ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-10-26
    Description: N-methyl-D-aspartate receptors (NMDARs) mediate ischemic brain damage but also mediate essential neuronal excitation. To treat stroke without blocking NMDARs, we transduced neurons with peptides that disrupted the interaction of NMDARs with the postsynaptic density protein PSD-95. This procedure dissociated NMDARs from downstream neurotoxic signaling without blocking synaptic activity or calcium influx. The peptides, when applied either before or 1 hour after an insult, protected cultured neurons from excitotoxicity, reduced focal ischemic brain damage in rats, and improved their neurological function. This approach circumvents the negative consequences associated with blocking NMDARs and may constitute a practical stroke therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aarts, Michelle -- Liu, Yitao -- Liu, Lidong -- Besshoh, Shintaro -- Arundine, Mark -- Gurd, James W -- Wang, Yu-Tian -- Salter, Michael W -- Tymianski, Michael -- NS 39060/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 25;298(5594):846-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Toronto Western Hospital Research Institute, 11-416 MC-PAV, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399596" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/*drug effects/metabolism ; Brain Ischemia/*drug therapy/metabolism ; Calcium/metabolism ; Cells, Cultured ; Cerebral Infarction/*drug therapy/metabolism ; Cyclic GMP/metabolism ; Guanylate Kinase ; In Vitro Techniques ; Intracellular Signaling Peptides and Proteins ; Male ; Membrane Proteins ; Mice ; Mice, Inbred C57BL ; N-Methylaspartate/pharmacology ; Nerve Tissue Proteins/chemistry/*metabolism ; Neurons/drug effects/physiology ; Patch-Clamp Techniques ; Peptides/administration & dosage/*pharmacology/therapeutic use ; Protein Binding ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/*chemistry/*metabolism ; Recombinant Fusion Proteins/administration & dosage/pharmacology/therapeutic use ; Signal Transduction ; Synaptic Transmission/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-08-15
    Description: A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kimura, K D -- Tissenbaum, H A -- Liu, Y -- Ruvkun, G -- R01AG14161/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 15;277(5328):942-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9252323" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Amino Acid Sequence ; Animals ; Caenorhabditis elegans/chemistry/*genetics/growth & development/metabolism ; Caenorhabditis elegans Proteins ; Chromosome Mapping ; Conserved Sequence ; Energy Intake ; *Genes, Helminth ; Glucose/metabolism ; Humans ; Insulin/metabolism ; Larva/genetics/growth & development/metabolism ; Longevity/*genetics ; Molecular Sequence Data ; Mutation ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Receptor, IGF Type 1/chemistry/genetics ; Receptor, Insulin/chemistry/*genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-07-11
    Description: The recent emergence of highly pathogenic avian influenza A virus strains with subtype H5N1 pose a global threat to human health. Elucidation of the underlying mechanisms of viral replication is critical for development of anti-influenza virus drugs. The influenza RNA-dependent RNA polymerase (RdRp) heterotrimer has crucial roles in viral RNA replication and transcription. It contains three proteins: PA, PB1 and PB2. PB1 harbours polymerase and endonuclease activities and PB2 is responsible for cap binding; PA is implicated in RNA replication and proteolytic activity, although its function is less clearly defined. Here we report the 2.9 angstrom structure of avian H5N1 influenza A virus PA (PA(C), residues 257-716) in complex with the PA-binding region of PB1 (PB1(N), residues 1-25). PA(C) has a fold resembling a dragon's head with PB1(N) clamped into its open 'jaws'. PB1(N) is a known inhibitor that blocks assembly of the polymerase heterotrimer and abolishes viral replication. Our structure provides details for the binding of PB1(N) to PA(C) at the atomic level, demonstrating a potential target for novel anti-influenza therapeutics. We also discuss a potential nucleotide binding site and the roles of some known residues involved in polymerase activity. Furthermore, to explore the role of PA in viral replication and transcription, we propose a model for the influenza RdRp heterotrimer by comparing PA(C) with the lambda3 reovirus polymerase structure, and docking the PA(C) structure into an available low resolution electron microscopy map.