ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 168-169; LPI-Contrib-1062-Pt-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 289; 5486; 1909-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: We present experimental evidence that superoxide ions form on mineral grains at the martian surface and show that these adsorbates can explain the unusual reactivity of the soil as well as the apparent absence of organic molecules.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer tagged as "duricrust". A hypothesis to explain the formation of duricrust on Mars should address not only the potential mechanisms by which these materials become cemented, but also the textural and compositional components of cemented Martian soils. Elemental analyzes at five sites on Mars show that these soils have sulfur content of up to 4%, and chlorine content of up to 1%. This is consistent with the presence of sulfates and halides as mineral cements. . For comparison, the rock "Adirondack" at the MER site, after the exterior layer was removed, had nearly five times lower sulfur and chlorine content , and the Martian meteorites have ten times lower sulfur and chlorine content, showing that the soil is highly enriched in the saltforming elements compared with rock.Here we propose two alternative models to account for the origin of these crusts, each requiring the action of transient liquid water films to mediate adhesion and cementation of grains. Two alternative versions of the transient water hypothesis are offered, a top down hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a bottom up alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Mars Missions; LPI-Contrib-1197
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: For the first time in history a Moessbauer spectrometer was placed on the surface of another planet. The miniaturized Moessbauer spectrometer MIMOS II is part of the Athena payload of NASA's twin Mars Exploration Rovers (MER) Spirit,and Opportunity. It determines the Fe-bearing mineralogy of Martian soils and rocks at the Rovers respective landing sites, Gusev crater and Meridiani Planum. First results of soil and rock measurements at both landing sites confirm a generally basaltic composition of Martian surface materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Mars Missions; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-10-02
    Description: The Mars Oxidant and Radical Detector is an instrument designed to characterize the reactive nature of the martian surface environment. Using Electron Paramagnetic Resonance (EPR) techniques, this instrument can detect, identify, and quantify radical species in soil samples, including those inferred to be present by the Viking experiments. This instrument is currently funded by the Mars Instrument Development Program and is compatible with the Mars Science Laboratory mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-02
    Description: Data collected by the Mars Exploration Rover (MER) Spirit at Gusev Crater suggest that enhanced weathering of rocks and soils occurs beneath the immediate surface. We suggest that this alteration occurs over geological timescales under present climatic conditions and is a result of diurnal condensation of thin-films of water on subsurface materials. Additional information is included in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 22; LPI-Contrib-1234-Pt-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: A major science goal of the Mars Exploration Rover (MER) mission is to search for evidence of water activity, and direct mineralogical evidence for aqueous activity has been reported for Meridiani Planum in the form of the iron sulfate hydroxide mineral jarosite and at Gusev crater in the form of goethite. The Spirit and Opportunity rovers have each collected 110+ Moessbauer (MB) and 75+ Alpha Particle X-Ray Spectrometer (APXS) spectra from Gusev crater and Meridiani Planum [1 - 4]. In this abstract, we use mineralogical and elemental data, primarily from the Moessbauer and APXS instruments, to infer the speciation and estimate the abundance of sulfate and water (as either the H2O molecule or the hydroxyl anion) at Gusev crater and Meridiani Planum. Throughout the abstract, we adopt a format for mineral formulas that shows water explicitly rather than the usual practice of structure-based formulas (e.g., for goethite we write Fe2O3xH2O instead of FeOOH).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 13; LPI-Contrib-1234-Pt-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: The primary objective of the MER Spirit and Opportunity Rovers is to identify and investigate rocks, outcrops, and soils that have the highest possible chance of preserving evidence of water activity on Mars. The Athena Science Instrument Payload onboard the two rovers has provided geochemical and mineralogical information that indicates a variety of aqueous processes and various degrees of alteration at the two landing sites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 13; LPI-Contrib-1234-Pt-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...