ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (58,705)
Collection
Language
Years
  • 1
    Publication Date: 2022-10-17
    Description: In this paper we coupled a crop growth model to the Weather Research and Forecasting model with its land surface model Noah‐MP and demonstrated the influence of the weather driven crop growth on land‐atmosphere (L‐A) feedback. An impact study was performed at the convection permitting scale of 3 km over Germany. While the leaf area index (LAI) in the control simulation was the same for all cropland grid cells, the inclusion of the crop growth model resulted in heterogeneous crop development with higher LAI and stronger seasonality. For the analyses of L‐A coupling, a two‐legged metric was applied based on soil moisture, latent heat flux and convective available potential energy. Weak atmospheric coupling is enhanced by the crop model, the terrestrial coupling determines the regions with the L‐A feedback. The inclusion of the crop model turns regions with no L‐A feedback on this path into regions with strong positive coupling. The number of non‐atmospherically controlled days between April and August is increased by 10–15 days in more than 50% of Germany. Our work shows that this impact results in a reduction of both cold bias and warm biases and thus improves the metrics of distributed added value of the monthly mean temperatures. The study confirms that the simulation of the weather driven annual phenological development of croplands for the regional climate simulations in mid‐latitudes is crucial due to the L‐A feedback processes and the currently observed and expected future change in phenological phases.
    Description: Key Points: Coupling a crop growth model with the Weather and Research Forecasting model significantly improves the simulation of the leaf area index. Land‐atmosphere coupling strength is enhanced by weather dependent crop growth simulation. The distributed added value metric shows a reduction in temperature biases of up to 80% in croplands throughout the season in Germany.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/Project_TRY/air_temperature_mean/
    Description: https://doi.org/10.5281/zenodo.6501984
    Description: http://land.copernicus.eu/pan-european/corine-land-cover/clc-2006/view
    Description: https://doi.org/10.1594/WDCC/WRF_NOAH_HWSD_world_TOP_SOILTYP
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-04
    Description: Elastic properties of B2‐Fe0.67Ni0.06Si0.27 (15 wt.% Si) alloy have been investigated by combined high‐resolution inelastic X‐ray scattering and powder X‐ray diffraction in diamond anvil cells up to 100 GPa at room temperature. Densities (ρ), compressional (VP) and shear (VS) wave velocities were extrapolated to inner core conditions to enable comparison with the preliminary reference Earth model. The modeled aggregate compressional and shear wave velocities and densities of the two‐phase mixture of B2‐Fe0.67Ni0.06Si0.27 and hcp‐Fe‐Ni are consistent with inner core PREM values of VP, VS, and ρ based on a linear mixing model with 30(5) vol % B2‐Fe0.67Ni0.06Si0.27 and 70(5) vol % hcp Fe‐Ni, which corresponds to ∼3–5 wt.% Si and ∼5–12 wt.% Ni.
    Description: Plain Language Summary: The composition of the inner core holds key information about how Earth evolved and how current processes such as the geomagnetic field work. Because the core cannot be directly sampled, our best estimates of its composition are based on the comparison of geophysical data with laboratory measurements of candidate materials. Decades of study have shown the inner core to be composed mainly of iron (with a minor amount of nickel) alloyed with one or more light elements, such as silicon. However, the effect of Si on the geophysical properties of Fe‐Ni alloys is not well established. In this study, we performed laboratory experiments to determine the density and sound velocity of Fe‐Ni‐Si alloy under extreme pressure conditions. We compared our results with seismological determinations and found that Earth's inner core can be accounted for by a mechanical mixture of cubic Fe‐Ni‐Si and hexagonal Fe‐Ni alloys. This mixture has a bulk composition of ∼3–5 weight % Si and ∼5–12 weight % Ni and is consistent with geophysical constraints.
    Description: Key Points: Sound velocities and densities of B2‐Fe‐Ni‐Si alloy are determined at high pressure, up to 100 GPa, using inelastic X‐ray scattering and X‐ray diffraction. Seismologically observed compressional and shear wave velocities and density of Earth's inner core can be accounted for by a two‐phase mixture of 30 vol % B2‐Fe‐Ni‐Si and 70 vol % hcp Fe‐Ni alloys. Extrapolated results at inner core boundary conditions are consistent with an inner core composition containing ∼3–5 wt.% Si and ∼5–12 wt.% Ni.
