ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-29
    Description: Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNamara, Case W -- Lee, Marcus C S -- Lim, Chek Shik -- Lim, Siau Hoi -- Roland, Jason -- Nagle, Advait -- Simon, Oliver -- Yeung, Bryan K S -- Chatterjee, Arnab K -- McCormack, Susan L -- Manary, Micah J -- Zeeman, Anne-Marie -- Dechering, Koen J -- Kumar, T R Santha -- Henrich, Philipp P -- Gagaring, Kerstin -- Ibanez, Maureen -- Kato, Nobutaka -- Kuhen, Kelli L -- Fischli, Christoph -- Rottmann, Matthias -- Plouffe, David M -- Bursulaya, Badry -- Meister, Stephan -- Rameh, Lucia -- Trappe, Joerg -- Haasen, Dorothea -- Timmerman, Martijn -- Sauerwein, Robert W -- Suwanarusk, Rossarin -- Russell, Bruce -- Renia, Laurent -- Nosten, Francois -- Tully, David C -- Kocken, Clemens H M -- Glynne, Richard J -- Bodenreider, Christophe -- Fidock, David A -- Diagana, Thierry T -- Winzeler, Elizabeth A -- 078285/Wellcome Trust/United Kingdom -- 089275/Wellcome Trust/United Kingdom -- 090534/Wellcome Trust/United Kingdom -- 096157/Wellcome Trust/United Kingdom -- R01 AI079709/AI/NIAID NIH HHS/ -- R01 AI085584/AI/NIAID NIH HHS/ -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI103058/AI/NIAID NIH HHS/ -- R01079709/PHS HHS/ -- R01085584/PHS HHS/ -- R01AI090141/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- WT096157/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):248-53. doi: 10.1038/nature12782. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2]. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2]. ; Novartis Institutes for Tropical Disease, 138670 Singapore. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; Department of Parasitology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands. ; TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands. ; Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA. ; Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland. ; 1] Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland [2] University of Basel, CH-4003 Basel, Switzerland. ; Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA. ; Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland. ; 1] TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands [2] Department of Medical Microbiology, Radboud University, Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands. ; Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore. ; 1] Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore [2] Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 117545 Singapore. ; 1] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK [2] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2] Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284631" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Phosphatidylinositol 4-Kinase/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytokinesis/drug effects ; Drug Resistance/drug effects/genetics ; Fatty Acids/metabolism ; Female ; Hepatocytes/parasitology ; Humans ; Imidazoles/metabolism/pharmacology ; Life Cycle Stages/drug effects ; Macaca mulatta ; Malaria/*drug therapy/*parasitology ; Male ; Models, Biological ; Models, Molecular ; Phosphatidylinositol Phosphates/metabolism ; Plasmodium/classification/*drug effects/*enzymology/growth & development ; Pyrazoles/metabolism/pharmacology ; Quinoxalines/metabolism/pharmacology ; Reproducibility of Results ; Schizonts/cytology/drug effects ; rab GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-09-11
    Description: The p53 tumor suppressor protein is activated and phosphorylated on serine-15 in response to various DNA damaging agents. The gene product mutated in ataxia telangiectasia, ATM, acts upstream of p53 in a signal transduction pathway initiated by ionizing radiation. Immunoprecipitated ATM had intrinsic protein kinase activity and phosphorylated p53 on serine-15 in a manganese-dependent manner. Ionizing radiation, but not ultraviolet radiation, rapidly enhanced this p53-directed kinase activity of endogenous ATM. These observations, along with the fact that phosphorylation of p53 on serine-15 in response to ionizing radiation is reduced in ataxia telangiectasia cells, suggest that ATM is a protein kinase that phosphorylates p53 in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canman, C E -- Lim, D S -- Cimprich, K A -- Taya, Y -- Tamai, K -- Sakaguchi, K -- Appella, E -- Kastan, M B -- Siliciano, J D -- CA71387/CA/NCI NIH HHS/ -- ES05777/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johns Hopkins School of Medicine, Oncology Center, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733515" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA-Activated Protein Kinase ; *DNA-Binding Proteins ; Enzyme Activation ; Humans ; Lymphocytes/metabolism/radiation effects ; Mutation ; Nuclear Proteins ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/genetics/*metabolism ; *Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; Transfection ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-11-24
