ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-27
    Description: The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345277/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345277/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haga, Kazuko -- Kruse, Andrew C -- Asada, Hidetsugu -- Yurugi-Kobayashi, Takami -- Shiroishi, Mitsunori -- Zhang, Cheng -- Weis, William I -- Okada, Tetsuji -- Kobilka, Brian K -- Haga, Tatsuya -- Kobayashi, Takuya -- GM083118/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-21/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Jan 25;482(7386):547-51. doi: 10.1038/nature10753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Tokyo 171-8588, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22278061" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/analogs & derivatives/chemistry/metabolism ; Acetylcholinesterase/chemistry/metabolism ; Allosteric Regulation ; Binding Sites ; Carrier Proteins/chemistry/metabolism ; Cholinergic Antagonists/*chemistry/metabolism/*pharmacology ; Crystallography, X-Ray ; Evolution, Molecular ; Humans ; Ligands ; Models, Molecular ; Protein Conformation ; Quinuclidinyl Benzilate/*analogs & ; derivatives/*chemistry/metabolism/*pharmacology ; Receptor, Muscarinic M2/*antagonists & inhibitors/*chemistry/genetics/metabolism ; Tyrosine/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-31
    Description: G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor (A(2A)AR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A(2A)AR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A(2A)AR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A(2A)AR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active beta(2)-adrenergic receptor structure, but locks A(2A)AR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hino, Tomoya -- Arakawa, Takatoshi -- Iwanari, Hiroko -- Yurugi-Kobayashi, Takami -- Ikeda-Suno, Chiyo -- Nakada-Nakura, Yoshiko -- Kusano-Arai, Osamu -- Weyand, Simone -- Shimamura, Tatsuro -- Nomura, Norimichi -- Cameron, Alexander D -- Kobayashi, Takuya -- Hamakubo, Takao -- Iwata, So -- Murata, Takeshi -- 062164/Z/00/Z/Wellcome Trust/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2012 Jan 29;482(7384):237-40. doi: 10.1038/nature10750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Iwata Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22286059" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/*drug effects ; Animals ; Antibodies, Monoclonal/immunology/*pharmacology ; Complementarity Determining Regions/immunology ; *Drug Inverse Agonism ; Humans ; Immunoglobulin Fab Fragments/immunology/pharmacology ; Ligands ; Mice ; Models, Molecular ; Opsins/immunology ; Pichia ; Protein Conformation/drug effects ; Receptor, Adenosine A2A/chemistry/immunology/*metabolism ; Receptors, G-Protein-Coupled/agonists/*antagonists & ; inhibitors/chemistry/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...