    Description: Japan Society for the Promotion of Science http://dx.doi.org/10.13039/501100001691
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: JSPS Japanese‐German graduate externship
    Description: https://doi.org/10.6084/m9.figshare.13370795.v1
    Description: https://doi.org/10.6084/m9.figshare.13370792.v1
    Keywords: ddc:551.112
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The drag coefficient, Stanton number and Dalton number are of particular importance for estimating the surface turbulent fluxes of momentum, heat and water vapor using bulk parameterization. Although these bulk transfer coefficients have been extensively studied over the past several decades in marine and large‐lake environments, there are no studies analyzing their variability for smaller lakes. Here, we evaluated these coefficients through directly measured surface fluxes using the eddy‐covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that the transfer coefficients (adjusted to neutral atmospheric stability) were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients exhibit a substantial increase at low wind speeds (〈3 m s〈sup〉−1〈/sup〉), which was found to be associated with the presence of gusts and capillary waves (except Dalton number). Stanton number was found to be on average a factor of 1.3 higher than Dalton number, likely affecting the Bowen ratio method. At high wind speeds, the transfer coefficients remained relatively constant at values of 1.6·10〈sup〉−3〈/sup〉, 1.4·10〈sup〉−3〈/sup〉, 1.0·10〈sup〉−3〈/sup〉, respectively. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and Stanton number due to wind gustiness and capillary wave roughness while Dalton number could be considered as constant at all wind speeds.〈/p〉
    Description: Plain Language Summary: In our study, we investigate the bulk transfer coefficients, which are of particular importance for estimation the turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer, above lakes and reservoirs. The incorrect representation of the surface fluxes above inland waters can potentially lead to errors in weather and climate prediction models. For the first time we made this synthesis using a compiled data set consisting of existing eddy‐covariance flux measurements over 23 lakes and 8 reservoirs. Our results revealed substantial increase of the transfer coefficients at low wind speeds, which is often not taken into account in models. The observed increase in the drag coefficient (momentum transfer coefficient) and Stanton number (heat transfer coefficient) could be associated with the presence of wind gusts and capillary waves. In flux parameterizations at lake surface, it is recommended to consider them for accurate flux representation. Although the bulk transfer coefficients were relatively constant at high wind speeds, we found that the Stanton number systematically exceeds the Dalton number (water vapor transfer coefficient), despite the fact they are typically considered to be equal. This difference may affect the Bowen ratio method and result in biased estimates of lake evaporation.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Bulk transfer coefficients exhibit a substantial increase at low wind speed〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The increase is explained by wind gustiness and capillary wave roughness〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉At higher wind speed, drag coefficient and Stanton number decrease with lake surface area〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: SHESF, Sao Francisco Hydroelectric Company
    Description: DOE Ameriflux Network Management Project
    Description: NSF North Temperate Lakes LTER
    Description: U.S. Department of Energy Office of Science
    Description: Japan Society for the Promotion of Science KAKENHI
    Description: Swedish Research Council
    Description: ÚNKP‐21‐3 New National Excellence Program of the Ministry for Innovation and Technology, Hungary
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Description: Helmholtz Young Investigators Grant
    Description: Helmholtz Association of German Research Centers
    Description: Austrian Academy of Sciences
    Description: Autonome Provinz Bozen‐Südtirol
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Russian Ministry of Science and Higher Education
    Description: National Research, Development and Innovation Office
    Description: ICOS‐Finland, University of Helsinki
    Description: https://doi.org/10.5281/zenodo.6597828
    Keywords: ddc:551.5 ; bulk transfer coefficients ; eddy‐covariance ; lakes ; reservoirs
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-23
    Description: The LiteBIRD mission will map polarized fluctuations in the cosmic microwave background (CMB) to search for the signature of gravitational waves from inflation, potentially opening a window on the Universe a fraction of a second after the Big Bang. CMB measurements from space give access to the largest angular scales and the full frequency range to constrain Galactic foregrounds, and LiteBIRD has been designed to take best advantage of the unique window of space. LiteBIRD will have a powerful ability to separate Galactic foreground emission from the CMB due to its 15 frequency bands spaced between 40 and 402 GHz and sensitive 100-mK bolometers. LiteBIRD will provide stringent control of systematic errors due to the benign thermal environment at the second Lagrange point, L2, 20-K rapidly rotating half-wave plates on each telescope, and the ability to crosscheck its results by measuring both the reionization and recombination peaks in the B-mode power spectrum. LiteBIRD would be the next step in the series of CMB space missions, COBE, WMAP, and Planck, each of which has given landmark scientific discoveries.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74209 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 286
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-20
    Description: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0 x 10(exp -8). We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74 +/- 0.05) s between GRB170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between -3 x 10(exp-16) times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1 - 1.4 per year during the 2018--2019 observing run and 0.3 - 1.7 per year at design sensitivity.
