ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 13873
    Type of Medium: Monograph available for loan
    Pages: XV, 231 S. : Ill., graph. Darst.
    ISBN: 0471102687
    Series Statement: A Wiley-Interscience publication
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 01.0314
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The first half-century of X-ray crystallography, beginning with the elucidation of the sodium chloride structure in 1914, was devoted principally to the determination of increasingly complex atomic topologies at ambient conditions. The pioneering work of the Braggs, Pauling, Wyckoff, Zachariasen and many other investigators revealed the structural details and underlying crystal chemical principles for most rock-forming minerals (see, for example, Crystallography in North America, edited by D. McLachlan and J. P. Glusker, NY, American Crystallographic Association, 1983). These studies laid the crystallographic foundation for modem mineralogy. The past three decades have seen a dramatic expansion of this traditional crystallographic role to the study of the relatively subtle variations of crystal structure as a function of temperature, pressure, or composition. Special sessions on "High temperature crystal chemistry" were first held at the Spring Meeting of the American Geophysical Union (April 19, 1972) and the Ninth International Congress of Crystallography (August 30, 1972). The Mineralogical Society of America subsequently published a special 11-paper section of American Mineralogist entitled "High Temperature Crystal Chemistry," which appeared as Volume 58, Numbers 5 and 6, Part I in July-August, 1973. The first complete three-dimensional structure refinements of minerals at high pressure were completed in the same year on calcite (Merrill and Bassett, Acta Crystallographica B31, 343-349, 1975) and on gillespite (Hazen and Burnham, American Mineralogist 59, 1166-1176, 1974). Rapid advances in the field of non-ambient crystallography prompted Hazen and Finger to prepare the monograph Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (New York: Wiley, 1982). At the time, only about 50 publications documenting the three-dimensional variation of crystal structures at high temperature or pressure had been published, though general crystal chemical trends were beginning to emerge. That work, though increasingly out of date, remained in print until recently as the only comprehensive overview of experimental techniques, data analysis, and results for this crystallographic sub-discipline. This Reviews in Mineralogy and Geochemistry volume was conceived as an updated version of Comparative Crystal Chemistry. A preliminary chapter outline was drafted at the Fall 1998 American Geophysical Union meeting in San Francisco by Ross Angel, Robert Downs, Larry Finger, Robert Hazen, Charles Prewitt and Nancy Ross. In a sense, this volume was seen as a "changing of the guard" in the study of crystal structures at high temperature and pressure. Larry Finger retired from the Geophysical Laboratory in July, 1999, at which time Robert Hazen had shifted his research focus to mineral-mediated organic synthesis. Many other scientists, including most of the authors in this volume, are now advancing the field by expanding the available range of temperature and pressure, increasing the precision and accuracy of structural refinements at non-ambient conditions, and studying ever more complex structures. The principal objective of this volume is to serve as a comprehensive introduction to the field of high-temperature and high-pressure crystal chemistry, both as a guide to the dramatically improved techniques and as a summary of the voluminous crystal chemical literature on minerals at high temperature and pressure. The book is largely tutorial in style and presentation, though a basic knowledge of X-ray crystallographic techniques and crystal chemical principles is assumed. The book is divided into three parts. Part I introduces crystal chemical considerations of special relevance to non-ambient crystallographic studies. Chapter 1 treats systematic trends in the variation of structural parameters, including bond distances, cation coordination, and order-disorder with temperature and pressure, while Chapter 2 considers P-V-T equation-of-state formulations relevant to x-ray structure data. Chapter 3 reviews the variation of thermal displacement parameters with temperature and pressure. Chapter 4 describes a method for producing revealing movies of structural variations with pressure, temperature or composition, and features a series of "flip-book" animations. These animations and other structural movies are also available as a supplement to this volume on the Mineralogical Society of America web site at RiMG041 Programs. Part II reviews the temperature- and pressure-variation of structures in major mineral groups. Chapter 5 presents crystal chemical systematics of high-pressure silicate structures with six-coordinated silicon. Subsequent chapters highlight temperature- and pressure variations of dense oxides (Chapter 6), orthosilicates (Chapter 7), pyroxenes and other chain silicates (Chapter 8), framework and other rigid-mode structures (Chapter 9), and carbonates (Chapter 10). Finally, the variation of hydrous phases and hydrogen bonding are reviewed in Chapter 11, while molecular solids are summarized in Chapter 12. Part III presents experimental techniques for high-temperature and high-pressure studies of single crystals (Chapters 13 and 14, respectively) and polycrystalline samples (Chapter 15). Special considerations relating to diffractometry on samples at non-ambient conditions are treated in Chapter 16. Tables in these chapters list sources for relevant hardware, including commercially available furnaces and diamond-anvil cells. Crystallographic software packages, including diffractometer operating systems, have been placed on the Mineralogical Society web site for this volume. This volume is not exhaustive and opportunities exist for additional publications that review and summarize research on other mineral groups. A significant literature on the high-temperature and high-pressure structural variation of sulfides, for example, is not covered here. Also missing from this compilation are references to a variety of studies of halides, layered oxide superconductors, metal alloys, and a number of unusual silicate structures.
