by Yuanming Pana and Michael E. Fleet, p. 13 - 50 Chapter 3. Growth and Surface Properties of Apatite by John Rakovan, p. 51 - 86 Chapter 4. Synthesis, Structure and Properties of Monazite, Pretulite, and Xenotime by Lynn A. Boatner, p. 87 - 122 Chapter 5. The Crystal Chemistry of the Phosphate Minerals by Danielle M.C. Huminicki and Frank C. Hawthorne, p. 123 - 254 Chapter 6. Apatite in Igneous Systems by Philip M. Piccoli and Philip A. Candela, p. 255 - 292 Chapter 7. Apatite, Monazite, and Xenotine in Metamorphic Rocks by Frank S. Spear and Joseph M. Pyle, p. 293 - 336 Chapter 8. Electron Microprobe Analysis of REE in Apatite, Monazite and Xenotime: Protocols and Pitfalls by Joseph M. Pyle, Frank S. Spear, and David A. Wark, p. 337 - 362 Chapter 9. Sedimentary Phosphorites - An Example: Phosphoria Formation, Southeastern Idaho, U.S.A by Andrew C. Knudsen and Mickey E. Gunter, p. 363 - 390 Chapter 10. The Global Phosphorus Cycle by Gabriel M. Filippelli, p. 391 - 426 Chapter 11. Calcium Phosphate Biominerals by James C. Elliott, p. 427 - 454 Chapter 12. Stable Isotope Composition of Biological Apatite by Matthew J. Kohn and Thure E. Cerling, p. 455 - 488 Chapter 13. Trace Elements in Recent and Fossil Bone Apatite by Clive N. Trueman and Noreen Tuross, p. 489 - 522 Chapter 14. U-TH-Pb Dating of Phosphate Minerals by T. Mark Harrison, Elizabeth J. Catlos, and Jean-Marc Montel, p. 523 - 558 Chapter 15. (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime by Kenneth A. Farley and Daniel F. Stockli, p. 559 - 578 Chapter 16. Fission Track Dating of Phosphate Minerals and the Thermochronology of Apatite by Andrew J.W. Gleadow, David X. Belton, Barry P. Kohn, and Roderick W. Brown, p. 579 - 630 Chapter 17. Biomedical Application of Apatites by Karlis A. Gross and Christopher C. Berndt, p. 631 - 672 Chapter 18. Phosphates as Nuclear Waste Forms by Rodney C. Ewing and LuMin Wang, p. 673 - 700 Chapter 19. Apatite Luminescence by Glenn A. Waychuna, p. 701 - 742
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0179
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume highlights some of the frontiers in the study of plastic deformation of minerals and rocks. The research into the plastic properties of minerals and rocks had a major peak in late 1960s to early 1970s, largely stimulated by research in the laboratory of D. T. Griggs and his students and associates. It is the same time when the theory of plate tectonics was established and provided a first quantitative theoretical framework for understanding geological processes. The theory of plate tectonics stimulated the study of deformation properties of Earth materials, both in the brittle and the ductile regimes. Many of the foundations of plastic deformation of minerals and rocks were established during this period. Also, new experimental techniques were developed, including deformation apparatus for high-pressure and high-temperature conditions, electron micros-copy study of defects in minerals, and the X-ray technique of deformation fabric analysis. The field benefited greatly from materials science concepts of deformation that were introduced, including the models of point defects and their interaction with dislocations. A summary of progress is given by the volume Flow and Fracture of Rocks: The Griggs Volume, published in 1972 by the American Geophysical Union. Since then, the scope of Earth sciences has greatly expanded. Geodynamics became concerned with the Earth's deep interior where seismologists discovered heterogeneities and anisotropy at all scales that were previously thought to be typical of the crust and the upper mantle. Investigations of the solar system documented new mineral phases and rocks far beyond the Earth. Both domains have received a lot of attention from mineralogists (e.g., summarized in MSA's Reviews in Mineralogy, Volume 36, Planetary Materials and Volume 37, Ultra-High Pressure Mineralogy). Most attention was directed towards crystal chemistry and phase relations, yet an understanding of the deformation behavior is essential for interpreting the dynamic geological processes from geological and geophysical observations. This was largely the reason for a rebirth of the study of rock plasticity, leading to new approaches that include experiments at extreme conditions and modeling of deformation behavior based on physical principles. A wide spectrum of communities emerged that need to use information about mineral plasticity, including mineralogy, petrology, structural geology, seismology, geodynamics and engineering. This was the motivation to organize a workshop, in December 2002 in Emeryville, California, to bridge the very diverse disciplines and facilitate communication. This volume written for this workshop should help one to become familiar with a notoriously difficult subject, and the various contributions represent some of the important progress that has been achieved. The spectrum is broad. High-resolution tomographic images of Earth's interior obtained from seismology need to be interpreted on the bases of materials properties to understand their geodynamic significance. Key issues include the influence of deformation on seismic signatures, such as attenuation and anisotropy, and a new generation of experimental and theoretical studies on rock plasticity has contributed to a better understanding. Extensive space exploration has revealed a variety of tectonic styles on planets and their satellites, underlining the uniqueness of the Earth. To understand why plate tectonics is unique to Earth, one needs to understand the physical mechanisms of localization of deformation at various scales and under different physical conditions. Also here important theoretical and experimental studies have been conducted. In both fields, studies on anisotropy and shear localization, large-strain deformation experiments and quantitative modeling are critical, and these have become available only recently. Complicated interplay among chemical reactions (including partial melting) is a key to understand the evolution of Earth. This book contains two chapters on the developments of new techniques of experimental studies: one is large-strain shear deformation (Chapter 1 by Mackwell and Paterson) and another is deformation experiments under ultrahigh pressures (Chapter 2 by Durham et al.). Both technical developments are the results of years of efforts that are opening up new avenues of research along which rich new results are expected to be obtained. Details of physical and chemical processes of deformation in the crust and the upper mantle are much better understood through the combination of well controlled laboratory experiments with observations on "real" rocks deformed in Earth. Chapter 3 by Tullis and Chapter 4 by Hirth address the issues of deformation of crustal rocks and the upper mantle, respectively. In Chapter 5 Kohlstedt reviews the interplay of partial melting and deformation, an important subject in understanding the chemical evolution of Earth. Cordier presents in Chapter 6 an overview of the new results of ultrahigh pressure deformation of deep mantle minerals and discusses microscopic mechanisms controlling the variation of deformation mechanisms with minerals in the deep mantle. Green and Marone review in Chapter 7 the stability of deformation under deep mantle conditions with special reference to phase transformations and their relationship to the origin of intermediate depth and deep-focus earthquakes. In Chapter 8 Schulson provides a detailed description of fracture mechanisms of ice, including the critical brittle-ductile transition that is relevant not only for glaciology, planetology and engineering, but for structural geology as well. In Chapter 9 Cooper provides a review of experimental and theoretical studies on seismic wave attenuation, which is a critical element in interpreting distribution of seismic wave velocities and attenuation. Chapter 10 by Wenk reviews the relationship between crystal preferred orientation and macroscopic anisotropy, illustrating it with case studies. In Chapter 11 Dawson presents recent progress in poly-crystal plasticity to model the development of anisotropic fabrics both at the microscopic and macroscopic scale. Such studies form the basis for geodynamic interpretation of seismic anisotropy. Finally, in Chapter 12 Montagner and Guillot present a thorough review of seismic anisotropy of the upper mantle covering the vast regions of geodynamic interests, using a global surface wave data set. In Chapter 13 Bercovici and Karato summarize the theoretical aspects of shear localization. All chapters contain extensive reference lists to guide readers to the more specialized literature. Obviously this book does not cover all the areas related to plastic deformation of minerals and rocks. Important topics that are not fully covered in this book include mechanisms of semi-brittle deformation and the interplay between microstructure evolution and deformation at different levels, such as dislocation substructures and grain-size evolution ("self-organization"). However, we hope that this volume provides a good introduction for graduate students in Earth science or materials science as well as the researchers in these areas to enter this multidisciplinary field.
    Type of Medium: Monograph available for loan
    Pages: xii, 420 S..
    ISBN: 0-939950-63-4 , 978-0-939950-63-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 51
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. New Developments in Deformation Studies: High-Strain Deformation by Stephen J. Mackwell and Mervyn S. Paterson, p. 1 - 20 Chapter 2. New Developments in Deformation Experiments at High Pressure by William B. Durham, Donald J. Weidner, Shun-ichiro Karato, and Yanbin Wang, p. 21 - 50 Chapter 3. Deformation of Granitic Rocks: Experimental Studies and Natural Examples by Jan Tullis, p. 51 - 96 Chapter 4. Laboratory Constraints on the Rheology of the Upper Mantle by Greg Hirth, p. 97 - 120 Chapter 5. Partial Melting and Deformation by David L. Kohlstedt, p. 121 - 136 Chapter 6. Dislocations and Slip Systems of Mantle Minerals by Patrick Cordier, p. 137 - 180 Chapter 7. Instability of Deformation by Harry W. Green II and Chris Marone, p. 181 - 200 Chapter 8. Brittle Failure of Ice by Erland M. Schulson, p. 201 - 525 Chapter 9. Seismic Wave Attenuation: Energy Dissipation in Viscoelastic Crystalline Solids by Reid F. Cooper, p. 253 - 290 Chapter 10. Texture and Anisotropy by Hans-Rudolf Wenk, p. 291 - 330 Chapter 11. Modeling Deformation of Polycrystalline Rocks by Paul R. Dawson, p. 331 - 352 Chapter 12. Seismic Anisotropy and Global Geodynamics by Jean-Paul Montagner and Laurent Guillot, p. 353 - 386 Chapter 13. Theoretical Analysis of Shear Localization in the Lithosphere by David Bercovici and Shun-ichiro Karato, p. 387 - 420
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(421) ; ZSP-168-421
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 390 S. + 1 CD-ROM
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 421
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(434) ; ZSP-168-434
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VI, 124 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 434
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(433) ; ZSP-168-433
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 60 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 433
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(432) ; ZSP-168-432
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VII, 99 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 432
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Call number: ILP/M 06.0349
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: vi, 263 S. : Ill., graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 355,1-4 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Call number: ILP/M 06.0351
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: 265 S. : Ill., graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 358,1-4 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Call number: ILP/M 06.0352
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: vi, 314 S. : Ill., graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 360,1-4 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Monograph available for loan
    Monograph available for loan
    Amsterdam : Elsevier
    Associated volumes
    Call number: ILP/M 06.0350
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: 211 S. : Ill., graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 356,1-3 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(405) ; ZSP-168-405
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VI, 74 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 405
    Classification:
    D. 3.
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Call number: ZS-090(413) ; ZSP-168-413
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: iv, 103 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 413
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 02.0438
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The editors and contributing authors of this volume participated in a short course on micas in Rome late in the year 2000. It was organised by Prof. Annibale Mottana and several colleagues (details in the Preface below) and underwritten by the Italian National Academy, Accademia Nationale dei Lincei (ANL). The Academy subsequently joined with the Mineralogical Society of America (MSA) in publishing this volume. MSA is grateful for their generous involvement. Micas are among the most common minerals in the Earth crust: 4.5% by volume. They are widespread in most if not all metamorphic rocks (abundance: 11 %), and common also in sediments and sedimentary and igneous rocks. Characteristically, micas form in the uppermost greenschist facies and remain stable to the lower crust, including anatectic rocks (the only exception: granulite facies racks). Moreover, some micas are stable in sediments and diagenetic rocks and crystallize in many types of lavas. In contrast, they are also present in association with minerals originating from the very deepest parts of the mantle-they are the most common minerals accompanying diamond in kimberlites. The number of research papers dedicated to micas is enormous, but knowledge of them is limited and not as extensive as that of other rock-forming minerals, for reasons mostly relating to their complex layer texture that makes obtaining crystals suitable for careful studies with modern methods time-consuming, painstaking work. Micas were reviewed extensively in 1984 (Reviews in Mineralogy 13, S.W. Bailey, editor). At that time, the "Micas" volume covered most if not all aspects of mica knowledge, thus producing a long shelf-life for this book. Yet, or perhaps because of that excellent review, mica research was vigorously renewed, and a vast array of new data has been gathered over the past 15 years. These data now need to be organized and reviewed. Furthermore, a Committee nominated by the International Mineralogical Association in the late 1970s concluded its long-lasting work (Rieder et al. 1998) by suggesting a new classification scheme which has stimulated new chemical and structural research on micas. To make a very long story short: the extraordinarily large, but intrinsically vague, mica nomenclature developed during the past two centuries has been reduced from 〉300 to just 37 species names and 6 series (see page xiii, preceding Chapter 1); the new nomenclature shows wide gaps that require data involving new chemical and structural work; the suggestion of using adjectival modifiers for those varieties that deviate away from end-member compositions requires the need for new and accurate measurements, particularly for certain light elements and volatiles; the use of polytype suffixes based on the modified Gard symbolism created better ways of determining precise stacking sequences. This resulted in new polytypes being discovered. Indeed, all this has happened over the past few years in an almost tumultuous way. It was on the basis of these developments that four scientists (B. Zanettin, A. Mottana, F.P. Sassi and C. Cipriani) applied to Accademia Nazionale dei Lincei-the Italian National Academy-for a meeting on micas. An international meeting was convened in Rome on November 2-3, 2000 with the title Advances on Micas (Problems, Methods, Applications in Geodynamics). The topics of this meeting were the crystalchemical, petrological, and historical aspects of the micas. The organizers were both Academy members (C. Cipriani, A. Mottana, F.P. Sassi, W. Schreyer, lB. Thompson Jr., and B. Zanettin) and Italian scientists well-known for their studies on layer silicates (Professors M.F. Brigatti and G. Ferraris). Financial support in additional to that by the Academy was provided by C.N.R. (the Italian National Research Council), M.U.R.S.T. (the Italian Ministry for University, Scientific Research and Technology) and the University of Rome III. Approximately 200 scientists attended the meeting, most of them Italians, but with a sizeable international participation. Thirteen invited plenary lectures and six oral presentations were given, and fourteen posters were displayed. The amount of information presented was large, although the organizers made it very clear that the meeting was to be limited to only a few of the major topics of mica studies. Other topics are promised for a later meeting. Oral and poster presentations on novel aspects of mica research are being printed in the European Journal of Mineralogy, as a part of an individual thematic issue: indeed thirteen papers have appeared in the November 2001 issue. The plenary lectures, which consisted mostly of reviews, are presented in expanded detail in this volume. This book is the first a co-operative project between Accademia Nazionale dei Lincei and Mineralogical Society of America. Hopefully, future projects will involve reviews of the remaining aspects of mica research, and other aspects of mineralogy and geochemistry. The entire meeting was made successful through a co-operative effort. The editing of this book was achieved by a co-operative effort of two Italian Academy members from one side, and by two American scientists from the other side, one of them (JBT) being also a member of Lincei Academy. The entire editing process benefited from the goodwill of many referees, both from those attending the Rome meeting and from several who did not. In all cases the reviewers were distinguished experts of the international community of mica scholars. Their work, as well as our editing work, were aided greatly by RiMG Series Editor, Professor Paul Ribbe, who continuously supported the effort with all his professional experience and friendly advice. We, the co-editors, thank them all very warmly, but take upon ourselves all remaining shortcomings: we are aware that some shortcomings may be present in spite of all our efforts to avoid them. Moreover, we are aware that there are puzzling aspects of micas that are unresolved. Please consider all these as possible avenues for future research!
    Type of Medium: Monograph available for loan
    Pages: xiii, 499 S.
    ISBN: 0-939950-58-8 , 978-0-939950-58-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 46
    Classification:
    Geochemistry
    Language: English
    Note: Crystal Chemistry Chapter 1. Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models by Maria Franca Brigatti and Stephen Guggenheim, p. 1 - 98 Chapter 2. Behavior of micas at high pressure and high temperature by Pier Francesco Zanazzi and Alessandro Pavese, p. 99 - 116 Chapter 3. Structural features of micas by Giovanni Ferraris and Gabriella Ivaldi, p. 117 - 154 Chapter 4. Crystallographic basis of polytypism and twinning in micas by Massimo Nespolo and Slavomil Durovic, p. 155 - 280 Chapter 5. Investigation of micas using advanced transmission electron microscopy by Toshihiro Kogure, p. 281 - 312 Chapter 6. Optical and Mössbauer spectroscopy of iron in micas by M. Darby Dyar, p. 313 - 350 Chapter 7. Infrared spectroscopy of micas by Anton Beran, p. 351 - 370 Chapter 8. X-ray absorption spectroscopy of the micas by Annibale Mottana, Augusto Marcelli, Giannantonio Cibin, and M. Darby Dyar, p. 371 - 412 Metamorphic Petrology Chapter 9. Constraints on studies of metamorphic K-Na white micas by Charles V. Guidotti and Francesco P. Sassi, p. 413 - 448 Chapter 10. Modal spaces for pelitic schists by James B. Thompson, Jr., p. 449 - 462 Chapter 11. Phyllosilicates in very low-grade metamorphism: Transformation to micas by Péter Árkai, p. 463 - 478 Historical Perspective Chapter 12. Micas: Historical perspective by Curzio Cipriani, p. 479 - 499
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Call number: ZS-090(423) ; ZSP-168-423
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: iv, 144 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 423
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(428) ; ZSP-168-428
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 146 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 428
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(430) ; ZSP-168-430
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 172 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 430
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Call number: ZS-090(419) ; ZSP-168-419
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 278 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 419
    Classification:
    D.4.3.