    Description: Cystic fibrosis (CF) patients develop chronic airway infections with Pseudomonas aeruginosa (PA). Pseudomonas aeruginosa synthesized lipopolysaccharide (LPS) with a variety of penta- and hexa-acylated lipid A structures under different environmental conditions. CF patient PA synthesized LPS with specific lipid A structures indicating unique recognition of the CF airway environment. CF-specific lipid A forms containing palmitate and aminoarabinose were associated with resistance to cationic antimicrobial peptides and increased inflammatory responses, indicating that they are likely to be involved in airway disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ernst, R K -- Yi, E C -- Guo, L -- Lim, K B -- Burns, J L -- Hackett, M -- Miller, S I -- R21 R13400/PHS HHS/ -- R55 HL 48888/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1561-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567263" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Arabinose/analogs & derivatives/analysis/metabolism ; Bacterial Proteins/genetics/physiology ; Cells, Cultured ; Cystic Fibrosis/complications/*microbiology ; Drug Resistance, Microbial ; Humans ; Infant ; Interleukin-8/biosynthesis ; Lipid A/*biosynthesis/*chemistry ; Lipopolysaccharides/chemistry/immunology ; Magnesium/pharmacology ; Mutation ; Palmitates/analysis/metabolism ; Peptides/pharmacology ; Polymyxins/pharmacology ; Pseudomonas Infections/*microbiology ; Pseudomonas aeruginosa/drug effects/genetics/*metabolism/pathogenicity ; Respiratory System/*microbiology ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-02-07
    Description: An avian H5N1 influenza A virus (A/Hong Kong/156/97) was isolated from a tracheal aspirate obtained from a 3-year-old child in Hong Kong with a fatal illness consistent with influenza. Serologic analysis indicated the presence of an H5 hemagglutinin. All eight RNA segments were derived from an avian influenza A virus. The hemagglutinin contained multiple basic amino acids adjacent to the cleavage site, a feature characteristic of highly pathogenic avian influenza A viruses. The virus caused 87.5 to 100 percent mortality in experimentally inoculated White Plymouth Rock and White Leghorn chickens. These results may have implications for global influenza surveillance and planning for pandemic influenza.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Subbarao, K -- Klimov, A -- Katz, J -- Regnery, H -- Lim, W -- Hall, H -- Perdue, M -- Swayne, D -- Bender, C -- Huang, J -- Hemphill, M -- Rowe, T -- Shaw, M -- Xu, X -- Fukuda, K -- Cox, N -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):393-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Influenza Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430591" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Chickens ; Child, Preschool ; Disease Outbreaks ; Fatal Outcome ; Female ; Genes, Viral ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*genetics ; Hong Kong/epidemiology ; Humans ; *Influenza A Virus, H5N1 Subtype ; Influenza A virus/*genetics/isolation & purification/*pathogenicity ; Influenza in Birds/virology ; Influenza, Human/epidemiology/*virology ; Male ; Molecular Sequence Data ; Neuraminidase/genetics ; Phylogeny ; Virulence ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-10-29
    Description: The protein N-WASP [a homolog to the Wiskott-Aldrich syndrome protein (WASP)] regulates actin polymerization by stimulating the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. N-WASP is tightly regulated by multiple signals: Only costimulation by Cdc42 and phosphatidylinositol (4,5)-bisphosphate (PIP2) yields potent polymerization. We found that regulation requires N-WASP's constitutively active output domain (VCA) and two regulatory domains: a Cdc42-binding domain and a previously undescribed PIP(2)-binding domain. In the absence of stimuli, the regulatory modules together hold the VCA-Arp2/3 complex in an inactive "closed" conformation. In this state, both the Cdc42- and PIP2-binding sites are masked. Binding of either input destabilizes the closed state and enhances binding of the other input. This cooperative activation mechanism shows how combinations of simple binding domains can be used to integrate and amplify coincident signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prehoda, K E -- Scott, J A -- Mullins, R D -- Lim, W A -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):801-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-0450, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052943" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*metabolism ; Amino Acid Motifs ; Binding Sites ; Biopolymers ; *Cytoskeletal Proteins ; GTP Phosphohydrolases/metabolism ; Humans ; Models, Biological ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Thermodynamics ; Wiskott-Aldrich Syndrome Protein, Neuronal ; cdc42 GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-10-27