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Xiaojing -- Zhou, Jie -- Bartlam, Mark -- Zhang, Rongguang -- Ma, Jianyuan -- Lou, Zhiyong -- Li, Xuemei -- Li, Jingjing -- Joachimiak, Andrzej -- Zeng, Zonghao -- Ge, Ruowen -- Rao, Zihe -- Liu, Yingfang -- England -- Nature. 2008 Aug 28;454(7208):1123-6. doi: 10.1038/nature07120. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds/*virology ; Crystallography, X-Ray ; Influenza A Virus, H5N1 Subtype/*enzymology ; Models, Molecular ; Multienzyme Complexes/chemistry/metabolism ; Nucleotides/metabolism ; Peptide Fragments/chemistry/metabolism ; Protein Binding ; Protein Structure, Quaternary ; RNA Replicase/*chemistry/metabolism ; Viral Proteins/*chemistry/*metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-02-06
    Description: The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Puwei -- Bartlam, Mark -- Lou, Zhiyong -- Chen, Shoudeng -- Zhou, Jie -- He, Xiaojing -- Lv, Zongyang -- Ge, Ruowen -- Li, Xuemei -- Deng, Tao -- Fodor, Ervin -- Rao, Zihe -- Liu, Yingfang -- G0700848/Medical Research Council/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):909-13. doi: 10.1038/nature07720. Epub 2009 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194458" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Catalytic Domain ; Crystallography, X-Ray ; Endonucleases/*chemistry/genetics/*metabolism ; Influenza A Virus, H5N1 Subtype/*enzymology ; Influenza in Birds/*virology ; Models, Molecular ; Protein Subunits/chemistry/genetics/metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-15
    Description: In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model. These results show that therapeutically relevant inhibition of Bcr-Abl activity can be achieved with inhibitors that bind to the myristate-binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jianming -- Adrian, Francisco J -- Jahnke, Wolfgang -- Cowan-Jacob, Sandra W -- Li, Allen G -- Iacob, Roxana E -- Sim, Taebo -- Powers, John -- Dierks, Christine -- Sun, Fangxian -- Guo, Gui-Rong -- Ding, Qiang -- Okram, Barun -- Choi, Yongmun -- Wojciechowski, Amy -- Deng, Xianming -- Liu, Guoxun -- Fendrich, Gabriele -- Strauss, Andre -- Vajpai, Navratna -- Grzesiek, Stephan -- Tuntland, Tove -- Liu, Yi -- Bursulaya, Badry -- Azam, Mohammad -- Manley, Paul W -- Engen, John R -- Daley, George Q -- Warmuth, Markus -- Gray, Nathanael S -- R01 CA130876/CA/NCI NIH HHS/ -- R01 CA130876-03/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):501-6. doi: 10.1038/nature08675. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology, Seeley G. Mudd Building 628, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072125" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*chemistry/metabolism/*pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; Benzamides ; Binding Sites ; Bone Marrow Transplantation ; Cell Line, Tumor ; Crystallization ; Disease Models, Animal ; Drug Resistance, Neoplasm/*drug effects ; Female ; Fusion Proteins, bcr-abl/*chemistry/genetics/metabolism ; Humans ; Imatinib Mesylate ; Inhibitory Concentration 50 ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug ; therapy/enzymology/*metabolism ; Male ; Mass Spectrometry ; Mice ; Models, Molecular ; Mutation/genetics ; Piperazines/chemistry/pharmacology ; Protein Structure, Tertiary ; Pyrimidines/chemistry/metabolism/pharmacology ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-09-30
    Description: The major facilitator superfamily (MFS) transporters are an ancient and widespread family of secondary active transporters. In Escherichia coli, the uptake of l-fucose, a source of carbon for microorganisms, is mediated by an MFS proton symporter, FucP. Despite intensive study of the MFS transporters, atomic structure information is only available on three proteins and the outward-open conformation has yet to be captured. Here we report the crystal structure of FucP at 3.1 A resolution, which shows that it contains an outward-open, amphipathic cavity. The similarly folded amino and carboxyl domains of FucP have contrasting surface features along the transport path, with negative electrostatic potential on the N domain and hydrophobic surface on the C domain. FucP only contains two acidic residues along the transport path, Asp 46 and Glu 135, which can undergo cycles of protonation and deprotonation. Their essential role in active transport is supported by both in vivo and in vitro experiments. Structure-based biochemical analyses provide insights into energy coupling, substrate recognition and the transport mechanism of FucP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Shangyu -- Sun, Linfeng -- Huang, Yongjian -- Lu, Feiran -- Liu, Yufeng -- Gong, Haipeng -- Wang, Jiawei -- Yan, Nieng -- England -- Nature. 