ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-20
    Description: Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhao -- Cheng, Katherine -- Walton, Zandra -- Wang, Yuchuan -- Ebi, Hiromichi -- Shimamura, Takeshi -- Liu, Yan -- Tupper, Tanya -- Ouyang, Jing -- Li, Jie -- Gao, Peng -- Woo, Michele S -- Xu, Chunxiao -- Yanagita, Masahiko -- Altabef, Abigail -- Wang, Shumei -- Lee, Charles -- Nakada, Yuji -- Pena, Christopher G -- Sun, Yanping -- Franchetti, Yoko -- Yao, Catherine -- Saur, Amy -- Cameron, Michael D -- Nishino, Mizuki -- Hayes, D Neil -- Wilkerson, Matthew D -- Roberts, Patrick J -- Lee, Carrie B -- Bardeesy, Nabeel -- Butaney, Mohit -- Chirieac, Lucian R -- Costa, Daniel B -- Jackman, David -- Sharpless, Norman E -- Castrillon, Diego H -- Demetri, George D -- Janne, Pasi A -- Pandolfi, Pier Paolo -- Cantley, Lewis C -- Kung, Andrew L -- Engelman, Jeffrey A -- Wong, Kwok-Kin -- 1U01CA141576/CA/NCI NIH HHS/ -- CA122794/CA/NCI NIH HHS/ -- CA137008/CA/NCI NIH HHS/ -- CA137008-01/CA/NCI NIH HHS/ -- CA137181/CA/NCI NIH HHS/ -- CA140594/CA/NCI NIH HHS/ -- CA147940/CA/NCI NIH HHS/ -- K23 CA157631/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P50 CA090578/CA/NCI NIH HHS/ -- P50 CA090578-06/CA/NCI NIH HHS/ -- P50CA090578/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA122794-01/CA/NCI NIH HHS/ -- R01 CA137008/CA/NCI NIH HHS/ -- R01 CA137008-01/CA/NCI NIH HHS/ -- R01 CA137181/CA/NCI NIH HHS/ -- R01 CA137181-01A2/CA/NCI NIH HHS/ -- R01 CA140594/CA/NCI NIH HHS/ -- R01 CA140594-01/CA/NCI NIH HHS/ -- R01 CA163896/CA/NCI NIH HHS/ -- RC2 CA147940/CA/NCI NIH HHS/ -- RC2 CA147940-01/CA/NCI NIH HHS/ -- U01 CA141576/CA/NCI NIH HHS/ -- U01 CA141576-01/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 18;483(7391):613-7. doi: 10.1038/nature10937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22425996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Combined Chemotherapy Protocols ; Benzimidazoles/*pharmacology/therapeutic use ; Biomarkers, Tumor/genetics/metabolism ; *Clinical Trials, Phase II as Topic ; *Disease Models, Animal ; Drug Evaluation, Preclinical ; Fluorodeoxyglucose F18 ; Genes, p53/genetics ; Humans ; Lung Neoplasms/*drug therapy/enzymology/*genetics/metabolism ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Mutation/genetics ; Pharmacogenetics/*methods ; Positron-Emission Tomography ; Protein-Serine-Threonine Kinases/deficiency/genetics ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Randomized Controlled Trials as Topic ; Reproducibility of Results ; Taxoids/*therapeutic use ; Tomography, X-Ray Computed ; Treatment Outcome ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-24
    Description: The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H(1) receptor (H(1)R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H(1)R complex with doxepin, a first-generation H(1)R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp 428(6.48), a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H(1)R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys 191(5.39) and/or Lys 179(ECL2), both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H(1)R antagonist specificity against H(1)R.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131495/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131495/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimamura, Tatsuro -- Shiroishi, Mitsunori -- Weyand, Simone -- Tsujimoto, Hirokazu -- Winter, Graeme -- Katritch, Vsevolod -- Abagyan, Ruben -- Cherezov, Vadim -- Liu, Wei -- Han, Gye Won -- Kobayashi, Takuya -- Stevens, Raymond C -- Iwata, So -- 062164/ Z/00/Z/Wellcome Trust/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-07/GM/NIGMS NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM071872-02/GM/NIGMS NIH HHS/ -- R01 GM071872-08/GM/NIGMS NIH HHS/ -- R01 GM089857/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54 GM094618-01/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jun 22;475(7354):65-70. doi: 10.1038/nature10236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21697825" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Doxepin/chemistry/*metabolism ; Histamine Antagonists/chemistry/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Isomerism ; Ligands ; Models, Molecular ; Phosphates/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Receptors, Adrenergic, beta-2/chemistry ; Receptors, Dopamine D3/chemistry ; Receptors, Histamine H1/*chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-31
    Description: G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor (A(2A)AR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A(2A)AR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A(2A)AR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A(2A)AR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active beta(2)-adrenergic receptor structure, but locks A(2A)AR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hino, Tomoya -- Arakawa, Takatoshi -- Iwanari, Hiroko -- Yurugi-Kobayashi, Takami -- Ikeda-Suno, Chiyo -- Nakada-Nakura, Yoshiko -- Kusano-Arai, Osamu -- Weyand, Simone -- Shimamura, Tatsuro -- Nomura, Norimichi -- Cameron, Alexander D -- Kobayashi, Takuya -- Hamakubo, Takao -- Iwata, So -- Murata, Takeshi -- 062164/Z/00/Z/Wellcome Trust/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2012 Jan 29;482(7384):237-40. doi: 10.1038/nature10750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Iwata Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22286059" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/*drug effects ; Animals ; Antibodies, Monoclonal/immunology/*pharmacology ; Complementarity Determining Regions/immunology ; *Drug Inverse Agonism ; Humans ; Immunoglobulin Fab Fragments/immunology/pharmacology ; Ligands ; Mice ; Models, Molecular ; Opsins/immunology ; Pichia ; Protein Conformation/drug effects ; Receptor, Adenosine A2A/chemistry/immunology/*metabolism ; Receptors, G-Protein-Coupled/agonists/*antagonists & ; inhibitors/chemistry/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...