    Description: Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing in Caenorhabditis elegans. We find that these two regulatory RNAs are members of a large class of 21- to 24-nucleotide noncoding RNAs, called microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. elegans. The miRNAs have diverse expression patterns during development: a let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single genomic cluster are coexpressed during embryogenesis; and still other miRNAs are expressed constitutively throughout development. Potential orthologs of several of these miRNA genes were identified in Drosophila and human genomes. The abundance of these tiny RNAs, their expression patterns, and their evolutionary conservation imply that, as a class, miRNAs have broad regulatory functions in animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lau, N C -- Lim, L P -- Weinstein, E G -- Bartel, D P -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):858-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679671" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Blotting, Northern ; Caenorhabditis elegans/*genetics ; Cloning, Molecular ; Conserved Sequence ; Endoribonucleases/metabolism ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Genome ; Humans ; Molecular Sequence Data ; Multigene Family ; Nucleic Acid Conformation ; RNA Precursors/genetics/metabolism ; RNA, Helminth/*chemistry/*genetics/physiology ; RNA, Untranslated/chemistry/*genetics/physiology ; Ribonuclease III ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-12-16
    Description: Src homology 3 (SH3) and WW protein interaction domains bind specific proline-rich sequences. However, instead of recognizing critical prolines on the basis of side chain shape or rigidity, these domains broadly accepted amide N-substituted residues. Proline is apparently specifically selected in vivo, despite low complementarity, because it is the only endogenous N-substituted amino acid. This discriminatory mechanism explains how these domains achieve specific but low-affinity recognition, a property that is necessary for transient signaling interactions. The mechanism can be exploited: screening a series of ligands in which key prolines were replaced by nonnatural N-substituted residues yielded a ligand that selectively bound the Grb2 SH3 domain with 100 times greater affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, J T -- Turck, C W -- Cohen, F E -- Zuckermann, R N -- Lim, W A -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):2088-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9851931" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; *Caenorhabditis elegans Proteins ; Carrier Proteins/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; GRB2 Adaptor Protein ; Helminth Proteins/chemistry/metabolism ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/chemistry/*metabolism ; Phosphoproteins/chemistry/metabolism ; Proline/chemistry/*metabolism ; Protein Engineering ; Proteins/chemistry/metabolism ; Proto-Oncogene Proteins/chemistry/metabolism ; Proto-Oncogene Proteins c-crk ; Sequence Homology, Amino Acid ; *src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-04-11
    Description: Bacterial pathogenesis requires proteins that sense host microenvironments and respond by regulating virulence gene transcription. For Salmonellae, one such regulatory system is PhoP-PhoQ, which regulates genes required for intracellular survival and resistance to cationic peptides. Analysis by mass spectrometry revealed that Salmonella typhimurium PhoP-PhoQ regulated structural modifications of lipid A, the host signaling portion of lipopolysaccharide (LPS), by the addition of aminoarabinose and 2-hydroxymyristate. Structurally modified lipid A altered LPS-mediated expression of the adhesion molecule E-selectin by endothelial cells and tumor necrosis factor-alpha expression by adherent monocytes. Thus, altered responses to environmentally induced lipid A structural modifications may represent a mechanism for bacteria to gain advantage within host tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, L -- Lim, K B -- Gunn, J S -- Bainbridge, B -- Darveau, R P -- Hackett, M -- Miller, S I -- R01 AI30479/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Apr 11;276(5310):250-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9092473" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Arabinose/analogs & derivatives/metabolism ; Bacterial Proteins/*genetics/metabolism ; E-Selectin/biosynthesis ; Endothelium, Vascular/cytology/metabolism ; Fatty Acids/analysis ; *Genes, Bacterial ; Humans ; Lipid A/*chemistry/metabolism ; Lipopolysaccharides/chemistry/pharmacology ; Monocytes/metabolism ; Salmonella typhimurium/chemistry/*genetics/metabolism/*pathogenicity ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Tumor Necrosis Factor-alpha/biosynthesis ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-10-19