    Type of Medium: Monograph available for loan
    Pages: viii, 596 S.
    ISBN: 0-939950-53-7 , 978-0-939950-53-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 41
    Classification:
    Mineralogy
    Language: English
    Note: Contents of Part I. p. vii - viii Part I: Characterization and Interpretation of Structural Variations with Temperature and Pressure Chapter 1. Principles of Comparative Crystal Chemistry by Robert M. Hazen, Robert T. Downs, and Charles T. Prewitt, p. 1 - 34 Chapter 2. Equations of State by Ross J. Angel, p. 35 - 60 Chapter 3. Analysis of Harmonic Displacement Factors by Robert T. Downs, p. 61 - 88 Chapter 4. Animation of Crystal Structure Variations with Pressure, Temperature and Composition by Robert T. Downs and P.J. Heese, p. 89 - 118 Part II: Variation of Structures with Temperature and Pressure Contents of Part II. p. 119 - 122 Chapter 5. Systematics of High-Pressure Silicate Structures by Larry W. Finger and Robert M. Hazen, p. 123 - 156 Chapter 6. Comparative Crystal Chemistry of Dense Oxide Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 157 - 186 Chapter 7. Comparative Crystal Chemistry of Orthosilicate Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 187 - 210 Chapter 8. Chain and Layer Silicates at High Temperatures and Pressures by Hexiong Yang and Charles T. Prewitt, p. 211 - 256 Chapter 9. Framework Structures by Nancy L. Ross, p. 257 - 288 Chapter 10. Structural Variations in Carbonates by Simon A.T. Redfern, p. 289 - 308 Chapter 11. Hydrous Phases and Hydrogen Bonding at High Pressure by Charles T. Prewitt and John B. Parise, p. 309 - 334 Chapter 12. Molecular Crystals by Russell J. Hemley and Przemyslaw Dera, p. 335 - 420 Part III: Experimental Techniques Contents of Part III. p. 421 - 424 Chapter 13. High-Temperature Devices and Environmental Cells for X-ray and Neutron Diffraction Experiments by Ronald C. Peterson and Hexiong Yang, p. 425 - 444 Chapter 14. High-Pressure Single-Crystal Techniques by Ronald Miletich, David R. Allan, and Werner F. Kuhs, p. 445 - 520 Chapter 15. High-Pressure and High-Temperature Powder Diffraction by Yingwei Fei and Yanbin Wang, p. 521 - 558 Chapter 16. High-Temperature­High-Pressure Diffractometry by Ross J. Angel, Robert T. Downs, and Larry W. Finger, p. 559 - 596
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Description / Table of Contents: The first half-century of X-ray crystallography, beginning with the elucidation of the sodium chloride structure in 1914, was devoted principally to the determination of increasingly complex atomic topologies at ambient conditions. The pioneering work of the Braggs, Pauling, Wyckoff, Zachariasen and many other investigators revealed the structural details and underlying crystal chemical principles for most rock-forming minerals (see, for example, Crystallography in North America, edited by D. McLachlan and J. P. Glusker, NY, American Crystallographic Association, 1983). These studies laid the crystallographic foundation for modem mineralogy. The past three decades have seen a dramatic expansion of this traditional crystallographic role to the study of the relatively subtle variations of crystal structure as a function of temperature, pressure, or composition. Special sessions on "High temperature crystal chemistry" were first held at the Spring Meeting of the American Geophysical Union (April 19, 1972) and the Ninth International Congress of Crystallography (August 30, 1972). The Mineralogical Society of America subsequently published a special 11-paper section of American Mineralogist entitled "High Temperature Crystal Chemistry," which appeared as Volume 58, Numbers 5 and 6, Part I in July-August, 1973. The first complete three-dimensional structure refinements of minerals at high pressure were completed in the same year on calcite (Merrill and Bassett, Acta Crystallographica B31, 343-349, 1975) and on gillespite (Hazen and Burnham, American Mineralogist 59, 1166-1176, 1974). Rapid advances in the field of non-ambient crystallography prompted Hazen and Finger to prepare the monograph Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (New York: Wiley, 1982). At the time, only about 50 publications documenting the three-dimensional variation of