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(422) ; ZSP-168-422
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 65 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 422
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(431) ; ZSP-168-431
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 135 S.
    ISSN: 1618-3193
    Series Statement: Berichte zur Polar- und Meeresforschung 431
    Classification:
    Oceanology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 03.0059
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This book has been several years in the making, under the experienced and careful oversight of Ed Grew (University of Maine), who edited (with Larry Anovitz) a similar, even larger volume in 1996: Boron: Mineralogy, Petrology, and Geochemistry (RiMG Vol. 33, reprinted with updates and corrections, 2002). Many of the same reasons for inviting investigators to contribute to a volume on B apply equally to a volume on Be. Like B, Be poses analytical difficulties, and it has been neglected in many studies. However, with recent improvements in analytical technology, interest in Be and its cosmogenic isotopes has increased greatly. Chapter 1 (Grew) is an overview of Be studies in the earth sciences backed by an extensive reference list, and an annotated list of the 110 mineral species reported to contain essential Be as of 2002, together with commentary on their status. A systematic classification of Be minerals based on their crystal structure is presented in Chapter 9 (Hawthorne and Huminicki), while analysis of these minerals by the secondary ion mass spectroscopy is the subject of Chapter 8 (Hervig). Chapter 13 (Franz and Morteani) reviews experimental studies of systems involving Be. Chapter 2 (Shearer) reviews the behavior of Be in the Solar System, with an emphasis on meteorites, the Moon and Mars, and the implications of this behavior for the evolution of the solar system. Chapter 3 (Ryan) is an overview of the terrestrial geochemistry of Be, and Chapter 7 (Vesely, Norton, Skrivan, Majer, Kr·m, Navr·til, and Kaste) discusses the contamination of the environment by this anthropogenic toxin. The cosmogenic isotopes Be-7 and Be-10 have found increasing applications in the Earth sciences. Chapter 4 (Bierman, Caffee, Davis, Marsella, Pavich, Colgan and Mickelson) reports use of the longer lived Be-10 to assess erosion rates and other surficial processes, while Chapter 5 (Morris, Gosse, Brachfeld and Tera) considers how this isotope can yield independent temporal records of geomagnetic field variations for comparison with records obtained by measuring natural remnant magnetization, be a chemical tracer for processes in convergent margins, and can date events in Cenozoic tectonics. Chapter 6 (Kaste, Norton and Hess) reviews applications of the shorter lived isotope Be-7 in environmental studies. Beryllium is a lithophile element concentrated in the residual phases of magmatic systems. Residual phases include acidic plutonic and volcanic rocks, whose geochemistry and evolution are covered, respectively, in Chapters 11 (London and Evensen) and 14 (Barton and Young), while granitic pegmatites, which are well-known for their remarkable, if localized, Be enrichments and a wide variety of Be mineral assemblages, are reviewed in Chapter 10 (Cerny). Not all Be concentrations have obvious magmatic affinities; for example, one class of emerald deposits results from Be being introduced by heated brines (Chapters 13; 14). Pelitic rocks are an important reservoir of Be in the Earth's crust and their metamorphism plays a critical role in recycling of Be in subduction zones (Chapter 3), eventually, anatectic processes complete the cycle, providing a source of Be for granitic rocks (Chapters 11 and 12).
    Type of Medium: Monograph available for loan
    Pages: XII, 691 S.
    ISBN: 0-939950-62-6 , 978-0-939950-62-1
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 50
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Mineralogy, Petrology and Geochemistry of Beryllium: An Introduction and List of Beryllium Minerals by Edward S. Grew, p. 1 - 76 Chapter 2. Behavior of Beryllium During Solar System and Planetary Evolution: Evidence from Planetary Materials by Charles K. Shearer, p. 77 - 120 Chapter 3. Trace-Element Systematics of Beryllium in Terrestrial Materials by Jeffrey G. Ryan, p. 121 - 146 Chapter 4. Rates and Timing of Earth Surface Processes From In Situ-Produced Cosmogenic Be-10 by Paul R. Bierman, Marc W. Caffee, P. Thompson Davis, Kim Marsella, Milan Pavich, Patrick Colgan, and David Mickelson, p. 147 - 206 Chapter 5. Cosmogenic Be-10 and the Solid Earth: Studies in Geomagnetism, Subduction Zone Processes, and Active Tectonics by Julie D. Morris, John Gosse, Stefanie Brachfeld, and Fouad Tera, p. 207 - 270 Chapter 6. Environmental Chemistry of Beryllium-7 by James M. Kaste, Stephen A. Norton, and Charles T. Hess, p. 271 - 290 Chapter 7. Environmental Chemistry of Beryllium by J. Vesely, S. A. Norton, P. Skrivan, V. Majer, P. Kram, T. Navr·til, and J. M. Kaste, p. 291 - 318 Chapter 8. Beryllium Analyses by Secondary Ion Mass Spectrometry by Richard L. Hervig, p. 319 - 332 Chapter 9. The Crystal Chemistry of Beryllium by Frank C. Hawthorne and Danielle M. C. Huminicki, p. 333 - 404 Chapter 10. Mineralogy of Beryllium in Granitic Pegmatites by Petr Cerny, p. 405 - 444 Chapter 11. Beryllium in Silicic Magmas and the Origin of Beryl-Bearing Pegmatites by David London and Joseph M. Evensen, p. 445 - 486 Chapter 12. Beryllium in Metamorphic Environments (Emphasis on Aluminous Compositions) by Edward S. Grew, p. 487 - 550 Chapter 13. Be-Minerals: Synthesis, Stability, and Occurrence in Metamorphic Rocks by Gerhard Franz and Giulio Morteani, p. 551 - 590 Chapter 14. Non-pegmatitic Deposits of Beryllium: Mineralogy, Geology, Phase Equilibria and Origin by Mark D. Barton and Steven Young, p. 591 - 691
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Call number: 11/M 03.0009
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume was produced in response to the need for a comprehensive introduction to the continually evolving state of the art of synchrotron radiation applications in low-temperature geochemistry and environmental science. It owes much to the hard work and imagination of the devoted cadre of sleep-deprived individuals who blazed a trail that many others are beginning to follow. Synchrotron radiation methods have opened new scientific vistas in the earth and environmental sciences, and progress in this direction will undoubtedly continue. The organization of this volume is as follows. Chapter 1 (Brown and Sturchio) gives a fairly comprehensive overview of synchrotron radiation applications in low temperature geochemistry and environmental science. The presentation is organized by synchrotron methods and scientific issues. It also has an extensive reference list that should prove valuable as a starting point for further research. Chapter 2 (Sham and Rivers) describes the ways that synchrotron radiation is generated, including a history of synchrotrons and a discussion of aspects of synchrotron radiation that are important to the experimentalist. The remaining chapters of the volume are organized into two groups. Chapters 3 through 6 describe specific synchrotron methods that are most useful for single-crystal surface and mineral-fluid interface studies. Chapters 7 through 9 describe methods that can be used more generally for investigating complex polyphase fine-grained or amorphous materials, including soils, rocks, and organic matter. Chapter 2 (Shearer) reviews the behavior of Be in the Solar System, with an emphasis on meteorites, the Moon and Mars, and the implications of this behavior for the evolution of the solar system. Chapter 3 (Ryan) is an overview of the terrestrial geochemistry of Be, and Chapter 7 (Vesely, Norton, Skrivan, Majer, Kr·m, Navr·til, and Kaste) discusses the contamination of the environment by this anthropogenic toxin. Chapter 3 (Fenter) presents the elementary theory of synchrotron X-ray reflectivity along with examples of recent applications, with emphasis on in situ studies of mineral-fluid interfaces. Chapter 4 (Bedzyk and Cheng) summarizes the theory of X-ray standing waves (XSW), the various methods for using XSW in surface and interfaces studies, and gives a brief review of recent applications in geochemistry and mineralogy. Chapter 5 (Waychunas) covers the theory and applications of grazing-incidence X-ray absorption and emission spectroscopy, with recent examples of studies at mineral surfaces. Chapter 6 (Hirschmugl) describes the theory and applications of synchrotron infrared microspectroscopy. Chapter 7 (Manceau, Marcus, and Tamura) gives background and examples of the combined application of synchrotron X-ray microfluorescence, microdiffraction, and microabsorption spectroscopy in characterizing the distribution and speciation of metals in soils and sediments. Chapter 8 (Sutton, Newville, Rivers, Lanzirotti, Eng, and Bertsch) demonstrates a wide variety of applications of synchrotron X-ray microspectroscopy and microtomography in characterizing earth and environmental materials and processes. Finally, Chapter 9 (Myneni) presents a review of the principles and applications of soft X-ray microspectroscopic studies of natural organic materials. All of these chapters review the state of the art of synchrotron radiation applications in low temperature geochemistry and environmental science, and offer speculations on future developments. The reader of this volume will acquire an appreciation of the theory and applications of synchrotron radiation in low temperature geochemistry and environmental science, as well as the significant advances that have been made in this area in the past two decades (especially since the advent of the third-generation synchrotron sources). We hope that this volume will inspire new users to "see the light" and pursue their research using the potent tool of synchrotron radiation.
    Type of Medium: Monograph available for loan
    Pages: XXII, 579 S.
    ISBN: 0-939950-61-8 , 978-0-939950-61-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 49
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. An Overview of Synchrotron Radiation Applications to Low Temperature Geochemistry and Environmental Science by Gordon E. Brown, Jr. and Neil C. Sturchio, p. 1 - 116 Chapter 2. A Brief Overview of Synchrotron Radiation by T. K. Sham and Mark L. Rivers, p. 117 - 148 Chapter 3. X-ray Reflectivity as a Probe of Mineral-Fluid Interfaces: A User Guide by Paul A. Fenter, p. 149 - 220 Chapter 4. X-ray Standing Wave Studies of Minerals and Mineral Surfaces: Principles and Applications by Michael J. Bedzyk and Likwan Cheng, p. 221 - 266 Chapter 5. Grazing-incidence X-ray Absorption and Emission Spectroscopy by Glenn A. Waychunas, p. 267 - 316 Chapter 6. Applications of Storage Ring Infrared Spectromicroscopy and Reflection-Absorption Spectroscopy to Geochemistry and Environmental Science by Carol J. Hirschmugl, p. 317 - 340 Chapter 7. Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques by Alain Manceau, Matthew A. Marcus, and Nobumichi Tamura, p. 341 - 428 Chapter 8. Microfluorescence and MicrotomographyAnalyses of Heterogeneous Earth and Environmental Materials by Stephen R. Sutton, Paul M. Bertsch, Matthew Newville, Mark Rivers, Antonio Lanzirotti and Peter Eng, p. 429 - 484 Chapter 9. Soft X-ray Spectroscopy and Spectromicroscopy Studies of Organic Molecules in the Environment by Satish C. B. Myneni, p. 485 - 579
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Call number: ZS-090(397) ; ZSP-168-397
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 120 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 397
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(401) ; ZSP-168-402
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: vii, 131 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 401
    Classification:
    Meteorology and Climatology
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(402) ; ZSP-168-402
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: IV, 181 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 402
    Classification:
    D. 3.
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(392) ; ZSP-168-392
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VI, 157 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 392
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(398) ; ZSP-168-398
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VIII, 167 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 398
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(382) ; ZSP-168-382
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: III, 127 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 382
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(380) ; ZSP-168-380
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 177 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 380
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(396) ; ZSP-168-396
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: III, 186 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 396
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(387) ; ZSP-168-387
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: II, 118 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 387
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Call number: ZS-090(383) ; ZSP-168-383
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VIII, 162 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 383
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(379) ; ZSP-168-379
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: VIII, 138 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 379
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: M 02.0026 / Regal 11
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Mineralogy and Geology of Natural Zeolites was published in 1977. Dr. Fred Mumpton, a leader of the natural zeolite community for more than three decades, edited the original volume. Since the time of the original MSA zeolite short course in November 1977, there have been major developments concerning almost all aspects of natural zeolites. There has been an explosion in our knowledge of the crystal chemistry and structures of natural zeolites (Chapters 1 and 2), due in part to the now-common Rietveld method that allows treatment of powder diffraction data. Studies on the geochemistry of natural zeolites have also greatly increased, partly as a result of the interests related to the disposal of radioactive wastes, and Chapters 3, 4, 5, 13, and 14 detail the latest results in this important area. Until the latter part of the 20th century, zeolites were often looked upon as a geological curiosity, but they are now known to be widespread throughout the world in sedimentary and igneous deposits and in soils (Chapters 6-12). Likewise, borrowing from new knowledge gained from studies of synthetic zeolites and properties of natural zeolites, the application of natural zeolites has greatly expanded since the first zeolite volume. Chapter 15 details the use of natural zeolites for removal of ammonium ions, heavy metals, radioactive cations, and organic molecules from natural waters, wastewaters, and soils. Similarly, Chapter 16 describes the use of natural zeolites as building blocks and cements in the building industry, Chapter 17 outlines their use in solar energy storage, heating, and cooling applications, and Chapter 18 describes their use in a variety of agricultural applications, including as soil conditioners, slow-release fertilizers, soil-less substrates, carriers for insecticides and pesticides, and remediation agents in contaminated soils. Most of the material in this volume is entirely new, and Natural Zeolites: Occurrence, Properties, Applications presents a fresh and expanded look at many of the subjects contained in Volume 4. It is our hope that this new, expanded volume will rekindle interest in this fascinating and technologically important group of minerals, in part through the 'Suggestions for Further Research' section in each chapter.
    Type of Medium: Monograph available for loan
    Pages: XIV, 654 S.