2010 Oct 7;467(7316):734-8. doi: 10.1038/nature09406. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877283" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Fucose/metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/metabolism ; Protein Conformation ; Protons ; Rotation ; Static Electricity ; Symporters/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-14
    Description: Intracellular ISG15 is an interferon (IFN)-alpha/beta-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-alpha/beta-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-gamma-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-alpha/beta immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutieres syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-alpha/beta signalling, resulting in the enhancement and amplification of IFN-alpha/beta responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-alpha/beta immunity. In humans, intracellular ISG15 is IFN-alpha/beta-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-alpha/beta and prevention of IFN-alpha/beta-dependent autoinflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xianqin -- Bogunovic, Dusan -- Payelle-Brogard, Beatrice -- Francois-Newton, Veronique -- Speer, Scott D -- Yuan, Chao -- Volpi, Stefano -- Li, Zhi -- Sanal, Ozden -- Mansouri, Davood -- Tezcan, Ilhan -- Rice, Gillian I -- Chen, Chunyuan -- Mansouri, Nahal -- Mahdaviani, Seyed Alireza -- Itan, Yuval -- Boisson, Bertrand -- Okada, Satoshi -- Zeng, Lu -- Wang, Xing -- Jiang, Hui -- Liu, Wenqiang -- Han, Tiantian -- Liu, Delin -- Ma, Tao -- Wang, Bo -- Liu, Mugen -- Liu, Jing-Yu -- Wang, Qing K -- Yalnizoglu, Dilek -- Radoshevich, Lilliana -- Uze, Gilles -- Gros, Philippe -- Rozenberg, Flore -- Zhang, Shen-Ying -- Jouanguy, Emmanuelle -- Bustamante, Jacinta -- Garcia-Sastre, Adolfo -- Abel, Laurent -- Lebon, Pierre -- Notarangelo, Luigi D -- Crow, Yanick J -- Boisson-Dupuis, Stephanie -- Casanova, Jean-Laurent -- Pellegrini, Sandra -- 1P01AI076210-01A1/AI/NIAID NIH HHS/ -- 309449/European Research Council/International -- 8UL1TR000043/TR/NCATS NIH HHS/ -- P01 AI076210/AI/NIAID NIH HHS/ -- P01 AI090935/AI/NIAID NIH HHS/ -- P01AI090935/AI/NIAID NIH HHS/ -- R00 AI106942/AI/NIAID NIH HHS/ -- R00AI106942-02/AI/NIAID NIH HHS/ -- R01 AI035237/AI/NIAID NIH HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- U19 AI083025/AI/NIAID NIH HHS/ -- U19AI083025/AI/NIAID NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):89-93. doi: 10.1038/nature13801. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Microbiology Training Area, Graduate School of Biomedical Sciences of Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA [2] Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy. ; Immunology Division and Pediatric Neurology Department, Hacettepe University Children's Hospital, 06100 Ankara, Turkey. ; Division of Infectious Diseases and Clinical Immunology, Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, 4739 Teheran, Iran. ; Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK. ; Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Sangzhi County People's Hospital, Sangzhi 427100, China. ; Genetics Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China. ; 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China [2] Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; Institut Pasteur, Bacteria-Cell Interactions Unit, 75724 Paris, France. ; CNRS UMR5235, Montpellier II University, Place Eugene Bataillon, 34095 Montpellier, France. ; Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada. ; Paris Descartes University, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, 75015 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [3] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; 1] Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Howard Hughes Medical Institute, New York, New York 10065, USA [4] Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France [5]. ; 1] Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307056" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alleles ; Child ; Cytokines/deficiency/genetics/*metabolism ; Endopeptidases/chemistry/metabolism ; Female ; Gene Expression Regulation ; Humans ; Inflammation/genetics/immunology/*prevention & control ; Interferon Type I/*immunology/metabolism ; Intracellular Space/*metabolism ; Male ; Pedigree ; S-Phase Kinase-Associated Proteins/metabolism ; Signal Transduction ; Ubiquitination ; Ubiquitins/deficiency/genetics/*metabolism ; Viruses/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-07-26