crystal structures at high temperature or pressure had been published, though general crystal chemical trends were beginning to emerge. That work, though increasingly out of date, remained in print until recently as the only comprehensive overview of experimental techniques, data analysis, and results for this crystallographic sub-discipline. This Reviews in Mineralogy and Geochemistry volume was conceived as an updated version of Comparative Crystal Chemistry. A preliminary chapter outline was drafted at the Fall 1998 American Geophysical Union meeting in San Francisco by Ross Angel, Robert Downs, Larry Finger, Robert Hazen, Charles Prewitt and Nancy Ross. In a sense, this volume was seen as a "changing of the guard" in the study of crystal structures at high temperature and pressure. Larry Finger retired from the Geophysical Laboratory in July, 1999, at which time Robert Hazen had shifted his research focus to mineral-mediated organic synthesis. Many other scientists, including most of the authors in this volume, are now advancing the field by expanding the available range of temperature and pressure, increasing the precision and accuracy of structural refinements at non-ambient conditions, and studying ever more complex structures. The principal objective of this volume is to serve as a comprehensive introduction to the field of high-temperature and high-pressure crystal chemistry, both as a guide to the dramatically improved techniques and as a summary of the voluminous crystal chemical literature on minerals at high temperature and pressure. The book is largely tutorial in style and presentation, though a basic knowledge of X-ray crystallographic techniques and crystal chemical principles is assumed. The book is divided into three parts. Part I introduces crystal chemical considerations of special relevance to non-ambient crystallographic studies. Chapter 1 treats systematic trends in the variation of structural parameters, including bond distances, cation coordination, and order-disorder with temperature and pressure, while Chapter 2 considers P-V-T equation-of-state formulations relevant to x-ray structure data. Chapter 3 reviews the variation of thermal displacement parameters with temperature and pressure. Chapter 4 describes a method for producing revealing movies of structural variations with pressure, temperature or composition, and features a series of "flip-book" animations. These animations and other structural movies are also available as a supplement to this volume on the Mineralogical Society of America web site at (http://www.minsocam.orgIMSAlRimlRim41.html). Part II reviews the temperature- and pressure-variation of structures in major mineral groups. Chapter 5 presents crystal chemical systematics of high-pressure silicate structures with six-coordinated silicon. Subsequent chapters highlight temperature- and pressure variations of dense oxides (Chapter 6), orthosilicates (Chapter 7), pyroxenes and other chain silicates (Chapter 8), framework and other rigid-mode structures (Chapter 9), and carbonates (Chapter 10). Finally, the variation of hydrous phases and hydrogen bonding are reviewed in Chapter 11, while molecular solids are summarized in Chapter 12. Part III presents experimental techniques for high-temperature and high-pressure studies of single crystals (Chapters 13 and 14, respectively) and polycrystalline samples (Chapter 15). Special considerations relating to diffractometry on samples at non-ambient conditions are treated in Chapter 16. Tables in these chapters list sources for relevant hardware, including commercially available furnaces and diamond-anvil cells. Crystallographic software packages, including diffractometer operating systems, have been placed on the Mineralogical Society web site for this volume. This volume is not exhaustive and opportunities exist for additional publications that review and summarize research on other mineral groups. A significant literature on the high-temperature and high-pressure structural variation of sulfides, for example, is not covered here. Also missing from this compilation are references to a variety of studies of halides, layered oxide superconductors, metal alloys, and a number of unusual silicate structures.