    ISBN: 0-939950-57-X , 978-0-939950-57-7
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 45
    Classification:
    Mineralogy
    Language: English
    Note: MINERALOGY Chapter 1. Crystal Structures of Natural Zeolites by Thomas Armbruster and Mickey E. Gunter, p. 1 - 68 Chapter 2. The Crystal Chemistry of Zeolites by E Passaglia and Richard A. Sheppard, p. 69 - 116 Chapter 3. Geochemical Stability of Natural Zeolites by Steve J. Chipera and John A. Apps, p. 117 - 162 Chapter 4. Isotope Geochemistry of Zeolites by Haraldur R. Karlsson, p. 163 - 206 Chapter 5. Clinoptilolite-Heulandite Nomenclature by David L. Bish and Jeremy M. Boak, p. 207 - 216 OCCURRENCE Chapter 6. Occurrence of Zeolites in Sedimentary Rocks: An Overview by Richard L. Hay and Richard A. Sheppard, p. 217 - 234 Chapter 7. Zeolites in Closed Hydrologic Systems by A Langella, Piergiulio Cappelletti, and Roberto de'Gennaro, p. 235 - 260 Chapter 8. Formation of Zeolites in Open Hydrologic Systems by Richard A. Sheppard and Richard L. Hay, p. 261 - 276 Chapter 9. Zeolites in Burial Diagenesis and Low-grade Metamorphic Rocks by Minora Utada, p. 277 - 304 Chapter 10. Zeolites in Hydrothermally Altered Rocks by Minora Utada, p. 305 - 322 Chapter 11. Zeolites in Soil Environments by Douglas W. Ming and Janis L. Boettinger, p. 323 - 346 Chapter 12. Zeolites in Petroleum and Natural Gas Reservoirs by Azuma Iijima, p. 347 - 402 PHYSICOCHEMICAL PROPERTIES Chapter 13. Thermal Behavior of Natural Zeolites by David L. Bish and J. William Carey, p. 403 - 452 Chapter 14. Cation-Exchange Properties of Natural Zeolites by Roberto T. Pabalan and F. Paul Bertetti, p. 453 - 518 APPLICATIONS Chapter 15. Applications of Natural Zeolites in Water and Wastewater Treatment by Dénes Kalló, p. 519 - 550 Chapter 16. Use of Zeolitic Tuff in the Building Industry by Carmine Colella, Maurizio de'Gennaro, and Rosario Aiello, p. 551 - 588 Chapter 17. Natural Zeolites in Solar Energy - Heating, Cooling, and Energy Storage by Dimiter I. Tchernev, p. 589 - 618 Chapter 18. Use of Natural Zeolites in Agronomy, Horticulture, and Environmental Soil Remediation by Douglas W. Ming and Earl R. Allen, p. 619 - 654
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(395) ; ZSP-168-395
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: III, 186 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 395
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(389) ; ZSP-168-389
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 108 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 389
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(399) ; ZSP-168-399
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: viii, 123 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 399
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Call number: ILP/M 06.0348
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: vi, S. 207-360 : graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 338,3-4 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(390) ; ZSP-168-390
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: V, 121 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 390
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(388) ; ZSP-168-388
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 135 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 388
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 02.0025
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume was prepared in conjunction with a short course, "Nanoparticles in the Environment and Technology," convened on the campus of the University of California, Davis, CA on December 8 and 9, 2001. Over the years, volumes in this series have taken a variety of forms. Many have focused on mature fields of investigation to draw together a comprehensive body of work and provide a definitive, up to date reference. A few, however, have sought to provide enough coverage of an emerging or re-emerging field to allow the reader to identify important and exciting gaps in current knowledge and opportunities for new research. This volume falls into the later category. Our primary goal in convening the short course and assembling this text is to invigorate future research. Early Reviews in Mineralogy dealt with specific groups of minerals, one (or two) volumes at a time. In contrast, this volume deals explicitly with the topic of crystal size in many different systems. Until recently, the special and complicated nature of the very smallest particles rendered them nearly impossible to study by conventional methods. Even today, the challenges associated with evaluating the size-dependence of a mineral's bulk and surface structures, properties, and reactivity are significant. However, ongoing improvements in sophisticated characterization, theory, and data analysis make particles previously described (often inaccurately) as "amorphous" (or even more mysteriously as "X-ray amorphous") amenable to quantitative evaluation. Thermochemical, crystal chemical, and computational chemical approaches must be combined to understand particles with diameters of 1 to 100 nanometers. Determination of the variation of structure, properties, and reaction kinetics with crystal size requires careful synthesis of size- and perhaps morphology-specific samples. These problems demand integration of mineralogical and geochemical approaches. Thus, it is appropriate that the current issue belongs to the era of Reviews in Mineralogy and Geochemistry. Nanoparticles and the Environment targets naturally occurring, finely particulate minerals, many of which form at low temperature. Thus, many of the compounds of interest are those of the "clay fraction". Of course, there have been decades of critical work on the structures, microstructures, and reactivity of finely crystalline or amorphous minerals, especially oxides, oxyhydroxides, hydroxides, and clays. We will not summarize what is known in general about these (for this, the reader is referred to earlier Reviews in Mineralogy volumes). Rather, our goal is to focus on the features of these materials that stem directly or indirectly from their size. The term "nanoparticles" is much more than a re-labeling designed to align "clay" (sized) minerals with nanotechnology and its goals. The term signifies that the substance has physical dimensions that are small enough to ensure that the structure and/or properties and/or reactivity are measurably particle size dependent, yet the particle is large enough to warrant its distinction from aqueous ions, complexes, or clusters. The chemistry, physics, and geology of particles at this intermediate scale are unique, fascinating, and important. Of particular interest are those properties that emerge only after a cluster of atoms has grown beyond some specific size, and disappear once the particle passes out of the "nanoparticle" size regime. There are some compelling examples of size-dependent phenomena. It is well known that the melting temperature of nanocrystals (defined as crystals having properties intermediate between molecular and crystalline) decreases dramatically as the radius of the cluster decreases. Absorption and luminescence spectra for small crystals are determined by the quantum-size effect. Decreasing nanocrystal size correlates with increased total energy of band edge optical transitions. As a consequence, the color of some nanocrystals correlates strongly with their particle size. Current world-wide interest in "nanotechnology" and "nanomaterials" offers a unique opportunity for the Earth sciences. Both the level of visibility and the explosion of synthesis and characterization techniques in physics, chemistry, and materials science provide mineralogy and geochemistry with new opportunities. It is important for us to show that the "nano" field consists of more than micromachines and electronic devices, and that nanoscale phenomena permeate and often control natural processes. Why all the fuss about nanoparticles now? As increasing attention in engineering is focused on making smaller and smaller machines, questions about the fundamental processes that govern nanoparticle form, stability, and reactivity emerge. The geoscience community is well equipped to tackle the basic science concepts associated with these questions. However, we have our own reasons to study size-dependent phenomena. Size-dependent structure and properties of Earth materials impact the geological processes they participate in. This topic has not been fully explored to date. Chapters in this volume contain descriptions of the inorganic and biological processes by which nanoparticles form, information about the distribution of nanoparticles in the atmosphere, aqueous environments, and soils, discussion of the impact of size on nanoparticle structure, thermodynamics, and reaction kinetics, consideration of the nature of the smallest nanoparticles and molecular clusters, pathways for crystal growth and colloid formation, analysis of the size-dependence of phase stability and magnetic properties, and descriptions of methods for the study of nanoparticles. These questions are explored through both theoretical and experimental approaches. Nanoparticles participate in every crystallization reaction and they constitute a major source of surface area in environments where virtually every important reaction takes place on a surface. They are components of enzymes and key biomolecules and their presence may record the early existence of life. How can we not be fascinated by these remarkable, and special, forms of matter?
    Type of Medium: Monograph available for loan
    Pages: XIV, 349 S.
    ISBN: 0-939950-56-1 , 978-0-939950-56-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 44
    Language: English
    Note: Chapter 1. Nanoparticles in the environment by Jillian F. Banfield and Hengzhong Zhang, p. 1 - 58 Chapter 2. Nanocrystals as model systems for pressure-induced structural phase transitions by Keren Jacobs and A. Paul Alivisatos, p. 59 - 72 Chapter 3. Thermochemistry of nanomaterials by Alexandra Navrotsky, p. 73 - 104 Chapter 4. Structure, aggregation and characterization of nanoparticles by Glenn A Waychunas, p. 105 - 166 Chapter 5. Aqueous aluminum polynuclear complexes and nanoclusters: A review by William H. Casey, Brian L. Phillips, and Gerhard Furrer, p. 167 - 190 Chapter 6. Computational approaches to nanomineralogy by James R. Rustad, Witold Dzwinel, and David A. Yuen, p. 191 - 216 Chapter 7. Magnetism of Earth, planetary and environmental nanomaterials by Denis G. Rancourt, p. 217 - 292 Chapter 8. Atmospheric nanoparticles by Cort Anastasio and S. T. Martin, p. 293 - 349
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(403) ; ZSP-168-403
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: 151 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 403
    Classification:
    D. 3.
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Call number: ZS-090(393) ; ZSP-168-393
    In: Berichte zur Polar- und Meeresforschung
    Type of Medium: Series available for loan
    Pages: III, 186 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 393
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(358) ; ZSP-168-358
    In: Berichte zur Polarforschung
    Type of Medium: Series available for loan
    Pages: VIII, 93 S. : Ill., graph. Darst., Kt.
    Series Statement: Berichte zur Polarforschung 358
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Call number: ZS-090(361) ; ZSP-168-361
    In: Berichte zur Polarforschung
    Type of Medium: Series available for loan
    Pages: 100 S. S...
    Series Statement: Berichte zur Polarforschung 361
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(350) ; ZSP-168-350
    In: Berichte zur Polarforschung
    Type of Medium: Series available for loan
    Pages: 63 S.
    Series Statement: Berichte zur Polarforschung 350
    Language: English
    Location: Lower compact magazine
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 01.0314
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The first half-century of X-ray crystallography, beginning with the elucidation of the sodium chloride structure in 1914, was devoted principally to the determination of increasingly complex atomic topologies at ambient conditions. The pioneering work of the Braggs, Pauling, Wyckoff, Zachariasen and many other investigators revealed the structural details and underlying crystal chemical principles for most rock-forming minerals (see, for example, Crystallography in North America, edited by D. McLachlan and J. P. Glusker, NY, American Crystallographic Association, 1983). These studies laid the crystallographic foundation for modem mineralogy. The past three decades have seen a dramatic expansion of this traditional crystallographic role to the study of the relatively subtle variations of crystal structure as a function of temperature, pressure, or composition. Special sessions on "High temperature crystal chemistry" were first held at the Spring Meeting of the American Geophysical Union (April 19, 1972) and the Ninth International Congress of Crystallography (August 30, 1972). The Mineralogical Society of America subsequently published a special 11-paper section of American Mineralogist entitled "High Temperature Crystal Chemistry," which appeared as Volume 58, Numbers 5 and 6, Part I in July-August, 1973. The first complete three-dimensional structure refinements of minerals at high pressure were completed in the same year on calcite (Merrill and Bassett, Acta Crystallographica B31, 343-349, 1975) and on gillespite (Hazen and Burnham, American Mineralogist 59, 1166-1176, 1974). Rapid advances in the field of non-ambient crystallography prompted Hazen and Finger to prepare the monograph Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (New York: Wiley, 1982). At the time, only about 50 publications documenting the three-dimensional variation of crystal structures at high temperature or pressure had been published, though general crystal chemical trends were beginning to emerge. That work, though increasingly out of date, remained in print until recently as the only comprehensive overview of experimental techniques, data analysis, and results for this crystallographic sub-discipline. This Reviews in Mineralogy and Geochemistry volume was conceived as an updated version of Comparative Crystal Chemistry. A preliminary chapter outline was drafted at the Fall 1998 American Geophysical Union meeting in San Francisco by Ross Angel, Robert Downs, Larry Finger, Robert Hazen, Charles Prewitt and Nancy Ross. In a sense, this volume was seen as a "changing of the guard" in the study of crystal structures at high temperature and pressure. Larry Finger retired from the Geophysical Laboratory in July, 1999, at which time Robert Hazen had shifted his research focus to mineral-mediated organic synthesis. Many other scientists, including most of the authors in this volume, are now advancing the field by expanding the available range of temperature and pressure, increasing the precision and accuracy of structural refinements at non-ambient conditions, and studying ever more complex structures. The principal objective of this volume is to serve as a comprehensive introduction to the field of high-temperature and high-pressure crystal chemistry, both as a guide to the dramatically improved techniques and as a summary of the voluminous crystal chemical literature on minerals at high temperature and pressure. The book is largely tutorial in style and presentation, though a basic knowledge of X-ray crystallographic techniques and crystal chemical principles is assumed. The book is divided into three parts. Part I introduces crystal chemical considerations of special relevance to non-ambient crystallographic studies. Chapter 1 treats systematic trends in the variation of structural parameters, including bond distances, cation coordination, and order-disorder with temperature and pressure, while Chapter 2 considers P-V-T equation-of-state formulations relevant to x-ray structure data. Chapter 3 reviews the variation of thermal displacement parameters with temperature and pressure. Chapter 4 describes a method for producing revealing movies of structural variations with pressure, temperature or composition, and features a series of "flip-book" animations. These animations and other structural movies are also available as a supplement to this volume on the Mineralogical Society of America web site at RiMG041 Programs. Part II reviews the temperature- and pressure-variation of structures in major mineral groups. Chapter 5 presents crystal chemical systematics of high-pressure silicate structures with six-coordinated silicon. Subsequent chapters highlight temperature- and pressure variations of dense oxides (Chapter 6), orthosilicates (Chapter 7), pyroxenes and other chain silicates (Chapter 8), framework and other rigid-mode structures (Chapter 9), and carbonates (Chapter 10). Finally, the variation of hydrous phases and hydrogen bonding are reviewed in Chapter 11, while molecular solids are summarized in Chapter 12. Part III presents experimental techniques for high-temperature and high-pressure studies of single crystals (Chapters 13 and 14, respectively) and polycrystalline samples (Chapter 15). Special considerations relating to diffractometry on samples at non-ambient conditions are treated in Chapter 16. Tables in these chapters list sources for relevant hardware, including commercially available furnaces and diamond-anvil cells. Crystallographic software packages, including diffractometer operating systems, have been placed on the Mineralogical Society web site for this volume. This volume is not exhaustive and opportunities exist for additional publications that review and summarize research on other mineral groups. A significant literature on the high-temperature and high-pressure structural variation of sulfides, for example, is not covered here. Also missing from this compilation are references to a variety of studies of halides, layered oxide superconductors, metal alloys, and a number of unusual silicate structures.
    Type of Medium: Monograph available for loan
    Pages: viii, 596 S.
    ISBN: 0-939950-53-7 , 978-0-939950-53-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 41
    Classification:
    Mineralogy
    Language: English
    Note: Contents of Part I. p. vii - viii Part I: Characterization and Interpretation of Structural Variations with Temperature and Pressure Chapter 1. Principles of Comparative Crystal Chemistry by Robert M. Hazen, Robert T. Downs, and Charles T. Prewitt, p. 1 - 34 Chapter 2. Equations of State by Ross J. Angel, p. 35 - 60 Chapter 3. Analysis of Harmonic Displacement Factors by Robert T. Downs, p. 61 - 88 Chapter 4. Animation of Crystal Structure Variations with Pressure, Temperature and Composition by Robert T. Downs and P.J. Heese, p. 89 - 118 Part II: Variation of Structures with Temperature and Pressure Contents of Part II. p. 119 - 122 Chapter 5. Systematics of High-Pressure Silicate Structures by Larry W. Finger and Robert M. Hazen, p. 123 - 156 Chapter 6. Comparative Crystal Chemistry of Dense Oxide Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 157 - 186 Chapter 7. Comparative Crystal Chemistry of Orthosilicate Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 187 - 210 Chapter 8. Chain and Layer Silicates at High Temperatures and Pressures by Hexiong Yang and Charles T. Prewitt, p. 211 - 256 Chapter 9. Framework Structures by Nancy L. Ross, p. 257 - 288 Chapter 10. Structural Variations in Carbonates by Simon A.T. Redfern, p. 289 - 308 Chapter 11. Hydrous Phases and Hydrogen Bonding at High Pressure by Charles T. Prewitt and John B. Parise, p. 309 - 334 Chapter 12. Molecular Crystals by Russell J. Hemley and Przemyslaw Dera, p. 335 - 420 Part III: Experimental Techniques Contents of Part III. p. 421 - 424 Chapter 13. High-Temperature Devices and Environmental Cells for X-ray and Neutron Diffraction Experiments by Ronald C. Peterson and Hexiong Yang, p. 425 - 444 Chapter 14. High-Pressure Single-Crystal Techniques by Ronald Miletich, David R. Allan, and Werner F. Kuhs, p. 445 - 520 Chapter 15. High-Pressure and High-Temperature Powder Diffraction by Yingwei Fei and Yanbin Wang, p. 521 - 558 Chapter 16. High-Temperature­High-Pressure Diffractometry by Ross J. Angel, Robert T. Downs, and Larry W. Finger, p. 559 - 596
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Series available for loan
    Series available for loan
    Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung
    Associated volumes
    Call number: ZS-090(357)
    In: Berichte zur Polarforschung
    Type of Medium: Series available for loan
    Pages: V, 79 S....
    Series Statement: Berichte zur Polarforschung 357
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 99.0611
    In: Reviews in mineralogy
    Description / Table of Contents: This volume was written in preparation for a short course by the same title, sponsored by the Mineralogical Society of America, October 22 and 23, 1999 in Golden, Colorado, prior to MSA's joint annual meeting with the Geological Society of America. Research emphasis in traditional mineralogy has often focused on detailed studies of a few hundred common rock-forming minerals. However, scanning the contents of a current issue of American Mineralogist or Canadian Mineralogist, or the titles of recent Reviews in Mineralogy volumes reveals that the emphasis of mineralogical research has undergone considerable change recently. Less-common, low-temperature minerals are receiving ever increasing attention, often owing to their importance to the environment. A tremendous challenge lies ahead for mineralogists and geochemists: the occurrences, structures, stabilities, and paragenesis of perhaps a thousand low-temperature minerals require detailed study if geoscientists are to be properly equipped to tackle environmental problems today and in the future. In many low-temperature environments mineral assemblages are extremely complex, with more than 10 species common in many em-size samples. This Reviews in Mineralogy volume provides detailed reviews of various aspects of the mineralogy and geochemistry of uranium; hopefully the reader will benefit from this presentation, and perhaps more importantly, the reader may develop a sense of the tremendous amount of work that remains to be done, not only concerning uranium in natural systems, but for low-temperature mineralogy and geochemistry in general. The low crustal abundance of uranium belies its mineralogical and geochemical significance: more than five percent of minerals known today contain uranium as an essential constituent. Uranium is a geochemical and geochronological indicator, and the U-Pb decay series has long been one of the most important systems for dating rocks and minerals. Uranium is an important energy source, and the uranium nuclear fuel cycle has generated a great deal of interest in uranium mineralogy and geochemistry since the first controlled nuclear fission reaction nearly sixty years ago. Current interest in uranium mineralogy and geochemistry stems in large part from the utilization of uranium as a natural resource. Environmental issues such as coping with uranium mine and mill tailings and other uranium-contaminated sites, as well as permanent disposal of highly radioactive uranium-based nuclear fuels in deep geologic repositories, have all refocused attention on uranium. More than twenty years have passed since the 1978 Mineralogical Association of Canada's Short Course on Uranium Deposits. A realignment of research focus has clearly occurred since then, from exploration and exploitation to environmental remediation and geological "forecasting" of potential future impacts of decisions made today. The past decades have produced numerous remarkable advances in our understanding of uranium mineralogy and geochemistry, as well as technological and theoretical advances in analytical techniques which have revolutionized research of trace-elements, including uranium. It was these advances that provided us the impetus to develop this volume. We have attempted to produce a volume that incorporates most important aspects of uranium in natural systems, while providing some insight into important applications of uranium mineralogy and geochemistry to environmental problems. The result is a blend of perspectives and themes: historical (Chapter 1), crystal structures (Chapter 2), systematic mineralogy and paragenesis (Chapters 3 and 7), the genesis of uranium ore deposits (Chapters 4 and 6), the geochemical behavior of uranium and other actinides in natural fluids (Chapter 5), environmental aspects of uranium such as microbial effects, groundwater contamination and disposal of nuclear waste (Chapters 8, 9 and 10), and various analytical techniques applied to uranium-bearing phases (Chapters 11-14).
    Type of Medium: Monograph available for loan
    Pages: 679 S.
