ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-10-25
    Description: Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Li -- Getz, Gad -- Wheeler, David A -- Mardis, Elaine R -- McLellan, Michael D -- Cibulskis, Kristian -- Sougnez, Carrie -- Greulich, Heidi -- Muzny, Donna M -- Morgan, Margaret B -- Fulton, Lucinda -- Fulton, Robert S -- Zhang, Qunyuan -- Wendl, Michael C -- Lawrence, Michael S -- Larson, David E -- Chen, Ken -- Dooling, David J -- Sabo, Aniko -- Hawes, Alicia C -- Shen, Hua -- Jhangiani, Shalini N -- Lewis, Lora R -- Hall, Otis -- Zhu, Yiming -- Mathew, Tittu -- Ren, Yanru -- Yao, Jiqiang -- Scherer, Steven E -- Clerc, Kerstin -- Metcalf, Ginger A -- Ng, Brian -- Milosavljevic, Aleksandar -- Gonzalez-Garay, Manuel L -- Osborne, John R -- Meyer, Rick -- Shi, Xiaoqi -- Tang, Yuzhu -- Koboldt, Daniel C -- Lin, Ling -- Abbott, Rachel -- Miner, Tracie L -- Pohl, Craig -- Fewell, Ginger -- Haipek, Carrie -- Schmidt, Heather -- Dunford-Shore, Brian H -- Kraja, Aldi -- Crosby, Seth D -- Sawyer, Christopher S -- Vickery, Tammi -- Sander, Sacha -- Robinson, Jody -- Winckler, Wendy -- Baldwin, Jennifer -- Chirieac, Lucian R -- Dutt, Amit -- Fennell, Tim -- Hanna, Megan -- Johnson, Bruce E -- Onofrio, Robert C -- Thomas, Roman K -- Tonon, Giovanni -- Weir, Barbara A -- Zhao, Xiaojun -- Ziaugra, Liuda -- Zody, Michael C -- Giordano, Thomas -- Orringer, Mark B -- Roth, Jack A -- Spitz, Margaret R -- Wistuba, Ignacio I -- Ozenberger, Bradley -- Good, Peter J -- Chang, Andrew C -- Beer, David G -- Watson, Mark A -- Ladanyi, Marc -- Broderick, Stephen -- Yoshizawa, Akihiko -- Travis, William D -- Pao, William -- Province, Michael A -- Weinstock, George M -- Varmus, Harold E -- Gabriel, Stacey B -- Lander, Eric S -- Gibbs, Richard A -- Meyerson, Matthew -- Wilson, Richard K -- P50 CA070907/CA/NCI NIH HHS/ -- R01 CA154365/CA/NCI NIH HHS/ -- U19 CA084953/CA/NCI NIH HHS/ -- U19 CA084953-050003/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-04/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1069-75. doi: 10.1038/nature07423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948947" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma, Bronchiolo-Alveolar/*genetics ; Female ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor ; Humans ; Lung Neoplasms/*genetics ; Male ; Mutation/*genetics ; Proto-Oncogenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-11
    Description: Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chouchani, Edward T -- Pell, Victoria R -- Gaude, Edoardo -- Aksentijevic, Dunja -- Sundier, Stephanie Y -- Robb, Ellen L -- Logan, Angela -- Nadtochiy, Sergiy M -- Ord, Emily N J -- Smith, Anthony C -- Eyassu, Filmon -- Shirley, Rachel -- Hu, Chou-Hui -- Dare, Anna J -- James, Andrew M -- Rogatti, Sebastian -- Hartley, Richard C -- Eaton, Simon -- Costa, Ana S H -- Brookes, Paul S -- Davidson, Sean M -- Duchen, Michael R -- Saeb-Parsy, Kourosh -- Shattock, Michael J -- Robinson, Alan J -- Work, Lorraine M -- Frezza, Christian -- Krieg, Thomas -- Murphy, Michael P -- G1100562/Medical Research Council/United Kingdom -- MC_U105663142/Medical Research Council/United Kingdom -- MC_U105674181/Medical Research Council/United Kingdom -- MC_UP_1101/3/Medical Research Council/United Kingdom -- MC_UU_12022/6/Medical Research Council/United Kingdom -- PG/07/126/24223/British Heart Foundation/United Kingdom -- PG/12/42/29655/British Heart Foundation/United Kingdom -- R01 HL071158/HL/NHLBI NIH HHS/ -- RG/12/4/29426/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Nov 20;515(7527):431-5. doi: 10.1038/nature13909. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK [2] Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. ; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. ; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK. ; King's College London, British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK. ; Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Biology, University College London, Gower Street, London WC1E 6BT, UK. ; MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK. ; Department of Anesthesiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA. ; Institute of Cardiovascular &Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK. ; School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK. ; Unit of Paediatric Surgery, UCL Institute of Child Health, London WC1N 1EH, UK. ; Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK. ; University Department of Surgery and Cambridge NIHR Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383517" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Animals ; Aspartic Acid/metabolism ; Citric Acid Cycle ; Disease Models, Animal ; Electron Transport ; Electron Transport Complex I/metabolism ; Fumarates/metabolism ; Ischemia/enzymology/*metabolism ; Malates/metabolism ; Male ; Metabolomics ; Mice ; Mitochondria/enzymology/*metabolism ; Myocardial Infarction/enzymology/metabolism ; Myocardium/cytology/enzymology/metabolism ; Myocytes, Cardiac/enzymology/metabolism ; NAD/metabolism ; Reactive Oxygen Species/*metabolism ; Reperfusion Injury/enzymology/*metabolism ; Stroke/enzymology/metabolism ; Succinate Dehydrogenase/metabolism ; Succinic Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robinson, Oliver J -- England -- Nature. 2011 Oct 26;478(7370):459. doi: 10.1038/478459b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22031429" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Humans ; Male ; Mental Disorders/*economics/*epidemiology ; Mental Health/*statistics & numerical data ; Research Support as Topic/*economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-31