    Pages: Online-Ressource (IX, 597 Seiten)
    ISBN: 9780939950539
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Unknown
    Chantilly, Va. : Mineralogical Society of America
    Description / Table of Contents: Carbon in Earth is an outgrowth of the Deep Carbon Observatory (DCO), a 10-year international research effort dedicated to achieving transformational understanding of the chemical and biological roles of carbon in Earth (http://dco.ciw.edu). Hundreds of researchers from 6 continents, including all 51 coauthors of this volume, are now engaged in the DCO effort. This volume serves as a benchmark for our present understanding of Earth's carbon - both what we know and what we have yet to learn. Ultimately, the goal is to produce a second, companion volume to mark the progress of this decadal initiative. This volume addresses a range of questions that were articulated in May 2008 at the First Deep Carbon Cycle Workshop in Washington, DC. At that meeting 110 scientists from a dozen countries set forth the state of knowledge about Earth's carbon. They also debated the key opportunities and top objectives facing the community. Subsequent deep carbon meetings in Bejing, China (2010), Novosibirsk, Russia (2011), and Washington, DC (2012), as well as more than a dozen smaller workshops, expanded and refined the DCO's decadal goals. The 20 chapters that follow elaborate on those opportunities and objectives. A striking characteristic of Carbon in Earth is the multidisciplinary scientific approach necessary to encompass this topic. The following chapters address such diverse aspects as the fundamental physics and chemistry of carbon at extreme conditions, the possible character of deep-Earth carbon-bearing minerals, the geodynamics of Earth's large-scale fluid fluxes, tectonic implications of diamond inclusions, geosynthesis of organic molecules and the origins of life, the changing carbon cycle through deep time, and the vast subsurface microbial biosphere (including the hidden deep viriosphere). Accordingly, the collective authorship of Carbon in Earth represents laboratory, field, and theoretical researchers from the full range of physical and biological sciences.
    Pages: Online-Ressource (xv ; 698 Seiten)
    ISBN: 9780939950904
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 411 (2001), S. 155-155 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Discovery of bacteria that remain viable in a dormant state for lengthy periods is significant for understanding patterns of microbial diversity and evolution on Earth, as well as for assessing the possibility of life's interplanetary transport by impact processes. The isolation by Vreeland et ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 395 (1998), S. 365-367 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The production of organic precursors to life depends critically onthe form of the reactants. In particular, an environment dominated by N2 is far less efficient in synthesizing nitrogen-bearing organics than a reducing environment rich in ammonia (refs 1, 2). ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 1057-1059 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Single-crystal x-ray diffraction data from DyBa2Cu4O8 are used to confirm the structure of RBa2Cu4O8 (R=Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, and Tm), all of which have been synthesized in bulk and display substantial Meissner diamagnetism. The structure is orthorhombic, space group Ammm, with a=3.846 3(3), b=3.872 6(3), and c=27.237(2) A(ring). Copper-oxygen layers parallel to (001) are dimpled as in the 1-2-3 structure. Unique copper-oxygen strips parallel to (100) have copper in distorted square-planar coordination. Magnitudes of oxygen anisotropic thermal vibrations are significantly less than in the 1-2-3 structure; thus the oxygen content of 1-2-4 is expected to be significantly more stable.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 91 (1987), S. 5042-5045 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 335 (1988), S. 677-678 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE 1986 revelation of high-temperature superconductivity was unique in the history of materials science, and of publishing. Journals quickly altered their review procedures, and even changed formats, in order to accommodate the ensuing flood of reports and the need for speed. New journals devoted ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 314 (1985), S. 693-693 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Landprints: On the Magnificent American Landscape. By Walter Sullivan. Times Books, New York: 1984. Pp.384. $22.50. "THERE is no epic tale to compare with the account of how the North American continent came to be." So begins Landprints^ one of the finest popular earth science books to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...