    ISBN: 0-939950-50-2 , 978-0-939950-50-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 38
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Radioactivity and the 20th Century by Rodney C. Ewing, p. 1 - 22 Chapter 2. The Crystal Chemistry of Uranium by Peter C. Burns, p. 23 - 90 Chapter 3. Systematics and Paragenesis of Uranium Minerals by Robert Finch and Takaski Murakami, p. 91 - 180 Chapter 4. Stable Isotope Geochemistry of Uranium Deposits by Mostafa Fayek and T. Kurtis Kyser, p. 181 - 220 Chapter 5. Environmental Aqueous Geochemistry of Actinides by William M. Murphy and Everett. L. Shock, p. 221 - 254 Chapter 6. Uranium Ore Deposits: Products of the Radioactive Earth by Jane Plant, Peter R. Simpson, Barry Smith, and Brian F. Windley, p. 255 - 320 Chapter 7. Mineralogy and Geochemistry of Natural Fission Reactors in Gabon by Janusz Janeczek, p. 321 - 392 Chapter 8. Geomicrobiology of Uranium by Yohey Suzuki and Jillian F. Banfield, p. 393 - 432 Chapter 9. Uranium Contamination in the Subsurface: Characterization and Remediation by Abdessalam Abdelouas, Werner Lutze, and H. Eric Nuttall, p. 433 - 474 Chapter 10. Uranium Mineralogy and the Geologic Disposal of Spent Nuclear Fuel by David Wronkiewicz and Edgar Buck, p. 475 - 498 Chapter 11. Spectroscopic Techniques Applied to Uranium in Minerals by John M. Hanchar, p. 499 - 520 Chapter 12. Infrared Spectroscopy and Thermal Analysis of the Uranyl Minerals by Jiri Cejka, p. 521- 622 Chapter 13. Analytical Methods for the Determination of Uranium in Geological and Environmental Materials by Stephen F. Wolf, p. 623 - 652 Chapter 14. Identification of Uranium-bearing Minerals and Inorganic Phases by X-ray Powder Diffraction by Frances C. Hill , p. 653 - 680
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Call number: ILP/M 06.0347
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: ix, 241 S. : Ill., graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 313,1-2 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 99.0430 ; 11/M 00.0102 ; 11/M 99.0037
    In: Reviews in mineralogy
    Description / Table of Contents: This volume was prepared for a short course by the same title, organized by Russell J. Hemley and Ho-kwang Mao and sponsored by the Mineralogical Society of America, December 4-6, 1998 on the campus of the University of California at Davis. High-pressure mineralogy has historically been a vital part of the geosciences, but it is only in the last few years that the field has emerged as a distinct discipline as a result of extraordinary recent developments in high-pressure techniques. The domain of mineralogy is now no less than the whole Earth, from the deep crust to the inner core-the entire range of pressures and temperatures under which the planet's constituents were formed or now exist. The primary goal of this field is to determine the physical and chemical properties of materials that underlie and control the structural and thermal state, processes, and evolution of the planet. New techniques that have come 'online' within the last couple of years make it possible to determine such properties under extreme pressures and temperatures with an accuracy and precision that rival measurements under ambient conditions. These investigations of the behavior of minerals under extreme conditions link the scale of electrons and nuclei with global processes of the Earth and other planets in the solar system. It is in this broad sense that the term 'Ultrahigh-Pressure Mineralogy' is used for the title of this volume of Reviews in Mineralogy. This volume sets out to summarize, in a tutorial fashion, knowledge in this rapidly developing area of physical science, the tools for obtaining that knowledge, and the prospects for future research. The book, divided into three sections, begins with an overview (Chapter 1) of the remarkable advances in the ability to subject minerals-not only as pristine single-crystal samples but also complex, natural mineral assemblages-to extreme pressure-temperature conditions in the laboratory. These advances parallel the development of an arsenal of analytical methods for measuring mineral behavior under those conditions. This sets the stage for section two (Chapters 2-8) which focuses on high-pressure minerals in their geological setting as a function of depth. This top-down approach begins with what we know from direct sampling of high-pressure minerals and rocks brought to the surface to detailed geophysical observations of the vast interior. The third section (Chapters 9-19) presents the material fundamentals, starting from properties of a chemical nature, such as crystal chemistry, thermochemistry, element partitioning, and melting, and moving toward the domain of mineral physics such as melt properties, equations of state, elasticity, rheology, vibrational dynamics, bonding, electronic structure, and magnetism. The Review thus moves from the complexity of rocks to their mineral components and finally to fundamental properties arising directly from the play of electrons and nuclei. The following themes crosscut its chapters. Composition of the mantle and core Our knowledge of the composition of the Earth in part is rooted in information on cosmochemical abundances of the elements and observations from the geological record. But an additional and essential part of this enterprise is the utilization of the growing information supplied by mineral physics and chemistry in detailed comparison with geophysical (e.g. seismological) observations for the bulk of the planet. There is now detailed information from a variety of sources concerning crust-mantle interactions in subduction (Liou et aI., Chapter 2; Mysen et aI., Chapter 3). Petrological, geochemical, and isotope studies indicate a mantle having significant lateral variability (McDonough and Rudnick, Chapter 4). The extent of chemical homogeneity versus layering with depth in the mantle, a question as old as the recognition of the mantle itself, is a first-order issue that threads its way throughout the book. Agee (Chapter 5) analyzes competing models in terms of mineral physics, focusing on the origin of seismic discontinuities in the upper mantle. Bina (Chapter 6) examines the constraints for the lower mantle, with particular emphasis given to the variation of the density and bulk sound velocity with depth through to the core-mantle boundary region (Jeanloz and Williams, Chapter 7). Stixrude and Brown (Chapter 8) examine bounds on the composition of the core. Mineral elasticity and the link to seismology The advent of new techniques is raising questions of the mineralogy and composition of the deep Interior to a new level. As a result of recent advances in seismology, the depth-dependence of seismic velocities and acoustic discontinuities have been determined with high precision, lateral heterogeneities in the planet have been resolved, and directional anisotropy has been determined (Chapters 6 and 7). The first-order problem of constraining the composition and temperature as a function of depth alone is being redefined by high-resolution velocity determinations that define lateral chemical or thermal variations. As discussed by Liebermann and Li (Chapter 15), measurements of acoustic velocities can now be carried out simultaneously at pressures that are an order of magnitude higher, and at temperatures that are a factor of two higher, than those possible just a few years ago. The tools are in hand to extend such studies to related properties of silicate melts (Dingwell, Chapter 13). Remarkably, the solid inner core is elastically anisotropic (Chapter 8); with developments in computational methods, condensed-matter theory now provides robust and surprising predictions for this effect (Stixrude et aI., Chapter 19), and with very recent experimental advances, elasticity measurements of core material at core pressures can be performed directly (Chapters 1 and 15). Mantle dynamics The Earth is a dynamic planet: the rheological properties of minerals define the dynamic flow and texture of material within the Earth. Measurement of rheological properties at mantle pressures is a significant challenge that can now be addressed (Weidner, Chapter 16). Deviatoric stresses down to 0.1 GPa to pressures approaching 300 GPa can be quantified in high-pressure cells using synchrotron radiation (Chapter 1). The stress levels are an appropriate scale for understanding earthquake genesis, including the nature of earthquakes that occur at great depth in subducted slabs (deep-focus earthquakes) as these slabs travel through the Earth's mantle. Newly developed high-pressure, high-precision x-ray tools such as monochromatic radiation with modern detectors with short time resolution and employing long duration times are now possible with third-generation synchrotron sources to study the rheology of deep Earth materials under pressure (Chapter 1). Fate of subducting slabs One of the principal interactions between the Earth's interior and surface is subduction of lithosphere into the mantle, resulting in arc volcanoes, chemical heterogeneity in the mantle, as well as deep-focus earthquakes (Chapters 2 and 3). Among the key chemical processes associated with subduction is the role of water in the recycling process (Prewitt and Downs, Chapter 9), which at shallower levels is essential for understanding arc volcanism. Mass and energy transport processes govern global recycling of organic and inorganic materials, integration of these constituents in the Earth's interior, the evolution (chemically and physically) of descending slabs near convergent plate boundaries, and the fate of materials below and above the descending slab. Chapters 5 and 6 discuss the evidence for entrainment and passage of slabs through the 670 km discontinuity, and the possibility of remnant slabs in the anomalous D" region near the core-mantle boundary (Chapter 7). The ultimate fate of the materials cycled to such depths may affect interactions at the core-mantle boundary and may also hold clues to the initiation of diapiric rise. The evolution and fate of a subducting slab can now be addressed by experimental simulation of slab conditions, including in situ monitoring of a simulated slab in high-pressure apparatus in situ x-ray and spectroscopic techniques. The chemistry of volatiles changes appreciably under deep Earth conditions: they can be structurally bound under pressure (Prewitt and Downs, Chapter 9). Melting Understanding pressure-induced changes in viscosity and other physical properties of melts is crucial for chemical differentiation processes ranging from models of the magma ocean in the Earth's early history to the formation of magmatic ore deposits. (Chapter 13). Recent evidence suggests that melting may take place at great depth in the mantle. Seismic observations of a low-velocity zone and seismic anisotropy at the base of the mantle have given rise to debate about the existence of regions of partial melt deep in the mantle (Chapter 7). Deep melting is also important for mantle convection from subduction of the lithosphere to the rising of hot mantle plumes. Very recent advances in determination of melting relations of mantle and core materials with laser-heating techniques are beginning to provide accurate constraints (Shen and Heinz, Chapter 12). Sometimes lost in the debate on melting curves is the fact that a decade ago, there simply were no data for most Earth materials, only guesses and (at best) approximate models. Moreover, it is now possible to carry out in situ melting studies on multi-component systems, including natural assemblages, to deep mantle conditions. These results address whether or not partial melting is responsible for the observed seismic anomalies at the base of the mantle and provide constraints for mantle convection models (Chapter 7). The enigma of the Earth's core The composition, structure, formation, evolution, and current dynamic state of the Earth's core is an area of tremendous excitement (Chapter 8). The keys to understanding the available geophysical data are the material properties of liquid and crystalline iron under core conditions. New synchrotron-based methods and new developments in theory are being applied to determine all of the pertinent physical properties, and in conjunction with seismological and geodynamic data, to develop a full understanding of the core and its interactions with the mantle (Chapter 7). There has been considerable progress in determining the melting and phase relations of iron into the megabar range with new techniques (Chapter 12). Constraints are also obtained from theory (Chapter 19). These results feed into geophysical models for the outer and inner core flow, structural state, evolution, and the geodynamo. Moreover, there is remarkable evidence that the Earth's inner core rotates at a different rate than the rest of the Earth. This evidence in turn rests on the observation that the inner core is elastically anisotropic, a subject of current experimental and theoretical study from the standpoint of mineral physics, as described above. The thermodynamic framework Whole Earth processes must be grounded in accurate thermodynamic descriptions of phase equilibria in multi-component systems, as discussed by Navrotsky (Chapter 10). New developments in this area include increasingly accurate equations of state (Duffy and Wang, Chapter 14) required for modeling of phase equilibria as well as for direct comparison with seismic density profiles through the planet. Recent developments in in situ vibrational spectroscopy and theoretical models provide a means for independently testing available thermochemical data and a means for extending those data to high pressures and temperatures (Gillet et aI., Chapter 17). Accurate determinations of crystal structures provide a basis for understanding thermochemical trends (Chapter 9). Systematics for understanding solid-solution behavior and element partitioning are now available, at least to the uppermost regions of the lower mantle (Fei, Chapter 11). New measurements for dense hydrous phases are beginning to provide answers to fundamental questions regarding their stability of hydrous phases in the mantle (Chapters 3 and 9) and the partitioning of hydrogen and oxygen between the mantle and core (Chapter 8). Novel physical phenomena at ultrahigh pressures One of the key recent findings in high-pressure research is the remarkable effect of pressure on the chemistry of the elements, at conditions ranging from deep metamorphism of crustal minerals (Chapter 2) to "contact metamorphism" at the core-mantle boundary (Chapter 7). Pressure-induced changes in Earth materials represent forefront problems in condensed-matter physics. New crystal structures appear and the chemistry of volatiles changes (Chapter 9). Pressure-induced electronic transitions and magnetic collapse in transition metal ions strongly affect mineral properties and partitioning of major, minor, and trace elements (Chapter 11). Evidence for these transitions from experiment (Chapter 18) and theory (Chapter 19) is important for developing models for Earth formation and chemical differentiation. The conventional view of structurally and chemically complex minerals of the crust giving way to simple, close-packed structures of the deep mantle and a simple iron core is being replaced by a new chemical picture wherein dense silicates, oxides, and metals exhibit unusual electronic and magnetic properties and chemistry. In the end, this framework must dovetail with seismological observations indicating an interior of considerable regional variability, both radially and laterally depending on depth (e.g. Chapters 6 and 7). New classes of global models Information concerning the chemical and physical properties of Earth materials at high pressures and temperatures is being integrated with geophysical and geochemical data to create a more comprehensive global view of the state, processes, and history of the Earth. In particular, models of the Earth's interior are being developed that reflect the details contained in the seismic record but are bounded by laboratory information on the physics and chemistry of the constituent materials. Such "Reference Earth Models" includes the development of reference data sets and modeling codes. Tools that produce seismological profiles from hypothesized mineralogies (Chapters 4 and 5) are now possible, as are tools for testing these models against 'reference' seismological data sets (Chapter 6). These models incorporate the known properties of the Earth, such as crust and lithosphere structure, and thus have both an Earth-materials and seismological orientation. Other planets The Earth cannot be understood without considering the rest of the solar system. The terrestrial planets of our solar system share a common origin, and our understanding of the formation of the Earth is tied to our understanding of the formation of its terrestrial neighbors, particularly with respect to evaluating the roles of homogeneous and heterogeneous processes during accretion. As a result of recent developments in space exploration, as well as in the scope of future planetary missions, we have new geophysical and geochemical data for the other terrestrial planets. Models for the accretion history of the Earth can now be reevaluated in relation to this new data. Experiments on known Earth materials provide the thermodynamic data necessary to calculate the high-pressure mineralogy of model compositions for the interior of Mars and Venus. Notably, the outer planets have the same volatile components as the Earth, just different abundances. Studies of the outer planets provide both an additional perspective on our own planet as well as a vast area of opportunity for application of these newly developed experimental techniques (Chapter 1 and 17). New techniques in the geosciences The utility of synchrotron radiation techniques in mineralogy has exceeded the expectations of even the most optimistic. New spectroscopic methods developed for high-pressure mineralogy are now available for characterizing small samples from other types of experiments. For example, the same techniques developed for in situ studies at high pressures and temperatures are being used to investigate microscopic inclusions such as coesite in high-pressure metamorphic rocks (Chapter 2) and deep-mantle samples as inclusions in diamond (Chapter 3). With the availability of a new generation of synchrotron radiation sources (Chapter 1) and spectroscopic techniques (Chapter 17), a systematic application of new methods, including micro tomographic x-ray analysis of whole rock samples, is now becoming routinely possible. Contributions in technology. Finally, there are implications beyond the geosciences. Mineralogy has historically has led many to conceptual and technical developments used in other fields, including metallurgy and materials science, and the new area of ultrahigh pressure mineralogy continues this tradition. As pointed out in Chapter 1, many highpressure techniques have their origins in geoscience laboratories, and in many respects, geoscience leads development of high-pressure techniques in physics, chemistry, and materials science. New developments include the application of synthetic diamond for new classes of 'large-volume' high-pressure cells. Interestingly, information on diamond stability, including its metastable growth, feeds back directly on efforts to grow large diamonds for the next generation of such high-pressure devices (Chapter 1). Microanalytical techniques, such as micro-spectroscopy and x-ray diffraction, developed for high-pressure research are now used outside of this field of research as well. The study of minerals and mineral analogs under pressure is leading to new materials. As in the synthesis of diamond itself, these same scientific approaches promise the development of novel, technological materials.
    Type of Medium: Monograph available for loan
    Pages: xvi, 671 S.