    Keywords: Astronomy
    Type: MSFC-E-DAA-TN48760 , MSFC-E-DAA-TN62551 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 848; 2; L13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: We report an orbital characterization of GJ1108Aab that is a low-mass binary system in the pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of e = 0.63 is obtained, which might be induced by the KozaiLidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we conrm that the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (M(sub dynamical,GJ1108Aa) = 0.72 0.04 Solar Mass and M(sub dynamical,GJ1108Ab) = 0.30 0.03 Solar Mass) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider that the discrepancy in mass comparison can be attributed to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in the evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any signicant offsets.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64800 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 865; 2; 152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-08-05
    Description: This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution.
    Description: Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. This article describes how the component models for atmosphere, land, and ocean are coupled together and how we achieve a stable climate by setting certain tuning parameters and performing sensitivity experiments. We evaluate the performance of our new model by running a set of experiments under pre‐industrial and historical climate conditions as well as a set of idealized greenhouse‐gas‐increase experiments. These experiments were designed by the Coupled Model Intercomparison Project (CMIP) and allow us to compare the results to those from other CMIP models and the predecessor of our model, the Max Planck Institute for Meteorology Earth System Model. While we diagnose overall satisfactory performance, we find that ICON‐ESM features somewhat larger biases in several quantities compared to its predecessor at comparable grid resolution. We emphasize that the present configuration serves as a basis from where future development steps will open up new perspectives in earth system modeling.
    Description: Key Points: This work documents ICON‐ESM 1.0, the first version of a coupled model based on the ICON framework. Performance of ICON‐ESM is assessed by means of CMIP6 Diagnosis, Evaluation, and Characterization of Klima experiments at standard CMIP‐type resolution. ICON‐ESM reproduces the observed temperature evolution. Biases in clouds, winds, sea‐ice, and ocean properties are larger than in MPI‐ESM.
    Description: European Union H2020 ESM2025
    Description: European Union H2020 COMFORT
    Description: European Union H2020ESiWACE2
    Description: Deutsche Forschungsgemeinschaft TRR181
    Description: Deutsche Forschungsgemeinschaft EXC 2037
    Description: European Union H2020
    Description: Deutscher Wetterdienst
    Description: Bundesministerium fuer Bildung und Forschung
    Description: http://esgf-data.dkrz.de/search/cmip6-dkrz/
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=RUBY-0_ICON-_ESM_V1.0_Model
    Keywords: ddc:550.285 ; ddc:551.63
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to 2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from 0.6 10(exp 3) ls to 6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 10(exp 24) at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN22620 , Physical Review D (ISSN 0031-899X) (e-ISSN 1536-6065); 90; 6; 062010
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 plus or minus 2 AU (1."058 plus or minus 0."007) from the B9-type star K And. The planet was detected with Subaru/HiCIAO (Subaru/High Contrast Instrument for the Subaru Next Generation Adaptive Optics) during the SEEDS (Strategic Exploration of Exoplanets and Disks with Subaru Telescope/HiCIAO) survey and confirmed as a bound companion via common proper motion measurements. Observed near-infrared magnitudes of J equals 16.3 plus or minus 0.3, H equals 15.2 plus or minus 0.2, K (sub s) = 14.6 plus or minus 0.4, and L prime equals 13.12 plus or minus 0.09 indicate a temperature of approximately 1700 degrees Kelvin. The galactic kinematics of the host star are consistent with membership in the Columba Association, implying a corresponding age of 30 (exp from plus 20 to minus10) Myr. The systems age, combined with the companion photometry, points to a model-dependent companion mass approximately 12.8 times the mass of Jupiter. The host stars estimated mass of 2.4 to 2.5 times the mass of the sun places it among the most massive stars ever known to harbor an extrasolar planet or low-mass brown dwarf. While the mass of the companion is close to the deuterium burning limit, its mass ratio, orbital separation, and likely planet-like formation scenario imply that it may be best defined as a super-Jupiter with properties similar to other recently discovered companions to massive stars.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN7687 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 763; 2; L32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN44111 , SPIE Astronomical Telescopes + Instrumentation; Jun 26, 2016 - Jul 01, 2016; Edinburgh, Scotland; United Kingdom|Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray; 9905; 99051R
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...