    Description: The derivation of human ES cells (hESCs) from human blastocysts represents one of the milestones in stem cell biology. The full potential of hESCs in research and clinical applications requires a detailed understanding of the genetic network that governs the unique properties of hESCs. Here, we report a genome-wide RNA interference screen to identify genes which regulate self-renewal and pluripotency properties in hESCs. Interestingly, functionally distinct complexes involved in transcriptional regulation and chromatin remodelling are among the factors identified in the screen. To understand the roles of these potential regulators of hESCs, we studied transcription factor PRDM14 to gain new insights into its functional roles in the regulation of pluripotency. We showed that PRDM14 regulates directly the expression of key pluripotency gene POU5F1 through its proximal enhancer. Genome-wide location profiling experiments revealed that PRDM14 colocalized extensively with other key transcription factors such as OCT4, NANOG and SOX2, indicating that PRDM14 is integrated into the core transcriptional regulatory network. More importantly, in a gain-of-function assay, we showed that PRDM14 is able to enhance the efficiency of reprogramming of human fibroblasts in conjunction with OCT4, SOX2 and KLF4. Altogether, our study uncovers a wealth of novel hESC regulators wherein PRDM14 exemplifies a key transcription factor required for the maintenance of hESC identity and the reacquisition of pluripotency in human somatic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chia, Na-Yu -- Chan, Yun-Shen -- Feng, Bo -- Lu, Xinyi -- Orlov, Yuriy L -- Moreau, Dimitri -- Kumar, Pankaj -- Yang, Lin -- Jiang, Jianming -- Lau, Mei-Sheng -- Huss, Mikael -- Soh, Boon-Seng -- Kraus, Petra -- Li, Pin -- Lufkin, Thomas -- Lim, Bing -- Clarke, Neil D -- Bard, Frederic -- Ng, Huck-Hui -- England -- Nature. 2010 Nov 11;468(7321):316-20. doi: 10.1038/nature09531. Epub 2010 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Regulation Laboratory, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20953172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cellular Reprogramming/genetics ; DNA-Binding Proteins/genetics/metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation/genetics ; Genome, Human/*genetics ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mice ; Octamer Transcription Factor-3/genetics/metabolism ; *RNA Interference ; Repressor Proteins/genetics/*metabolism ; SOXB1 Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-07-11
    Description: Polo-like kinase-1 (PLK1) is an essential mitotic kinase regulating multiple aspects of the cell division process. Activation of PLK1 requires phosphorylation of a conserved threonine residue (Thr 210) in the T-loop of the PLK1 kinase domain, but the kinase responsible for this has not yet been affirmatively identified. Here we show that in human cells PLK1 activation occurs several hours before entry into mitosis, and requires aurora A (AURKA, also known as STK6)-dependent phosphorylation of Thr 210. We find that aurora A can directly phosphorylate PLK1 on Thr 210, and that activity of aurora A towards PLK1 is greatly enhanced by Bora (also known as C13orf34 and FLJ22624), a known cofactor for aurora A (ref. 7). We show that Bora/aurora-A-dependent phosphorylation is a prerequisite for PLK1 to promote mitotic entry after a checkpoint-dependent arrest. Importantly, expression of a PLK1-T210D phospho-mimicking mutant partially overcomes the requirement for aurora A in checkpoint recovery. Taken together, these data demonstrate that the initial activation of PLK1 is a primary function of aurora A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macurek, Libor -- Lindqvist, Arne -- Lim, Dan -- Lampson, Michael A -- Klompmaker, Rob -- Freire, Raimundo -- Clouin, Christophe -- Taylor, Stephen S -- Yaffe, Michael B -- Medema, Rene H -- CA112967/CA/NCI NIH HHS/ -- GM-60594/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Sep 4;455(7209):119-23. doi: 10.1038/nature07185. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, University Medical Center Utrecht, Utrecht 3584CG, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615013" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinase A ; Aurora Kinases ; Cell Cycle/*physiology ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; DNA Damage ; Enzyme Activation ; Humans ; Mitosis ; Molecular Sequence Data ; Phosphorylation ; Phosphothreonine/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...