    ISBN: 0-939950-48-0 , 978-0-939950-48-5
    ISSN: 1529-6466
    Series Statement: Reviews in Mineralogy 37
    Classification:
    Mineralogy
    Language: English
    Note: I. Overview Chapter 1. New Windows on the Earth's Deep Interior by Ho-kwang Mao and Russell J. Hemley, p. 1 - 32 II. Minerals in Context: The Earth's Deep Interior Chapter 2. High-pressure minerals from deeply subducted metamorphic rocks by J.G. Liou, R.Y. Zhang, W.G. Ernst, Douglas Rumble III, and Shigenori Maruyama, p. 33 - 96 Chapter 3. The Upper Mantle Near Convergent Plate Boundaries by Bjorn O. Mysen, Peter Ulmer, Juergen Konzett, and Max W. Schmidt, p. 97 - 138 Chapter 4. Mineralogy and Composition of the Upper Mantle by William F. McDonough and Roberta L. Rudnick, p. 139 - 164 Chapter 5. Phase Transformations and Siesmic Structure in the Upper Mantle and Transition Zone by Carl B. Agee, p. 165 - 204 Chapter 6. Lower Mantle Mineralogy and the Geophysical Perspective by Craig R. Bina, p. 205 - 240 Chapter 7. The Core-Mantle Boundary Region by Raymond Jeanloz and Quentin Williams, p. 241 - 260 Chapter 8. The Earth's Core by Lars Stixrude and J. Michael Brown, p. 261 - 282 Chapter 9. High-Pressure Crystal Chemistry by Charles T. Prewitt and Robert T. Downs, p. 283 - 318 III. Mineral Fundamentals: Physics and Chemistry Chapter 10. Thermodynamics of High-Pressure Phases by Alexandra Navrotsky, p. 319 - 342 Chapter 11. Solid Solutions and Element Partitioning at High Pressures and Temperatures by Yingwei Fei, p. 343 - 368 Chapter 12. High-Pressure Melting of Deep Mantle and Core Materials by Guoyin Shen and Dion L. Heinz, p. 369 - 396 in the 2002-02-07 print version, the first page of Chapter 12 (page 369) was switched with the first page of Chapter 13 (p. 397) Chapter 13. Melt Viscosity and Diffusion under Elevated Pressures by Donalds B. Dingwell, p. 397 - 424 in the 2002-02-07 print version, the first page of Chapter 12 (page 369) was switched with the first page of Chapter 13 (p. 397) Chapter 14. Pressure-Volume-Temperature Equations of State by Thomas S. Duffy and Yanbin Wang, p. 425 - 458 Chapter 15. Elasticity at High Pressures and Temperatures by Robert C. Liebermann and Baosheng Li, p. 459 - 492 Chapter 16. Rheological Studies at High Pressure by Donald J. Weidner, p. 493 - 524 Chapter 17. Vibrational Properties at High Pressures and Temperatures by Philippe Gillet, Russell J. Hemley, and Paul F. McMillan, p. 525 - 590 Chapter 18. High-Pressure Electronic and Magnetic Properties by Russell J. Hemley, Ho-kwang Mao, and Ronald E. Cohen, p. 591 - 538 Chapter 19. Theory of Minerals at High Pressure by Lars Stixrude, Ronald E. Cohen, and Russell J. Hemley, p. 639 - 671
    Location: Reading room
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 99.0429 ; 11/M 98.0500 ; 11/M 00.0101
    In: Reviews in mineralogy
    Description / Table of Contents: We seek to understand the timing and processes by which our solar system formed and evolved. There are many ways to gain this understanding including theoretical calculations and remotely sensing planetary bodies with a number of techniques. However, there are a number of measurements that can only be made with planetary samples in hand. These samples can be studied in laboratories on Earth with the full range of high-precision analytical instruments available now or available in the future. The precisions and accuracies for analytical measurements in modern Earth-based laboratories are phenomenal. However, despite the fact that certain types of measurements can only be done with samples in hand, these samples will always be small in number and not necessarily representative of an entire planetary surface. Therefore, it is necessary that the planetary material scientists work hand-in-hand with the remote sensing community to combine both types of data sets. This exercise is in fact now taking place through an initiative of NASA's Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM). This initiative is named "New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets." As preliminary results of the Lunar Prospector mission become available, and with the important results of the Galileo and Clementine missions now providing new global data sets of the Moon, it is imperative that the lunar science community synthesize these new data and integrate them with one another and with the lunar-sample database. Integrated approaches drawing upon multiple data sets can be used to address key problems of lunar origin, evolution, and resource definition and utilization. The idea to produce this Reviews in Mineralogy (RIM) volume was inspired by the realization that many types of planetary scientists and, for that matter, Earth scientists will need access to data on the planetary sample suite. Therefore, we have attempted to put together, under one cover, a comprehensive coverage of the mineralogy and petrology of planetary materials. The book is organized with an introductory chapter that introduces the reader to the nature of the planetary sample suite and provides some insights into the diverse environments from which they come. Chapter 2 on Interplanetary Dust Particles (IDPs) and Chapter 3 on Chondritic Meteorites deal with the most primitive and unevolved materials we have to work with. It is these materials that hold the clues to the nature of the solar nebula and the processes that led to the initial stages of planetary formation. Chapter 4, 5, and 6 consider samples from evolved asteroids, the Moon and Mars respectively. Chapter 7 is a brief summary chapter that compares aspects of melt-derived minerals from differing planetary environments.
    Type of Medium: Monograph available for loan
    Pages: xv, 864 S.
    ISBN: 0-939950-46-4 , 978-0-939950-46-1
    ISSN: 1529-6466
    Series Statement: Reviews in Mineralogy 36
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. The Planetary Sample Suite and Environments of Origin by Charles K. Shearer, James J. Papike., and Frans J.M. Rietmeijer, p. 1-01 - 1-28 Chapter 2. Interplanetary Dust Particles by Frans J.M. Rietmeijer, p. 2-01 - 2-96 Chapter 3. Chondritic Meteorites by Adrian J. Brearley and Rhian H. Jones, p. 3-001 - 3-398 Chapter 4. Non-Chondritic Meteorites from Asteroidal Bodies by David Wayne Mittlefehldt, Timothy J. McCoy, Cyrena Anne Goodrich, and Alfred Kracher, p.4-001 - 4-196 Chapter 5. Lunar Samples by James J. Papike, G. Ryder, and Charles K. Shearer, p. 5-001 - 5-234 Chapter 6. Martian Meteorites by Harry Y. McSween, Jr. and Allan H. Treiman, p. 6-01 - 6-54 Chapter 7. Comparative Planetary Mineralogy: Chemistry of Melt- Derived Pyroxene, Feldspar, and Olivine by James J. Papike, p. 7-01 - 7-12
    Location: Reading room
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 97.0491
    In: Reviews in mineralogy
    Description / Table of Contents: Microorganisms cause mineral precipitation and dissolution and control the distribution of elements in diverse environments at and below the surface of the Earth. Conversely, mineralogical and geochemical factors exert important controls on microbial evolution and the structure of microbial communities. This was the rationale for the Short Course on Geomicrobiology presented by the Mineralogical Society of America on October 18 and 19, 1997, at the Alta Peruvian Lodge in Alta, Utah. Minerals have been known and honored since humans realized their essential contributions to the "terra firma" and stone tools thrust our species on the path of cultural evolution. Microbes are the oldest living creatures, probably inhabiting at least a few salubrious environments on the earth as early as 3.8 billion years ago. At this moment in history we are only beginning to appreciate the intimate juxtaposition and interdependence of minerals and microbes. We have been nudged into this position by the realization that our earth is finite, and the recognition of many global environmental problems that minerals and microbes contribute to, both positively and negatively. In addition, our globe may not be the only site in the solar system where 'life' arose, or may persist. What all of these concerns enunciate is that we as scientists only dimly comprehend our own dynamic "terrestrial halls." This short course and volume have been generated with great enthusiasm for grasping as much as possible of the whole panorama of possibilities that involve both the inorganic and biologic realms . Over 3600 mineral species have been defined and their relationships to each other and the environments in which they form have been documented. This vast data base, collected over the past several hundred years and constantly added to and upgraded, is a monument to the research efforts of many geoscientists focused on the inorganic realm. Much of this data has come from investigators intrigued by the novelty, beauty, and versatility of minerals, direct expressions of the chemistry and physics of geologic processes. We are now adding a new dimension to questions of mineral formation, dissolution, and distribution: what were, are, and will be the contributions of microbes to these basic components of the environment. Microbes have also been known for hundreds of years. However, their small size (0.5 to 5 µm in diameter) and the difficulties associated with identifying a species unless it was grown in the laboratory (cultured), precluded thorough analysis. The advent of molecular biology has only recently made it possible to evaluate microbial evolutionary relatedness (phylogeny) and physiological diversity. These techniques are now being applied to study of microbial populations in natural environments. It is becoming very clear that the surface of Earth is populated by far more species of microbes than there are types of minerals. We are now exploring every portion of the globe and finding the relationships under the rubric "geomicrobiology." The ocean deeps are characterized by a diversity of microorganisms, including those associated with manganese nodules. The profusion and concentration of minerals created at ocean ridges and vents matches the variety of microorganisms, large animals, and plants there. The snowy tops of mountain ranges and glaciers of Antarctica harbor not just ice but whole bacterial communities whose cellular types and activities need elucidation. The equatorial jungles and the deserts, with their enormous diversity of ecological niches, further challenge us. The diversity of geographic, geologic, and biologic environments, including some contributed by humans (e.g. mines, air-conditioning equipment), can now also be explored in detail. Modern studies use protocols developed to preserve or measure in situ chemical and physical characteristics. Electron microscopes allow direct characterization of mineral and biological morphology and internal structures. Spectroscopic techniques permit complimentary chemical analysis, including determination of oxidation states, with very high spatial resolution. Other studies quantitatively measure isotopic abudances. These data serve to distinguish biologically mediated, or biologically controlled formation of the mineral from an abiotic process and mechanism. Each ecological niche requires accurate characterization of the mineralogic and biologic entities in order for us to begin to understand the range of dynamic relationships. We can pose many questions. Is the mineral only a substrate, or is its occurrence and stability impacted by microbiologic activity and metabolic requirements? Which minerals are of microbiological rather than inorganic origin and what are the mechanisms by which organisms dictate the morphology and structure of the solid phase formed? How do organic metabolic products bind metals and change their form and distribution, with implications for metal toxicity and geochemical cycles? How do inorganic reactions such as mineral dissolution and precipitation impact microbial populations through control of their physical and chemical environments? Clearly, new and excitingly research areas exist for all varieties of scientists. Although published by the Mineralogical Society of America, the authors of this volume include microbiologists, molecular biologists, biochemists, biophysicists, bioengineers as well as biomineralogists. Here, they bring together their respective expertise and perspectives to provide disciplinary and interdisciplinary background needed to define and further explore the topic of geomicrobiology. The volume is organized so as to first introduce the nature, diversity, and metabolic impact of microorganisms and the types of solid phases they interact with. This is followed by a discussion of processes that occur at cell surfaces, interfaces between microbes and minerals, and within cells, and the resulting mineral precipitation, dissolution, and changes in aqueous geochemistry. The volume concludes with a discussion of the carbon cycle over geologic time. In detail: Nealson and Stahl acquaint us with the basic properties of prokaryotes, including their size and structure. They define the types and ranges of microorganisms and their metabolisms and describe their impacts on some important biogeochemical cycles. Barns and Nierzwicki-Bauer document the phylogenetic relationships and evolution of microorganisms, begging some fundamental questions that might be now just beyond our grasp: What was the 'last common ancestor'? The physiology, biochemistry and ecology of hyperthermophilic, and the many diverse geologically important microbial species from the lithosphere and hydrosphere, as well as some of the techniques employed, are presented. Banfield and Hamers describe and integrate the processes acting on minerals and at surfaces relevant to microorganisms, examining the factors that control mineralogy, mineral forms, and the stability of phases. Surface properties and reaction rates for dissolution, precipitation, and growth of important classes of minerals are discussed. The possible role of mineral surfaces in formation of prebiotic molecules needed to explain the origin of life is examined. Little, Wagner and Lewandowski describe biofilms, an essential interface between microbes and minerals. They demonstrate that these membranes, with their unique morphological and structural attributes, are sites where much activity related to dissolution and/or formation of minerals takes place. Biology makes it possible to move molecules and elements against a gradient. Many questions regarding the transfer of elements from minerals to microbes at this important heterogeneous interface remain. Fortin, Ferris and Beveridge review surface-mediated mineral development by bacteria. Fresh or oceanic waters, anaerobic or aerobic environments provide discretely different ecologies, bacterial entities, and resulting mineralogies. It is obvious from this presentation that investigators have just scratched the surface of microbial mineralization processes. Bazlinski and Moskowitz review the magnetic biominerals and provide insights into the environmental and biological significance of these few tens of nanometer-sized mineral products. The magnetosome chemistry and biochemistry is probably the best understood of any biologically precipitated mineral. Their formation and unique properties underscore the roles these biomaterials play in the rock magnetic record and in geochemical cycles. Tebo, Ghiorse, van Waasbergen, Siering and Caspi contribute data on the roles of Mnminerals and Mn(II) oxidation in geologic environments. Their chapter encompasses molecular genetic and biochemical investigations. Manganese oxides and oxyhydroxides are notoriously difficult to identify and the crystal chemistry of these phases is a research effort on its own. The prospect of learning how microbes utilize the multiple oxidation states of Mn (2+, 3+ and 4+) as a source of energy sharpens the motivation for interdisciplinary study. Manganese is also known as a cofactor in the production and activation of the enzymes that digest large biomolecules that must be the source of the smaller molecular species and ultimately the building blocks of C, N, 0, H required by all species. How have the mechanisms identified in the bacterial systems been transferred up the phylogenetic tree to plants and humans? This is an expanding and intriguing area for further investigation. DeVrind-de Jong and de Vrind address silicate and carbonate deposition by algae (eukaryotic photosynthetic microorganisms). This chapter documents the mechanisms of biomineralization of diatoms and coccoliths. These abundant aquatic organisms are responsible for huge volumes of siliceous sediments and calcium carbonate deposits world wide. The implications of algal biomineralization for climatic variation throughout much of the Earth's history may be quite significant. Stone leads us though a quantitative approach to evaluating reactions between organic molecules and cations. He considers available extracellular organic ligands and the roles these play in uptake of metals. He documents the basic chemical speciation and complexation for several elements, making metal to metal comparisons. Remaining challenges involve coordinating the organic and inorganic results of biologic activity. Following the discussion of biomineralization and interactions between organic compounds and cations, Silver discusses the strategies microorganisms have evolved to deal with toxic metal concentrations in solution. Beyond the fundamental biological significance, this has important implications for understanding microbial populations in contaminated environments. The impact on the geochemical form (speciation) and distribution of elements is also discussed. Nordstrom and Southam summarize sulfide mineral oxidation and dissolution kinetics and devote considerable effort to describing the specific contributions of microorganisms, mostly bacteria. Despite the vast amount of accumulated information, many unanswered questions remain. Barker, Welch and Banfield address weathering of silicate minerals. This topic encompasses not only mineralogy but geomorphology, microbiology, and geochemistry. The necessary interdisciplinary mode of these investigations is highlighted by discussion of the role(s) of bacterial nutrition, groundwater chemistry, and biochemistry. There are obvious implications for hazardous waste storage, a currently daunting and politicized topic that requires predictions over thousands to millions of years. Finally, Des Marais treats the long term evolution of the carbon cycle, adopting a biogeochemical view. He discusses the sources, sinks and the transfer of the element over geologic time. Consideration of such a basic series of questions relating to the partitioning of carbon necessitate interdisciplinary crossovers. It is a fitting conclusion to a dialogue in progress.
    Type of Medium: Monograph available for loan
    Pages: 448 S.
    ISBN: 0-939950-45-6 , 978-0-939950-45-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 35
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. Microorganisms and Biogeochemical Cycles: What Can We Learn from Layered Microbial Communities by Kenneth H. Nealson and David A. Stahl, p. 5 - 34 Chapter 2. Microbial Diversity in Modern Subsurface, Ocean, Surface Environments by Susan M. Barns and Sandra Nierzwicki-Bauer, p. 35 - 80 Chapter 3. Processes at Minerals and Surfaces with Relevance to Microorganisms and Prebiotic Synthesis by Jillian F. Banfield and Robert J. Hamers, p. 81 - 122 Chapter 4. Spatial Relationships between Bacteria and Mineral Surfaces by Brenda J. Little, Patrica A. Wagner, and Zbigniew Lewandowski, p. 123 - 160 Chapter 5. Surface-mediated Mineral Development by Bacteria by D. Fortin, F.G. Ferris, and T.J. Beveridge, p. 161 - 180 Chapter 6. Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism and Environmental Significance by Dennis A. Bazylinksi and Bruce M. Moskowitz, p. 181 - 224 Chapter 7. Bacterially-Mediated Mineral Formation: Insights into Manganese(II) Oxidation from Molecular Genetic and Biochemical Studies by Bradley M. Tebo, William C. Ghiorse, Lorraine G. van Waasbergen, Patricia L. Siering, and Ron Caspi, p. 225 - 266 Chapter 8. Algal Deposition of Carbonates and Silicates by Elisabeth W. de Vrind-de Jong and Johannes P. M. de Vrind, p. 267 - 308 Chapter 9. Reactions of Extracellular Organic Ligands with Dissolved Metal Ions and Mineral Surfaces by Alan T. Stone, p. 309 - 344 Chapter 10. The Bacterial View of the Periodic Table: Specific Functions for All Elements by Simon Silver, p. 345 - 360 Chapter 11. Geomicrobiology of Sulfide Mineral Oxidation by D. Kirk Nordstrom and Gordon Southam, p. 361 - 390 Chapter 12. Biogeochemical Weathering of Silicate Minerals by William W. Barker, Susan A. Welch, and Jillian F. Banfield, p. 391 - 428 Chapter 13. Long-term Evolution of the Biogeochemical Carbon Cycle by David J. Des Marais, p. 429 - 448
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Call number: ZSP-168-236 ; Mitte 48032 / Mitte
    In: Berichte zur Polarforschung
    Type of Medium: Series available for loan
    Pages: 309 S. : graph. Darst.