    Description: The three-dimensional crystal structure of the copper-containing nitrite reductase (NIR) from Achromobacter cycloclastes has been determined to 2.3 angstrom (A) resolution by isomorphous replacement. The monomer has two Greek key beta-barrel domains similar to that of plastocyanin and contains two copper sites. The enzyme is a trimer both in the crystal and in solution. The two copper atoms in the monomer comprise one type I copper site (Cu-I; two His, one Cys, and one Met ligands) and one putative type II copper site (Cu-II; three His and one solvent ligands). Although ligated by adjacent amino acids Cu-I and Cu-II are approximately 12.5 A apart. Cu-II is bound with nearly perfect tetrahedral geometry by residues not within a single monomer, but from each of two monomers of the trimer. The Cu-II site is at the bottom of a 12 A deep solvent channel and is the site to which the substrate (NO2-) binds, as evidenced by difference density maps of substrate-soaked and native crystals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Godden, J W -- Turley, S -- Teller, D C -- Adman, E T -- Liu, M Y -- Payne, W J -- LeGall, J -- GM08268-02/GM/NIGMS NIH HHS/ -- GM31770/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):438-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1862344" target="_blank"〉PubMed〈/a〉
    Keywords: Alcaligenes/*enzymology ; Amino Acid Sequence ; Copper/analysis ; Models, Molecular ; Molecular Weight ; Nitrite Reductases/*chemistry ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-03-07
    Description: Patten recognition receptors, which recognize pathogens or components of injured cells (danger), trigger activation of the innate immune system. Whether and how the host distinguishes between danger- versus pathogen-associated molecular patterns remains unresolved. We report that CD24-deficient mice exhibit increased susceptibility to danger- but not pathogen-associated molecular patterns. CD24 associates with high mobility group box 1, heat shock protein 70, and heat shock protein 90; negatively regulates their stimulatory activity; and inhibits nuclear factor kappaB (NF-kappaB) activation. This occurs at least in part through CD24 association with Siglec-10 in humans or Siglec-G in mice. Our results reveal that the CD24-Siglec G pathway protects the host against a lethal response to pathological cell death and discriminates danger- versus pathogen-associated molecular patterns.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765686/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765686/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Guo-Yun -- Tang, Jie -- Zheng, Pan -- Liu, Yang -- AI064350/AI/NIAID NIH HHS/ -- CA112001/CA/NCI NIH HHS/ -- CA58033/CA/NCI NIH HHS/ -- R01 AI064350/AI/NIAID NIH HHS/ -- R01 AI064350-04/AI/NIAID NIH HHS/ -- R01 CA058033/CA/NCI NIH HHS/ -- R01 CA058033-16A2/CA/NCI NIH HHS/ -- R01 CA112001/CA/NCI NIH HHS/ -- R01 CA112001-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Mar 27;323(5922):1722-5. doi: 10.1126/science.1168988. Epub 2009 Mar 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19264983" target="_blank"〉PubMed〈/a〉
    Keywords: Acetaminophen/toxicity ; Animals ; Antigens, CD24/genetics/*metabolism ; Cytokines/metabolism ; Dendritic Cells/immunology ; HMGB1 Protein/chemistry/immunology/*metabolism ; HSP70 Heat-Shock Proteins/metabolism ; HSP90 Heat-Shock Proteins/metabolism ; Humans ; *Immunity, Innate ; Immunoprecipitation ; Inflammation/*immunology ; Lectins/*metabolism ; Lipopolysaccharides/toxicity ; Liver/immunology/pathology ; Mice ; Mutant Proteins/chemistry/metabolism ; Necrosis/chemically induced/immunology ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism ; Receptors, Antigen, B-Cell/*metabolism ; Receptors, Cell Surface/metabolism ; Receptors, Pattern Recognition/immunology/metabolism ; Signal Transduction ; Transcription Factor RelA/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...