    Description: Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in brown adipose tissue is defined by a substantial increase in levels of mitochondrial reactive oxygen species (ROS). Remarkably, this process supports in vivo thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole-body energy expenditure. We further establish that thermogenic ROS alter the redox status of cysteine thiols in brown adipose tissue to drive increased respiration, and that Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine-nucleotide-inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify mitochondrial ROS induction in brown adipose tissue as a mechanism that supports UCP1-dependent thermogenesis and whole-body energy expenditure, which opens the way to improved therapeutic strategies for combating metabolic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chouchani, Edward T -- Kazak, Lawrence -- Jedrychowski, Mark P -- Lu, Gina Z -- Erickson, Brian K -- Szpyt, John -- Pierce, Kerry A -- Laznik-Bogoslavski, Dina -- Vetrivelan, Ramalingam -- Clish, Clary B -- Robinson, Alan J -- Gygi, Steve P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Apr 7;532(7597):112-6. doi: 10.1038/nature17399. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027295" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/chemistry/cytology/metabolism ; Animals ; Cell Respiration ; Cysteine/*chemistry/genetics/metabolism ; *Energy Metabolism/drug effects ; Female ; Humans ; Ion Channels/*chemistry/deficiency/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/drug effects/*metabolism ; Mitochondrial Proteins/*chemistry/deficiency/genetics/*metabolism ; Mutant Proteins/chemistry/genetics/metabolism ; Oxidation-Reduction ; Reactive Oxygen Species/*metabolism ; Sulfhydryl Compounds/metabolism ; *Thermogenesis/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1979-07-13
    Description: Human erythrocytes have specific insulin receptors. When studied in an insulin radioreceptor assay, erythrocytes from adult-onset, nonobese diabetic subjects bound at least 42 percent less insulin than the normal subjects at insulin concentrations from 0.1 to 100 nanograms per milliliter. The diabetic subjects had 190 insulin receptor sites per cell as compared with the 380 insulin receptor sites per cell for the normal subjects. The deficit of insulin binding in the diabetic subject was thus associated with a fewer number of insulin binding sites per cell with little or no change in affinity. The erythrocyte is a readily available cell for the evaluation of cellular insulin receptor activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robinson, T J -- Archer, J A -- Gambhir, K K -- Hollis, V W Jr -- Carter, L -- Bradley, C -- New York, N.Y. -- Science. 1979 Jul 13;205(4402):200-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/451590" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Diabetes Mellitus/*blood/metabolism ; Erythrocyte Membrane/*metabolism ; Erythrocytes/*metabolism ; Female ; Humans ; Insulin/metabolism ; Male ; Middle Aged ; Receptor, Insulin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-06-13
    Description: A continuing effort to develop a comprehensive capability for thermal-structural analysis and automated design (sizing) is reviewed. A principal role in the activity is played by the finite element program SPAR which contains both an efficient structural and thermal analysis capability. The benefit of having thermal and structural analyses in the same finite element program is illustrated by the application of SPAR to design calculations for the National Transonic Facility - a cryogenic wind tunnel under construction at Langley. Some experience with large-scale thermal structural analysis problems, particularly the space shuttle orbiter, has led to the identification of some analysis needs. Those needs include automated model generation and data output for lumped parameter thermal analysis, faster solution methods for nonlinear transient heat transfer, automated interpolation of temperature data from a thermal finite element model to a dissimilar structural finite model, and automated techniques to identify the times at which the critical combinations of transient heating and loads occur on a structure.
    Keywords: STRUCTURAL MECHANICS
    Type: Recent Advan. in Structures for Hypersonic Flight, Pt.2; p 897-941
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-16
    Description: Investigation of the effect of using plane quadrilateral membrane elements for modeling nonplanar structures. The effect is assessed by analyzing a simplified finite element model with the aid of the structure network analysis program. The results obtained indicate that the use of planar quadrilateral membrane elements for modeling bending problems can lead to large errors if the four points that define the quadrilateral are not in the same plane.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA Journal; 11; May 1973
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-07
    Description: An analytical study of a two-lobed circular arc pressure vessel (double-bubble tank) with a local perturbation from the cylindrical shape was made. It can be concluded that NASTRAN provides a good linear buckling analysis capability for structures that cannot be handled by other analysis techniques. However, solutions are relatively expensive from a computational standpoint. Two worthwhile additions to the NASTRAN program would be the inclusion of a new beam element that adequately represents the shear transfer when modeling stiffeners on a shell and the capability, in a rigid format, to keep certain prescribed loads constant during the eigenvalue extraction process.
    Keywords: STRUCTURAL MECHANICS
    Type: NASTRAN: Users' Experiences; p 53-71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-03
    Description: Comparison of ASKA and NASTRAN programs analyses of space shuttle hot elevon test article deformed under thermal and mechanical loads
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Res. Center NASTRAN: Users Experiences; p 163-180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The effects of nonlinear damping on the large-deflection response of symmetrically laminated composite panels is studied by time-domain simulation in an attempt to quantify experimentally observed phenomena. A single-mode deflection approach is used in the equations of motion and in the linear and nonlinear damping models. The probability, peak-probability, and spectral-density data are compiled for both strains and deflection. The rms responses as a function of input excitation level are also obtained and compared to linear, equivalent-linearization, and Fokker-Planck equation solutions.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 89-1104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...