    ISSN: 0176-5027
    Series Statement: Berichte zur Polarforschung 236
    Language: English
    Note: Zugl.: Braunschweig, Univ., Diss., 1996
    Location: AWI Reading room
    Location: MOP - must be ordered
    Branch Library: AWI Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0480
    In: Reviews in mineralogy
    Description / Table of Contents: At the time of the first printing (1996), interest in the element boron was growing rapidly. We felt that it was an opportune moment to ask investigators active in research on boron to review developments in their respective fields so that readers could learn what was-and wasn't-known about boron and its minerals, geochemistry and petrology. Since 1996, interest in boron has, if anything, increased, and continued demand for the Reviews in Mineralogy "boron bible" has motivated the Mineralogical Society of America to reprint the volume. Demand is reflected in citations, and according to ISI's Science Citation Index, the number of citations since publication to the volume is about 380, with some individual chapters having been cited as many as 44 times. In preparation for this printing, authors of 15 of the 19 original chapters have updated, corrected or added to their chapters within the constraints that no pages be added. Most addenda are bibliographies of literature published since 1996; a few also include summaries of significant findings. Addenda for each chapter follow the chapter, except for those for Chapters 1 and 2, which are merged onto pages 115-116 and 385. A table of new B-minerals since 1996 is given on p. 28, and many modifications were made to the table (p. 7-27) of B-minerals known prior to 1996 (corrections to formulae, mineral names, localities, etc.). Similar up-datings of Table 1 (p. 223) in Chapter 5 and numerous tables in Chapter 9 (p. 387) were undertaken, and Figure 15 in Chapter 11 (p. 619), which-embarrassingly-was missing from the first printing, has been supplied. Addenda to Chapter 13 are introduced on p. 744 and completed on p. 863 and 864. The following salient developments in research related to B are mentioned in the addenda: New minerals. Twenty-two boron minerals have been or are about to be described, and four more have been approved by the International Mineralogical Association, representing an increase of 10%, comparable to the increase in the number of all new minerals described during the same period (Anovitz and Grew, Chapter 1) Tourmaline group. In addition to four new tourmaline species, a new classification has been proposed. Another tourmaline, olenite, has been shown to contain substantial amounts of excess B in tetrahedral coordination, a finding that has revolutionized our view of tourmaline crystal chemistry (Werding and Schreyer, Chapter 3; references in addendum to Henry and Dutrow, Chapter 10). Boron isotopes. New techniques for measuring isotope ratios using secondary ion mass spectroscopy (SIMS) with the ion microprobe open up new opportunities for in situ analyses of individual grains and fluid inclusions (Hervig, Chapter 16). Boron isotopes have found applications in paleoceanography and thus add to the tools available for the study of past climates (Palmer and Swihart, Chapter 13). One of the major questions facing the use of hydrogeochemical models is whether or not they can be used with confidence to predict future evolution of groundwater systems. There is much controversy concerning the validity and uncertainties of non-reactive fluid flow systems. Adding chemical interaction to these flow models only confounds the problem. Although such models may accurately integrate the governing physical and chemical equations, many uncertainties are inherent in characterizing the natural system itself. These systems are inherently heterogeneous on a variety of scales rendering it impossible to know precisely the many details of the flow system and chemical composition of the host rock. Other properties of natural systems such as permeability and mineral surface area, to name just two, may never be known with any great precision, and in fact may be unknowable. Because of these uncertainties, it remains an open question as to what extent numerical models of groundwater flow and reactive transport wilI be useful in making accurate quantitative predictions. Nevertheless, reactive transport models should be able to predict the outcome for the particular representation of the porous medium used in the model. Finally, it should be mentioned that numerical models are often our only recourse to analyze such environmental problems as safe disposal of nuclear waste where predictions must be carried out over geologic time spans. Without such models it would be impossible to analyze such systems, because they involve times too long to perform laboratory experiments. The results of model calculations may affect important political decisions that must be made. Therefore, it is all the more important that models be applied and tested in diverse environments so that confidence and understanding of the limitations and strengths of model predictions are understood before irreversible decisions are made that could adversely affect generations to come.
    Type of Medium: Monograph available for loan
    Pages: xx, 862 S.
    ISBN: 0-939950-41-3 , 978-0-939950-41-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 33
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Mineralogy, Petrology and Geochemistry of Boron: An Introduction by Lawrence M. Anovitz and Edward S. Grew, p. 1 - 40 Chapter 2. The Crystal Chemistry of Boron by Frank C. Hawthorne, Peter C. Burns, and Joel D. Grice, p. 41 - 116 Chapter 3. Experimental Studies on Borosilicates and Selected Borates by G. Werding and Werner Schreyer, p. 117 - 164 Chapter 4. Thermochemistry of Borosilicate Melts and Glasses - from Pyrex to Pegmatites by Alexandra Navrotsky, p. 165 - 180 Chapter 5. Thermodynamics of Boron Minerals: Summary of Structural, Volumetric and Thermochemical Data by Lawrence M. Anovitz and Bruce S. Hemingway, p. 181 - 262 Chapter 6. Continental Borate Deposits of Cenozoic Age by George I. Smith and Marjorie D. Medrano, p. 263 - 298 Chapter 7. Boron in Granitic Rocks and Their Contact Aureoles by David London, George B. Morgan, VI, and Michael B. Wolf, p. 299 - 330 Chapter 8. Experimental Studies of Boron in Granitic Melts by Donald B. Dingwell, Michel Pichavant, and François Holtz, p. 331 - 386 Chapter 9. Borosilicates (Exclusive of Tourmaline) and Boron in Rock-forming Minerals in Metamorphic Environments by Edward S. Grew, p. 387 - 502 Chapter 10. Metamorphic Tourmaline and Its Petrologic Applications by Darrell J. Henry and Barbara L. Dutrow, p. 503 - 558 Chapter 11. Tourmaline Associations with Hydrothermal Ore Deposits by John F. Slack, p. 559 - 644 Chapter 12. Geochemistry of Boron and Its Implications for Crustal and Mantle Processes by William P. Leeman and Virginia B. Sisson, p. 645 - 708 Chapter 13. Boron Isotope Geochemistry: An Overview by Martin R. Palmer and George H. Swihart, p. 709 - 744 Chapter 14. Similarities and Contrasts in Lunar and Terrestrial Boron Geochemistry by Denis M. Shaw, p. 745 - 770 Chapter 15. Electron Probe Microanalysis of Geologic Materials for Boron by James J. McGee and Lawrence M. Anovitz, p. 771 - 788 Chapter 16. Analyses of Geological Materials for Boron by Secondary Ion Mass Spectrometry by Richard L. Hervig, p. 789 - 804 Chapter 17. Nuclear Methods for Analysis of Boron in Minerals by J. David Robertson and M. Darby Dyar, p. 805 - 820 Chapter 18. Parallel Electron Energy-loss Spectroscopy of Boron in Minerals by Laurence A. J. Garvie and Peter R. Buseck, p. 821 - 844 Chapter 19. Instrumental Techniques for Boron Isotope Analysis by George H. Swihart, p. 845 - 862
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0543
    In: Reviews in mineralogy
    Description / Table of Contents: This volume contains the contributions presented at a short course held in Golden, Colorado, October 25-27, 1996 in conjunction with the Mineralogical Society of America's (MSA) Annual Meeting with the Geological Society of America in Denver, Colorado. The field of reactive transport within the Earth Sciences is a highly multidisciplinary area of research. The field encompasses a number of diverse disciplines including geochemistry, geology, physics, chemistry, hydrology, and engineering. The literature on the subject is similarly spread out as can be seen by a perusal of the bibliographies at the end of the chapters in this volume. Because these distinct disciplines have evolved largely independently of one another, their respective treatments of reactive transport in the Earth Sciences are based on different terminologies, assumptions, and levels of mathematical rigor. This volume and the short course which accompanies it, is an attempt to some extent bridge the gap between these different disciplines by bringing together authors and students from different backgrounds. A wide variety of geochemical processes including such diverse phenomena as the transport of radiogenic and toxic waste products, diagenesis, hydrothermal ore deposit formation, and metamorphism are the result of reactive transport in the subsurface. Such systems can be viewed as open bio-geochemical reactors where chemical change is driven by the interactions between migrating fluids, solid phases, and organisms. The evolution of these systems involves diverse processes including fluid flow, chemical reaction, and solute transport, each with differing characteristic time scales. This volume focuses on methods to describe the extent and consequences of reactive flow and transport in natural subsurface systems. Our ability to quantify reactive transport in natural systems has advanced dramatically over the past decade. Much of this advance is due to the exponential increase in computer computational power over the past generation-geochemical calculations that took years to perform in 1970 can be performed in seconds in 1996. Taking advantage of this increase of computational power, numerous comprehensive reactive transport models have been developed and applied to natural phenomena. These models can be used either qualitatively or qualitatively to provide insight into natural phenomena. Quantitative models force the investigator to validate or invalidate ideas by putting real numbers into an often vague hypothesis and thereby starting the thought process along a path that may result in acceptance, rejection, or modification of the original hypothesis. Used qualitatively, models provide. insight into the general features of a particular phenomenon, rather than specific details. One of the major questions facing the use of hydrogeochemical models is whether or not they can be used with confidence to predict future evolution of groundwater systems. There is much controversy concerning the validity and uncertainties of non-reactive fluid flow systems. Adding chemical interaction to these flow models only confounds the problem. Although such models may accurately integrate the governing physical and chemical equations, many uncertainties are inherent in characterizing the natural system itself. These systems are inherently heterogeneous on a variety of scales rendering it impossible to know precisely the many details of the flow system and chemical composition of the host rock. Other properties of natural systems such as permeability and mineral surface area, to name just two, may never be known with any great precision, and in fact may be unknowable. Because of these uncertainties, it remains an open question as to what extent numerical models of groundwater flow and reactive transport wilI be useful in making accurate quantitative predictions. Nevertheless, reactive transport models should be able to predict the outcome for the particular representation of the porous medium used in the model. Finally, it should be mentioned that numerical models are often our only recourse to analyze such environmental problems as safe disposal of nuclear waste where predictions must be carried out over geologic time spans. Without such models it would be impossible to analyze such systems, because they involve times too long to perform laboratory experiments. The results of model calculations may affect important political decisions that must be made. Therefore, it is all the more important that models be applied and tested in diverse environments so that confidence and understanding of the limitations and strengths of model predictions are understood before irreversible decisions are made that could adversely affect generations to come.
    Type of Medium: Monograph available for loan
    Pages: xiii, 438 S.
    ISBN: 0939950421 , 0-939950-45-6 , 978-0-939950-45-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 34
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Continuum Formulation of Multicomponent-Multiphase Reactive Transport by Peter C. Lichtner, p. 1 - 82 Chapter 2. Approaches to Modeling of Reactive Transport in Porous Media by Carl I. Steefel and Kerry T. B. MacQuarrie, p. 83 - 130 Chapter 3. Physical and Chemical Properties of Rocks and Fluids for Chemical Mass Transport Calculations by Eric H. Oelkers, p. 131 - 192 Chapter 4. Multicomponent Ion Exchange and Chromatography in Natural Systems by C. A. J. Appelo, p. 193 - 228 Chapter 5. Solute Transport Modeling Under Variably Saturated Water Flow Conditions by Donald L. Suarez and J. Simunek, p. 229 - 268 Chapter 6. Reactive Transport in Heterogeneous Systems: An Overview by Andrew F. B. Tompson and Kenneth J. Jackson, p. 269 - 310 Chapter 7. Microbiological Processes in Reactive Modeling by Bruce E. Rittmann and Jeanne M. VanBriesen, p. 311 - 334 Chapter 8. Biogeochemical Dynamics in Aquatic Sediments by Philippe Van Cappellen and Jean-Francois Gaillard, p. 335 - 376 Chapter 9. Reactive Transport Modeling of Acidic Metal-Contaminated Ground Water at a Site with Sparse Spatial Information by Pierre Glynn and James Brown, p. 377 - 438
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Call number: ILP/M 06.0340
    In: Publication of the International Lithosphere Programme
    In: Tectonophysics
    Type of Medium: Monograph available for loan
    Pages: x, 309 S. : graph. Darst.
    Series Statement: [Publication of the International Lithosphere Programme] 268,1-4 : special issue
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0037
    In: Reviews in mineralogy
    Description / Table of Contents: This book reviews current thinking on the fundamental processes that control chemical weathering of silicates, including the physical chemistry of reactions at mineral surfaces, the role of experimental design in isolating and quantifying these reactions, and the complex roles that water chemistry, hydrology, biology, and climate play in weathering of natural systems. The chapters in this volume are arranged to parallel this order of development from theoretical considerations to experimental studies to characterization of natural systems. Secondly, the book is meant to serve as a reference from which researchers can readily retrieve quantitative weathering rate data for specific minerals under detailed experimental controls or for natural weathering conditions. Toward this objective, the authors were encouraged to tabulate available weathering rate data for their specific topics. Finally this volume serves as a forum in which suggestions and speculations concerning the direction of future weathering research are discussed. The comprehensive nature of the volume provides opportunities to address important temporal and spacial issues that often separate the work and thinking of investigators working on specific aspects of chemical weathering. As has become apparent in assembling this volume, a number of important issues related to chemical weathering are unresolved. No effort was made to reach a consensus on these issues. Divergences in opinion were accepted between various authors and are apparent in the chapters of this volume.
    Type of Medium: Monograph available for loan
    Pages: xv, 583 S.
    ISBN: 0-939950-38-3 , 978-0-939950-38-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 31
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Chemical Weathering Rates of Silicate Minerals: An Overview by Arthur F. White and Susan L. Brantley, p. 1 - 22 Chapter 2. Fundamental Approaches in Describing Mineral Dissolution and Precipitation Rates by Antonio C. Lasaga, p. 23 - 86 Chapter 3. Silicate Mineral Dissolution as a Ligand-Exchange Reaction by William H. Casey and Christian Ludwig, p. 87 - 118 Chapter 4. Chemical Weathering Rates of Pyroxenes and Amphiboles by Susan L. Brantley and Y. Chen, p. 119 - 172 Chapter 5. Dissolution and Precipitation Kinetics of Sheet Silicates by Kathryn L. Nagy, p. 173 - 234 Chapter 6. Kinetic and Thermodynamic Controls on Silica Reactivity in Weathering Environments by Patricia M. Dove, p. 235 - 290 Chapter 7. Feldspar Dissolution Kinetics by Alex E. Blum and Lisa L. Stillings, p. 291 - 352 Chapter 8. Chemical Weathering of Silicates in Nature: A Microscopic Perspective with Theoretical Considerations by Michael F. Hochella, Jr. and Jillian F. Banfield, p. 353 - 406 Chapter 9. Chemical Weathering Rates of Silicate Minerals in Soils by Arthur F. White, p. 407 - 462 Chapter 10. Weathering Rates in Catchments by James I. Drever and D. W. Clow, p. 463 - 484 Chapter 11. Estimating Field Weathering Rates using Laboratory Kinetics by Harald Sverdrup and Per Warfvinge, p. 585 - 542 Chapter 12. Relating Chemical and Physical Erosion by Robert F. Stallard, p. 543 - 564 Chapter 13. Chemical Weathering and Its Effect on Atmospheric CO2 and Climate by Robert A. Berner, p. 565 - 583
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 96.0028 ; 11/M 96.0038
    In: Reviews in mineralogy
    Description / Table of Contents: The Mineralogical Society of America sponsored a short course for which this was the text at Stanford University December 9 and 10, 1995, preceding the Fall Meeting of the American Geophysical Union and MSA in San Fransisco, with about 100 professionals and graduate students in attendance. A silicate melt phase is the essential component of nearly all igneous processes, with dramatic consequences for the properties of the Earth's interior. Throughout Earth history and continuing to the present day, silicate melts have acted as transport agents in the chemical and physical differentiation of the Earth into core, mantle and crust. The occurrence of such magmatic processes leads to the definition of our planet as "active," and the resulting volcanism has a profound impact on the Earth's atmosphere, hydrosphere and biosphere. Although near-surface melts are observed directly during volcanic eruptions, the properties of magmas deep within the Earth must be characterized and constrained by laboratory experiments. Many of these experiments are designed to aid in developing an atomic level understanding of the structure and dynamics of silicate melts under the P- T conditions of the Earth's crust and mantle, which will make extrapolation from the laboratory results to the behavior of natural magmas as reliable as possible. Silicate melts are also the archetypal glass-forming materials. Because of the ready availability of raw materials, and the ease with which molten silicates can be vitrified, commercial "glass" has necessarily implied a silicate composition, over most of the history of glass technology. The properties of the melt, or "slag" in metallurgical extractions, determine the nature of the glass formed, and the needs of the glass industry have provided much of the impetus for understanding the structure-property relations of molten silicates as well as for the glasses themselves. It is now recognized that any liquid might become glassy, if cooled rapidly enough, and understanding the thermodynamic and kinetic aspects of the glass transition, or passage between the liquid and glassy states of matter, has become a subject of intense interest in fundamental physics and chemistry. Glasses have also been studied in many geochemical investigations, often as substitutes for the high temperature melts, with the results being extrapolated to the liquid state. In many cases, in situ techniques for direct investigation of these refractory systems have only recently become available. Much valuable information concerning the melt structure has been gleaned from such studies. Nevertheless, there are fundamental differences between the liquid and glassy states. In liquids, the structure becomes progressively more disordered with increasing temperature, which usually gives rise to major changes in all thermodynamic properties and processes. These changes must, in general, be investigated directly by in situ studies at high temperature. Studies of glass only represent a starting point, which reflect a frozen image of the melt "structure" at the glass transition temperature. This is generally hundreds of degrees below the near-liquidus temperatures of greatest interest to petrologists. Since the early 1980s, a much deeper understanding of the structure, dynamics, and properties of molten silicates has been developed within the geochemical community, applying techniques and concepts developed within glass science, extractive metallurgy and liquid state physics. Some of these developments have far-reaching implications for igneous petrology. The purpose of this Short Course and volume is to introduce the basic concepts of melt physics and relaxation theory as applied to silicate melts, then to describe the current state of experimental and computer simulation techniques for exploring the detailed atomic structure and dynamic processes which occur at high temperature, and finally to consider the relationships between melt structure, thermodynamic properties and rheology within these liquids. These fundamental relations serve to bridge the extrapolation from often highly simplified melt compositions studied in the laboratory to the multicomponent systems found in nature. This volume focuses on the properties of simple model silicate systems, which are usually volatile-free. The behavior of natural magmas has been summarized in a previous Short Course volume (Nicholls and Russell, editors, 1990: Reviews in Mineralogy, Vol. 24), and the effect of volatiles on magmatic properties in yet another (Carroll and Holloway, editors, 1994: Vol. 30). In the chapters by Moynihan, by Webb and Dingwell, and by Richet and Bottinga, the concepts of relaxation and the glass transition are introduced, along with techniques for studying the rheology of silicate liquids, and theories for understanding the transport and relaxation behavior in terms of the structure and thermodynamic properties of the liquid. The chapter by Dingwell presents applications of relaxation-based studies of melts in the characterization of their properties. Chapters by Stebbins, by Brown, Farges and Calas, and by McMillan and Wolf present the principal techniques for studying the melt structure and atomic scale dynamics by a variety of spectroscopic and diffraction methods. Wolf and McMillan summarize our current understanding of the effects of pressure on silicate glass and melt structure. Chapters by Navrotsky and by Hess consider the thermodynamic properties and mixing relations in simple and multicomponent aluminosilicate melts, both from a fundamental structural point of view and empirical chemical models which can be conveniently extrapolated to natural systems. The chapter by Chakraborty describes the diffusivity of chemical species in silicate melts and glasses, and the chapter by Poole, McMillan and Wolf discusses the application of computer simulation methods to understanding the structure and dynamics of molten silicates. The emphasis in this volume is on reviewing the current state of knowledge of the structure, dynamics and physical properties of silicate melts, along with present capabilities for studying the molten state under conditions relevant to melting within the Earth, with the intention that these techniques and results can then be applied to understanding and modeling both the nature of silicate melts and the role of silicate melts in nature.
    Type of Medium: Monograph available for loan
    Pages: xv, 616 S.
    ISBN: 0-939950-39-1 , 978-0-939950-39-3
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 32
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structural Relaxation and the Glass Transition by Cornelius T. Moynihan, p. 1 - 20 Chapter 2. Relaxation in Silicate Melts: Some Applications by Donald B. Dingwell, p. 21 - 66 Chapter 3. Rheology and Configurational Entropy of Silicate Melts by P. Richet & Y. Bottinga, p. 67 - 94 Chapter 4. Viscoelasticity by Sharon L. Webb and Donald B. Dingwell, p. 95 - 120 Chapter 5. Energetics of Silicate Melts by Alexandra Navrotsky, p. 121 - 144 Chapter 6. Thermodynamic Mixing Properties and the Structure of Silicate Melts by Paul C. Hess, p. 145 - 190 Chapter 7. Dynamics and Structure of Silicate and Oxide Melts: Nuclear Magnetic Resonance Studies by Jonathan F. Stebbins, p. 191 - 246 Chapter 8. Vibrational Spectroscopy of Silicate Liquids by Paul F. McMillan and George H. Wolf, p. 247 - 316 Chapter 9. X-ray Scattering and X-ray Spectroscopy Studies of Silicate Melts by Gordon E. Brown, Jr., François Farges, and G. Calas, p. 317 - 410 Chapter 10. Diffusion in Silicate Melts by Sumit Chakraborty, p. 411 - 504 Chapter 11. Pressure Effects on Silicate Melt Structure and Properties by G. H. Wolf and Paul F. McMillan, p. 505 - 562 Chapter 12. Computer Simulations of Silicate Melts by Peter H. Poole, Paul F. McMillan, and George H. Wolf, p. 563 - 616
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Call number: 11/G 9161
    In: Reviews in mineralogy
    Description / Table of Contents: This book has been written mainly to help the newcomer in fluid-inclusion work learn how to use fluid inclusions and to avoid many of the pitfalls and blind alleys that beset anyone starting in a new field of research. Of course, it is impossible to avoid all such diversions. However, too often, writers of scientific papers (and some editors) seem to believe that it is undesirable or even demeaning to report experimental details and the various problems that had to be overcome in the work. I do not agree with this approach. Why should subsequent workers be frustrated and waste much time solving problems that others have already solved? Give them the benefit of previous experience so that they can get on with new work; in so doing, they will encounter enough new problems of their own. One difficulty in presenting a subject such as fluid inclusions is the surprising degree to which the chapters are interrelated. I have tried to strike an appropriate compromise between repeated referral to other chapters and excessive repetition, because everything cannot be put into logical sequence without redundancy. Chapters 11-18 attempt to discuss the many applications of fluid inclusions to the study of and understanding of geologic processes and the geologic environments in which they acted. For the reader's convenience, I have categorized all environments from which fluid inclusions have been studied into these eight chapters. The arbitrary dividing lines between such environments are never sharp, nor generally acceptable, particularly if more than one geologist is asked, so I hope the reader will forgive me if my semantics disagree with his or hers; the differences are of no real consequence to the points being made. Although some of the data and ideas in this book are new, other parts come from earlier papers of my own or from those on which I have been a coauthor. I make no apology for this, as I see no point in using quotation marks or trying to rephrase one's own words. Only about a third of the text is taken more-or-less directly from these earlier works (with modifications). Similarly, many but not all the photomicrographs have been used earlier. In the choice of examples, I have leaned heavily on those from my own experience and papers, mainly because this procedure is less prone to errors from misquotation, and because I have all the negatives of the photomicrographs I made in these studies. In a petrography class, in 1939, my teacher, Dr. Donald M. Fraser, showed me some inclusions in Precambrian quartzite in which the bubbles were rapidly bouncing around in their tiny cells, as they presumably had been for more than a billion years. This so intrigued me that after completing graduate work (more than 30 years ago) I started studying fluid inclusions. I hope that some aspect of this book may, in the same way, intrigue others. I have tried to help the reader by including chapter outlines and a detailed index, and in the References I have listed the page(s) where each item is cited, as this also can help the reader to become acquainted with the rather large and scattered literature and some of its applications. The overall organization is somewhat of an adaptation of the news reporter's outline -- "who. what, when, where, and why": what kinds of information inclusions provide. when and where inclusions form. how they change, how to prepare material and make microthermometric measurementsl, how to interpret these data, and then what has been found in applications of fluid-inclusion studies to each of a series of different geologic environments. As in most developing areas of science, numerous erroneous concepts, procedures, and statements have been published (including some of my own). I have a file of several hundred of these errors, but most do not merit attention and hence are not mentioned in this volume, except where they may have led to more than occasional confusion or misunderstanding by later workers. Caveat emptor.
    Type of Medium: Monograph available for loan
    Pages: vi, 646 S.
    ISBN: 0-939950-16-2 , 978-0-939950-16-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 12
    Language: English
    Note: Chapter 1. Introduction to Fluid Inclusions p. 1 - 10 Chapter 2. The Origin of Inclusions p. 11 - 46 Chapter 3. Changes in Inclusions after Trapping p. 47 - 78 Chapter 4. Nondestructive Methods of Determination of Inclusion Composition p. 79 - 108 Chapter 5. Destructive Methods of Determination of Inclusion Composition p. 109 - 148 Chapter 6. Inclusion Sample Selection, Preparation, Petrography, and Photography p. 149 - 180 Chapter 7. Inclusion Measurements -- Heating, Cooling Decrepitation and Crushing p. 181 - 220 Chapter 8. Interpretation and Utilization of Inclusion Measurements -- Compositional Data on Liquid and Gas Inclusions p. 221 - 250 Chapter 9. Interpretation and Utilization of Inclusion Measurements -- Temperature, Pressure and Density at Trapping p. 251 - 290 Chapter 10. Interpretation and Utilization of Inclusion Measurements -- Metastability p. 291 - 304 Chapter 11. Sedimentary Environments p. 305 - 336 Chapter 12. Low- to Medium-Grade Metamorphic Environments p. 337 - 360 Chapter 13. Medium- to High-Grade Metamorphic Environments p. 361 - 380 Chapter 14. Intrusive Rock and Pegmatitic Environments p. 381 - 412 Chapter 15. Ore Deposition Environments p. 413 - 472 Chapter 16. Extrusive Rock and Volcanic Environments p. 473 - 502 Chapter 17. Upper Mantle Environments p. 503 - 532 Chapter 18. Extraterrestrial Environments p. 533 - 570 Chapter 19. Future of Inclusion Studies p. 571 - 584
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/G 9222
    In: Reviews in mineralogy
    Description / Table of Contents: Although phyllosilicates are common in almost all types of rocks, their detailed study has not advanced in proportion to their importance. Books and reviews on this subject have been restricted primarily to the areas of clay mineralogy and soils. Such treatments understandably restrict coverage of the occurrences of the macroscopic-size species as well as much of their mineralogical and petrological nature. It was decided at the outset that not all phyllosilicates could be covered in a single book, and the size of this volume addressed only to the micas justifies the original decision. Kaolins, serpentines, chlorites, etc. will have to wait until some later date. This volume attempts to gather together much of our knowledge of micas, the most abundant phyllosilicate, and to indicate promising areas of future research. Chapters 1-3 lay the foundations of the classification, structures, and crystal chemistry of micas. Chapter 4 treats bonding and electrostatic modeling of micas. Chapters 5 and 6 cover spectroscopic and optical properties. Chapters 7-13, the bulk of the volume, are devoted to geochemistry and petrology. These include phase equilibria and the occurrences, chemistry, and petrology of micas in igneous, metamorphic, and sedimentary rocks, pegmatites, and certain ore deposits. Some treatments are exhaustive. All are at the forefront of our present knowledge, and indicate clearly the practical applications'of the study of micas to ascertaining various parameters of origin and crystallization history, as well as the many problems that still exist. The aim of this type of treatment is twofold -- to provide a handy reference volume for teachers and students and to enable researchers to pick more easily those directions and problems for which future research is most needed or is apt to be most productive or most challenging. X-ray powder patterns of micas in the literature are of surprisingly poor quality. The best are collated and supplemented with additional new patterns in the Appendix as an aid to identification.
    Type of Medium: Monograph available for loan
    Pages: xii, 584 S. : Ill., graph. Darst.
    ISBN: 0-939950-17-0 , 978-0-939950-17-1
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 13
    Language: English
    Note: Chapter 1. Classification and Structures of the Micas by S. W. Bailey, p. 1 - 12 Chapter 2. Crystal Chemistry of the True Micas by S. W. Bailey, p. 13 - 60 Chapter 3. The Brittle Micas by Stephen Guggenheim, p. 61 - 104 Chapter 4. Electrostatic Energy Models of Micas by R. F. Giese, Jr., p. 105 - 144 Chapter 5. Spectroscopy of Micas by George R. Rossman. p. 145 - 182 Chapter 6. Optical Properties of Mica Under the Polarizing Microscope by Ray E. Wilcox, p. 183 - 200 Chapter 7. Experimental Phase Relations of the Micas by David A. Hewitt and David R. Wones, p. 201 - 256 Chapter 8. Paragenesis, Crystallochemical Characteristics, and Geochemical Evolution of Micas in Granitic Pegmatites by Petr Cerny and Donald M. Burt, p. 257 - 298 Chapter 9. Micas in Igneous Rocks by J. Alexander Speer, p. 299 - 356 Chapter 10. Micas in Metamorphic Rocks by Charles V. Guidotti, p. 257 - 468 Chapter 11. F-OH and Cl-OH Exchange in Micas with Applications to Hydrothermal Ore Deposits by James L. Munoz, p. 469 - 494 Chapter 12. Illite by Jan Sordori and Dennis D. Eberl, p. 495 - 544 Chapter 13. Glauconite and Celadonite Minerals by I. Edgar Odom, p. 545 - 572 Appendix: X-Ray Power Patterns of Micas p. 573 - 584
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 94.0162
    In: Reviews in mineralogy
    Description / Table of Contents: Geochemistry is a science that is based on an understanding of chemical processes in the earth. One of the principal tools available to the chemist for understanding systems at equilibrium is thermodynamics. The awareness and application of thermodynamic techniques has increased at a very fast pace in geosciences; in fact, one may be so bold as to say that thermodynamics in geology has reached the "mature" stage, although much future thermodynamic research is certainly needed. However, the natural processes in the earth are often sluggish enough that a particular system may not reach equilibrium. This observation is being supported constantly by new experimental and field data available to the geochemist e.g. the non-applicability of the phase rule in some assemblages, the compositional inhomogeneities of mineral grains, the partial reaction rims surrounding original minerals, the lack of isotopic equilibration or the absence of minerals (e.g. dolomite), which should be present according to thermodynamics. The need to apply kinetics has produced a large number of papers dealing with kinetics in geochemistry. As an initial response to this growing field, a conference on geochemical transport and kinetics was conducted at Airlie House, VA, in 1973, sponsored by the Carnegie Institution of Washington. The papers there dealt with several kinetic topics including diffusion, exsolution, metasomatism and metamorphic layering. Since 1973 the number of kinetic papers has continued to increase greatly. Therefore, the time is ripe for a Short Course in Kinetics, which brings together the fundamentals needed to explain field observations using kinetic data. It is hoped that this book may serve, not only as a reference for researchers dealing with the rates of geochemical processes, but also as a text in courses on geochemical kinetics. One of us has found this need of a text in teaching a graduate course on geochemical kinetics at Harvard and at Penn State during the past several years. Finally, it is our hope that the book may itself further even more research into the rates of geochemical processes and into the quantification of geochemical observations. The book is organized with a rough temperature gradient in mind, i.e. low temperature kinetics at the beginning and igneous kinetics at the end (no prejudices are intended with this scheme!). However, the topics in each chapter are general enough that they can be applied often to any geochemical domain: sedimentary, metamorphic or igneous. The theory of kinetics operates at two complementary levels: the phenomenological and the atomistic. The former relies on macroscopic variables (e.g. temperature or concentrations) to describe the rates of reactions or the rates of transport; the latter relates the rates to the basic forces operating between the particular atomic or molecular species of any system. This book deals with both descriptions of the kinetics of geochemical processes. Chapter one sets the framework for the phenomenological theory of reaction rates. If any geochemical reaction is to be described quantitatively, the rate law must be experimentally obtained in a kinetically sound manner and the reaction mechanism must be understood. This applies to heterogeneous fluid-rock reactions such as those occurring during metamorphism, hydrothermal alteration or weathering as well as to homogeneous reactions. Chapter 2 extends the theory to the global kinetics of geochemical cycles. This enables the kinetic concepts of stability and feedback to be applied to the cycling of elements in the many reservoirs of the earth. Chapter 3 applies the phenomenological treatment of chapter 1 to diagenesis and weathering. The rate of dissolution of minerals as well as the chemical evolution of pore waters are discussed. The atomistic basis of rates of reaction, transition state theory, is introduced in Chapter 4. Transition state theory can be applied to relate the rate constants of geochemical reactions to the atomic processes taking place. This includes not only homogeneous reactions but also reactions that occur at the surface of minerals. Chapter 5 discusses the theory of irreversible thermodynamics and its application to petrology. The use of the second law of thermodynamics along with the expressions for the rate of entropy production in a system have been used successfully since 1935 to describe kinetic phenomena. The chapter applies the concepts to the growth of minerals during metamorphism as well as to the formation of differentiated layers (banding) in petrology. Chapter 6 describes the phenomenological theory of diffusion both in aqueous solutions and in minerals. In particular, the multicomponent nature of diffusion and its consequence in natural systems is elaborated. Chapter 7 provides the atomistic basis for the rates of reactions in minerals. Understanding of the rates of diffusion, conduction, order-disorder reactions or exsolution in minerals depends on proper description of the defects in the various mineral structures. Chapter 8 provides the kinetic theory of crystal nucleation and growth. While many of the concepts in the chapter can be applied to aqueous systems, the emphasis is on igneous processes occurring during crystallization of a melt. To fully understand both the mineral composition as well as the texture of igneous rocks, the processes whereby new crystals form and grow must be quantified by using kinetic theory. Due to space and time limitations (kinetics!) some topics have not been covered in detail. In particular, the mathematical solution of diffusion or conduction equations is discussed very well by Crank in his book, Mathematics of Diffusion, and so is not covered to a great extent here. The treatment of fluid flow (e.g. convection) is also not covered in the text.
    Type of Medium: Monograph available for loan
    Pages: x, 398 S.
    ISBN: 0-939950-08-1 , 978-0-939950-08-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 8
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Rate Laws of Chemical Reactions by Antonio C. Lasaga, p. 1 - 68 Chapter 2. Dynamic Treatment of Geochemical Cycles: Global Kinetics by Antonio C. Lasaga, p. 69 - 110 Chapter 3. Kinetics of Weathering and Diagenesis by Robert A. Berner, p. 111 - 134 Chapter 4. Transition State Theory by Antonio C. Lasaga, p. 135 - 170 Chapter 5. Irreversible Thermodynamics in Petrology by George W. Fisher and Antonio C. Lasaga, p. 171 - 210 Chapter 6. Diffusion in Electrolyte Mixtures by David E. Anderson, p. 211 - 260 Chapter 7. The Atomistic Basis of Kinetics: Defects in Minerals by Antonio C. Lasaga, p. 261 - 320 Chapter 8. Kinetics of Crystallization of Igneous Rocks by R. James Kirkpatrick, p. 321 - 398
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 92.0613
    In: Reviews in mineralogy
    Description / Table of Contents: In October 1975 a Short Course on Feldspar Mineralogy was held at the Hotel Utah, Salt Lake City, in conjunction with the annual meetings of the Mineralogical Society of America. Richard A. Yund, David B. Stewart, Joseph V. Smith and Paul R. Ribbe presented workshops on x-ray single-crystal and powder diffraction methods and electron optical techniques as applied to the study of feldspars and presented eight lectures, the substance of which became the nine chapters of the first edition of Feldspar Mineralogy. That book was published by the Mineralogical Society as the second volume of its series entitled Short Course Notes. In 1980 the MSA renamed the series Reviews in Mineralogy to more accurately reflect the scope and contents of the volumes, some of which -- including Volume 5 (1st and 2nd editions), this volume and a forthcoming one on fluid inclusions --were written without presentation at a short course. It will be noted by readers experienced with feldspars that there are many new ideas appearing in Chapters 3, 4 and 5 that have neither received scrutiny by review (other than ourselves) nor survived practical tests of time in the research community. There is some danger in this, but the editor decided the greater risk was to produce a review volume soon to be outdated. Inevitably, given the different goals of individual authors in their assigned topics, some repetition of material has occurred, although usually with quite different emphases. Chapters 1, 2, 9 and 10, in which plagioclase structures and diffraction patterns and their Al,Si distributions, phase equilibria and exsolution textures are featured, are notable in this regard. The editor has attempted to cross-reference these and as many other subjects throughout the volume as feasible. This is a luxury not afforded in other books of this series produced with a short course deadline, and it, together with the detailed Table of Contents, compensates to some degree for the lack of an index. Throughout this book repeated references are made to Smith (1974a,b); these are Volumes 1 and 2 of Feldspar Minerals, an encyclopedic work written by Joseph V. Smith and published by Springer-Verlag. We are particularly indebted to Drs. Konrad Springer and H. Wiebking for permission to reproduce many figures free of charge. The editor (and hopefully this volume) benefitted greatly from numerous stimulating discussions with David B. Stewart, some of which reached a high pitch, none of which came to blows, and several of which produced some palpable scientific progress. Stewart read and criticized many of the chapters. The authors are grateful to numerous individual scientists for figures, for data in advance of publication, and for encouragement and correction.
    Type of Medium: Monograph available for loan
    Pages: xii, 362 S.
    Edition: 2nd ed.
    ISBN: 0-939950-14-6 , 978-0-939950-14-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 2
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Chemistry, Structure, and Nomenclature of Feldspars by Paul H. Ribbe, p. 1 - 20. Chapter 2. Aluminum-Silicon Order in Feldspars: Domain Textures and Diffraction Patterns by Paul H. Ribbe, p. 21 - 56. Chapter 3. Lattice Parameters, Composition, and Al/Si Order in Alkali Feldspars by Herbert Kroll and Paul H. Ribbe, p. 57 - 100. Chapter 4. Lattice Parameters and Determinative Methods for Plagioclase and Alkali Feldspars by Herbert Kroll, p. 101 - 120. Chapter 5. Optical Properties of Feldspars by David B. Stewart and Paul H. Ribbe, p. 121 - 140. CHapter 6. Subsolidus Phase Relations in the Alkali Feldspars with Emphasis on Coherent Phases by Richard A. Yund and Jan Tullis, p. 141 - 176. Chapter 7. Microstructure, Kinetics and Mechanisms of Alkali Feldspar Exsolution by Richard A. Yund, p. 177 - 202. Chapter 8. Diffusion in Feldspars by Richard A. Yund, p. 203 - 222. Chapter 9. Phase Equilibria of Plagioclase by Joeseph V. Smith, p. 223 - 240. Chapter 10. Exsolution Textures in Ternary and Plagioclase Feldspars; Interference Colors by Paul H. Ribbe, p. 241 - 270. Chapter 11. Color in Feldspars by Anne M. Hofmeister and George R. Rossman, p. 271 - 280. Chapter 12. Some Chemical Properties of Feldspars by Joseph V. Smith, p. 281 - 296. Chapter 13. Deformation of Feldspars by Jan Tullis, p. 297 - 324. Appendix. Guides to indexing Feldspar Powder Patterns p. 325 - 342.
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: M 94.0161 / Regal 11
    In: Reviews in mineralogy
    Description / Table of Contents: Fourteen years ago the American Geological Institute (AGI) sponsored a Short Course on Chain Silicates. At that time, a substantial amount was known about the crystal chemistry and phase equilibria of pyroxenes, and this knowledge has been of fundamental importance in guiding research on pyroxenes in the years following the AGI Short Course. In 1966, single-crystal x-ray diffractometry was well advanced and good crystal structure refinements were available for jadeite, spodumene, hypersthene, c1inoferrosi1ite, orthoferrosi1ite, and omphacite; the distinction between the c1inoenstatite (pigeonite) and diopside (augite) structures had been established, and the structure of protoenstatite was known, although some doubt existed about the space group of protoenstatite. Phase diagrams for several joins in the pyroxene quadrilateral had been published, but often equilibrium had not been established in the experiments and not enough was known about the effects of pressure, oxygen fugacity, and non-quad elements such as aluminum on the phase equilibria. Also, inversion relations of Ca-poor pyroxenes were not well understood, and petrologists had just become aware of the effect of stress on orthoto-clinopyroxene transitions. In 1966 few of us would have guessed how-much new data and new analytical results would become available in the next fourteen years. Although most, if not all, of the important instrumental techniques we use today were available in 1966, the truly spectacular development and application of these techniques did not take place until the Apollo 11 samples and the attendant funding from NASA became available. Pyroxene research has profited immensely from the application of Mossbauer, optical, and infrared spectroscopy, x-ray and electron diffraction, transmission electron microscopy, automated electron microprobes, and digital computers. During these years experimentalists extended the capabilities of their equipment to examine the behavior of pyroxenes under conditions of controlled oxygen fugacity, pressure, and temperature, conditions more nearly like those under which pyroxenes crystallize in natural systems. Looking back, one remembers the excitement of seeing the first lunar samples. We were surprised at the large amounts of pigeonite and the quality of crystals unaffected by water or the presence of sodium. The influence of the lunar program on pyroxene research was extraordinary, and our understanding of pyroxene relationships in terrestrial occurrences benefited tremendously because the lunar pyroxenes provided a basis for comparison with the more complex chemical and structural behavior of terrestrial environments. Probably the most impressive development in the early lunar sample studies was the application of transmission electron microscopy to mineralogy. We were able to see exsolution and other textural features in crystals that looked homogeneous in the optical microscope, thus opening up a wide range of research possibilities that had not existed previously. Advanced crystal growth experiments, detailed phase equilibria, x-ray diffraction at high temperatures, and statistical analyses of microprobe data were all applied to lunar pyroxenes and then extended to terrestrial and meteorite investigations, making this period one of the most productive in history. In the compilation of this volume, an attempt has been made to review the essential aspects of pyroxene research, primarily those of the last ten or fifteen years. Although the largest fraction of pyroxene research has been performed in the U.S.A., significant advances have been made in other countries, particularly in Europe, Japan, Canada, and Australia, with interest and activity in these countries probably growing at a faster rate than in the United States. Recently, Deer, Howie and Zussman (DHZ) published a second edition of their volume in the Rock-Forming Minerals series, Single-Chain Silicates, Vol. 2A (John Wiley, New York, 1978). The present volume is intended to be complementary to DHZ and to provide material covered lightly or not at all in DHZ, such as electron microscopy, spectroscopy, and detailed thermodynamic treatments. However, because the range of pyroxene research has grown so much in recent years, there still are important areas not covered comprehensively in either of these volumes. Some of these areas are kinetics, diffusion, crystal defects, deformation, and nonsilicate pyroxene crystal chemistry. Because of these omissions and because this volume is intended for use with the MSA Short Course on Pyroxenes to be held at Emory University in conjunction with the November, 1980 meeting of the Society, a Symposium on Pyroxenes was organized by J. Stephen Huebner for the meeting that is designed to present the latest research results on several different topics, including those above. With DHZ, this volume, and publications from the Symposium, the student of pyroxenes should be well-equipped to advance our knowledge of pyroxenes in the decades ahead.
    Type of Medium: Monograph available for loan
    Pages: x, 525 S.
    Edition: 2nd print.
    ISBN: 0-939950-07-3 , 978-0-939950-07-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 7
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Introduction by Charles T. Prewitt, p. 1 - 4 Chapter 2. Crystal Chemistry of Silicate Pyroxenes by Maryellen Cameron and James J. Papike, p. 5 - 92 Chapter 3. Pyroxene Spectroscopy by George R. Rossman, p. 93 - 116 Chapter 4. Subsolidus Phenomena in Pyroxene by Peter R. Buseck, Gordon L. Nord, Jr., and David R. Veblen, p. 117 - 212 Chapter 5. Pyroxene Phase Equilibria at Low Pressure by J. Stephen Huebner, p. 213 - 288 Chapter 6. Phase Equilibria of Pyroxenes at Pressure 〉1 Atmosphere by Donald H. Lindsley, p. 289 - 308 Chapter 7. Phase Equilibria at High Pressure of Pyroxenes Containing Monovalent and Trivalent Ions by Tibor Gasparik and Donald H. Lindsley, p. 309 - 340 Chapter 8. Thermodynamics of Pyroxenes by J. E. Grover, p. 341 - 418 Chapter 9. The Composition Space of Terrestrial Pyroxenes - Internal and External Limits by Peter Robinson, p. 419 - 494 Chapter 10. Pyroxene Mineralogy of the Moon and Meteorites by James J. Papike, p. 495 - 525
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 94.0160
    In: Reviews in mineralogy
    Description / Table of Contents: In 1978 the Short Course Committee decided to forego activities because the annual meeting of the M.S.A. was held together with the Mineralogical Association of Canada, who sponsored a Short Course in Uranium Deposits and published a book by the same title. A number of mineralogists expressed regret at the potential loss of momentum in MSA's production of this series and encouraged several authors of this book to press on with their idea of publishing Volume 5 -- Orthosilicates. Work was begun in 1978; however, without the pressure of a deadline associated with presenting the material to students of a short course at the annual meeting, procrastination set in and the first edition of this volume was not completed until September 1980 (with the exception of Chapters 1 and 2 which were submitted in their present form in 1978). In the meantime Volume 6, Marine Minerals, appeared in time for the annual meeting of the Society and a Short Course in San Diego in November 1979. In 1980 the Council of the MSA changed the name of the published volumes from SHORT COURSE NOTES to REVIEWS in MINERALOGY in order to more aptly describe the material contained in this now highly successful series. The First Edition of Orthosilicates was the first volume to appear under the REVIEWS banner. This is the Second Edition of Orthosilicates. It contains an updating and minor revisions of Chapters 3 through 10 (only) and two new chapters originally intended for the First Edition. The intent of this volume is to emphasize the crystal chemistry and related physical properties of the major rock-forming orthosilicates. Though in some chapters more attention is given to phase equilibria and paragenesis than in others, these are for the most part cursorily treated with references to the more important papers and to review articles (also see Deer, Howie and Zussman, 1962, Rock-forming Minerals, Vol. 1, Ortho- and Ring Silicates). Some confusion will inevitably result from the definition of the term used as the title for this volume. In Chapter 1 Liebau (p. 14) says that "silicates containing (SiO4) groups should be called monosilicates rather than orthosilicates or nesosilicates." The editor chose not to adopt Liebau's terminology for the title, because monosilicate is not yet widely accepted (although it might well be). To set manageable boundaries for the scope of the First Edition of Orthosilicates, an editorial option was exercised in rejecting as "orthosilicates" those minerals with both (SiO4) tetrahedra and (Si2O7) groups (zoisite, epidote, vesuvianite, etc.), as well as those with (SiO4) tetrahedra that are polymerized to other tetrahedra by sharing corners with (BeO4), (BO4), (A1O4), (ZnO4), etc. However, as mentioned in the Foreword, Chapter 13 has been added to the Second Edition to correct for the latter omission. Chapter 12 contains very brief descriptions of the paragenesis and crystal chemistry of many orthosilicates that fit the description stated in the Preface (p. iv). It may be used as an index, because all orthosilicates are listed alphabetically, including those discussed in Chapters 2 through 11.
    Type of Medium: Monograph available for loan
    Pages: xi, 450 S.
    Edition: 2nd ed.
    ISBN: 0-939950-13-8 , 978-0-939950-13-3
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 5
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Classification of Silicates by Friedrich Liebau, p. 1 - 24 Chapter 2. Silicate Garnets by R. Patrick Meagher, p. 25 - 66 Chapter 3. Zircon by J. Alexander Speer, p. 67 - 112 Chapter 4. The Actinide Orthosilicates by J. Alexander Speer, p. 113 - 136 Chapter 5. Titanite (Sphene) by Paul H. Ribbe, p. 137 - 154 Chapter 6. Chloritoid by Paul H. Ribbe. p. 155 - 170 Chapter 7. Staurolite by Paul H. Ribbe, p. 171 - 188 Chapter 8. Kyanite, Andalusite and Other Aluminum Silicates by Paul H. Ribbe, p. 189 - 214 Chapter 9. Topaz by Paul H. Ribbe, p. 215 - 230 Chapter 10. The Humite Series and Mn-Analogs by Paul H. Ribbe, p. 231 - 274 Chapter 11. Olivines and Silicate Spinels by Gordon E. Brown, Jr., p. 275 - 382 Chapter 12. Miscellaneous Orthosilicates by J. Alexander Speer and Paul H. Ribbe, p. 383 - 428 Chapter 13. Orthosilicates with SiO4 Polymerized to Other Tetrahedral Polyanions by J. Alexander Speer and Paul H. Ribbe, 429 - 450
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 94.0164 ; 11/M 02.0105
    In: Reviews in mineralogy
    Description / Table of Contents: Although it includes some discussion of chemically complex reactions and the chemographic relationships among amphiboles and other rockforming minerals, most of Volume 9A of Reviews in Mineralogy treats amphiboles and other hydrous pyriboles as isolated systems. In contrast, Volume 9B is dedicated more to an exploration of the social life of amphiboles and the amphibole personality in real rocks and in the experimental petrology laboratory. The chemical complexity of amphibole, which Robinson et al., refer to as "a mineralogical shark in a sea of unsuspecting elements," permits amphiboles to occur in a very wide variety of rock types, under a large range of pressure and temperature conditions, and in association with an impressive number of other minerals. The description of amphibole petrology and of petrologists' attempts to understand amphibole phase relations are therefore not simple matters, as the length of this volume suggests. Although they do not cover every type of amphibole occurrence, it is hoped that the papers in this volume will provide the amphibole student and researcher with an up-to-date summary of the most important aspects of amphibole petrology. Volume 9B, Amphiboles: Petrology and Experimental Phase Relations, was begun in 1981 in preparation for the Short Course on Amphiboles and Other Hydrous Pyriboles presented at Erlanger, Kentucky, October 29 - November 1, 1981, prior to the annual meetings of the Geological Society of America and associated societies. Unfortunately, only the first chapter was in manuscript form at the time of the short course, and publication was delayed by one year.
    Type of Medium: Monograph available for loan
    Pages: ix, 390 S.
    ISBN: 0-939950-11-1 , 978-0-939950-11-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 9B
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Phase Relations of Metamorphic Amphiboles: Natural Occurrence and Theory by Peter Robinson, Frank S. Spear, John C. Schumacher, Jo Laird, Cornelis Klein, Bern ardW. Evans, and Barry L. Doolan, p. 1 - 228 Chapter 2. Experimental Studies of Amphibole Stability by M. Charles Gilbert, Rosalind T. Helz, Robert K. Popp, and Frank S. Spear, p. 229 - 354 Chapter 3. Amphiboles in the Igneous Environment by David R. Wones and M. Charles Gilbert, p. 355 - 390
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 19.92803
    In: Reviews in mineralogy, 6
    Type of Medium: Monograph available for loan
    Pages: ix, 380 Seiten , Illustrationen, Diagramme
    Edition: second printing
    ISBN: 978-0-939950-06-5
    Series Statement: Reviews in mineralogy 6
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 19.92818
    In: Reviews in mineralogy, 20
    Type of Medium: Monograph available for loan
    Pages: xi, 369 Seiten , Illustrationen, Diagramme
    ISBN: 0-939950-24-3
    Series Statement: Reviews in mineralogy 20
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 19.92819
    In: Reviews in mineralogy, 27
    Type of Medium: Monograph available for loan
    Pages: xv, 516 Seiten , Illustrationen, Diagramme
    Edition: second printing
    ISBN: 0-939950-32-4
    Series Statement: Reviews in mineralogy 27
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 19.92807
    In: Reviews in mineralogy, 3
    Type of Medium: Monograph available for loan
    Pages: viii, L1-L88; R1-R24, Hg1-Hg100, EG1-EG72, SH1-SH17, Hg101-Hg300 , Illustrationen, Diagramme
    Edition: second printing
    ISBN: 0-939950-03-0
    Series Statement: Reviews in mineralogy 3
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 19.92815
    In: Reviews in mineralogy, 1
    Type of Medium: Monograph available for loan
    Pages: vi, diverse Seitenangaben , Illustrationen, Diagramme
    Edition: fourth printing
    ISBN: 0-939950-01-4
    Series Statement: Reviews in mineralogy 1
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...