ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1988-10-14
    Description: Structural changes of the human retinoblastoma gene have been demonstrated previously in retinoblastoma and some clinically related tumors including osteosarcoma. Structural aberrations of the retinoblastoma locus (RB1) were observed in 25% of breast tumor cell lines studied and 7% of the primary tumors. These changes include homozygous internal deletions and total deletion of RB1; a duplication of an exon was observed in one of the cell lines. In all cases, structural changes either resulted in the absence or truncation of the RB1 transcript. No obvious defect in RB1 was detected by DNA blot analysis in primary tumors or cell lines from Wilms' tumor, cervical carcinoma, or hepatoma. These results further support the concept that the human RB1 gene has pleiotropic effects on specific types of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉T'Ang, A -- Varley, J M -- Chakraborty, S -- Murphree, A L -- Fung, Y K -- CA44754/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Oct 14;242(4876):263-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Childrens Hospital of Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3175651" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*genetics ; Chromosome Aberrations ; Chromosomes, Human, Pair 13 ; DNA/genetics ; DNA Probes ; Exons ; Eye Neoplasms/*genetics ; Female ; *Gene Rearrangement ; Homozygote ; Humans ; Lymphatic Metastasis ; Menopause ; Mutation ; Nucleic Acid Hybridization ; Retinoblastoma/*genetics ; Risk Factors ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-08
    Description: G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, Michael P -- Zou, Yaozhong -- Rasmussen, Soren G F -- Liu, Corey W -- Nygaard, Rie -- Rosenbaum, Daniel M -- Fung, Juan Jose -- Choi, Hee-Jung -- Thian, Foon Sun -- Kobilka, Tong Sun -- Puglisi, Joseph D -- Weis, William I -- Pardo, Leonardo -- Prosser, R Scott -- Mueller, Luciano -- Kobilka, Brian K -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM056169-13/GM/NIGMS NIH HHS/ -- R21 MH082313/MH/NIMH NIH HHS/ -- R21 MH082313-01A1/MH/NIMH NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-19/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):108-12. doi: 10.1038/nature08650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054398" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Adrenergic beta-2 Receptor Antagonists ; Allosteric Regulation/drug effects ; Binding Sites ; Crystallography, X-Ray ; Drug Inverse Agonism ; Ethanolamines/pharmacology ; Formoterol Fumarate ; Humans ; Ligands ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Molecular ; Mutant Proteins ; Nuclear Magnetic Resonance, Biomolecular ; Propanolamines/metabolism/pharmacology ; Protein Structure, Tertiary/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-22
    Description: Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups. Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms (SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected--including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas--the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jakobsson, Mattias -- Scholz, Sonja W -- Scheet, Paul -- Gibbs, J Raphael -- VanLiere, Jenna M -- Fung, Hon-Chung -- Szpiech, Zachary A -- Degnan, James H -- Wang, Kai -- Guerreiro, Rita -- Bras, Jose M -- Schymick, Jennifer C -- Hernandez, Dena G -- Traynor, Bryan J -- Simon-Sanchez, Javier -- Matarin, Mar -- Britton, Angela -- van de Leemput, Joyce -- Rafferty, Ian -- Bucan, Maja -- Cann, Howard M -- Hardy, John A -- Rosenberg, Noah A -- Singleton, Andrew B -- G0701075/Medical Research Council/United Kingdom -- MR/K01417X/1/Medical Research Council/United Kingdom -- Intramural NIH HHS/ -- England -- Nature. 2008 Feb 21;451(7181):998-1003. doi: 10.1038/nature06742.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288195" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Alleles ; Chromosomes, Human, Pair 2/genetics ; Gene Dosage/*genetics ; Genetic Variation/*genetics ; Genetics, Population ; Genome, Human/*genetics ; *Geography ; Haplotypes/*genetics ; Humans ; Linkage Disequilibrium ; Polymorphism, Single Nucleotide/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-12-08
    Description: The human retinoblastoma gene (RB1) encodes a protein (Rb) of 105 kilodaltons that can be phosphorylated. Analysis of Rb metabolism has shown that the protein has a half-life of more than 10 hours and is synthesized at all phases of the cell cycle. Newly synthesized Rb is not extensively phosphorylated (it is "underphosphorylated") in cells in the G0 and G1 phases but is phosphorylated at multiple sites at the G1/S boundary and in S phase. HL-60 cells that were induced to terminally differentiate by various chemicals lost their ability to phosphorylate newly synthesized Rb at multiple sites when cell growth was arrested. These findings suggest that underphosphorylated Rb may restrict cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mihara, K -- Cao, X R -- Yen, A -- Chandler, S -- Driscoll, B -- Murphree, A L -- T'Ang, A -- Fung, Y K -- 5P30CA14089/CA/NCI NIH HHS/ -- CA 44754/CA/NCI NIH HHS/ -- EY 07846/EY/NEI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1300-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology and Ophthalmology, Childrens Hospital of Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2588006" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle/*genetics ; Cell Division/drug effects/genetics ; Eye Neoplasms/genetics ; *Gene Expression Regulation, Neoplastic ; Humans ; Interphase/genetics ; Neoplasm Proteins/genetics/*metabolism ; Phosphorylation ; Protein Processing, Post-Translational/drug effects/*genetics ; Retinoblastoma/*genetics ; Tretinoin/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-04-19
    Description: A phosphatidylinositol-glycan-specific phospholipase D (PI-G PLD) that specifically hydrolyzes the inositol phosphate linkage in proteins anchored by phosphatidylinositol-glycans (PI-Gs) has recently been purified from human and bovine sera. The primary structure of bovine PI-G PLD has now been determined and the functional activity of the enzyme has been studied. Expression of PI-G PLD complementary DNA in COS cells produced a protein that specifically hydrolyzed the inositol phosphate linkage of the PI-G anchor. Cotransfection of PI-G PLD with a PI-G-anchored protein resulted in the secretion of the PI-G-anchored protein. The results suggest that the expression of PI-G PLD may influence the expression and location of PI-G-anchored proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scallon, B J -- Fung, W J -- Tsang, T C -- Li, S -- Kado-Fong, H -- Huang, K S -- Kochan, J P -- New York, N.Y. -- Science. 1991 Apr 19;252(5004):446-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular/Cellular Biology and Biochemistry, Hoffmann-La Roche, Inc., Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2017684" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cattle ; Cell Line ; Cloning, Molecular ; DNA/genetics ; Gene Expression ; Glycosylphosphatidylinositols ; Humans ; Hydrolysis ; Molecular Sequence Data ; Peptide Fragments/chemistry ; Phosphatidylinositols/metabolism ; Phospholipase D/*chemistry/genetics/metabolism ; Polysaccharides/metabolism ; Sequence Homology, Nucleic Acid ; Transfection ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-02
    Description: The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-epsilon as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-epsilon was not induced by known PRR pathways; instead, IFN-epsilon was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-epsilon-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-epsilon is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Ka Yee -- Mangan, Niamh E -- Cumming, Helen -- Horvat, Jay C -- Mayall, Jemma R -- Stifter, Sebastian A -- De Weerd, Nicole -- Roisman, Laila C -- Rossjohn, Jamie -- Robertson, Sarah A -- Schjenken, John E -- Parker, Belinda -- Gargett, Caroline E -- Nguyen, Hong P T -- Carr, Daniel J -- Hansbro, Philip M -- Hertzog, Paul J -- R01 AI053108/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1088-92. doi: 10.1126/science.1233321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chlamydia Infections/genetics/*immunology ; *Chlamydia muridarum ; Estrogens/administration & dosage/immunology ; Female ; HEK293 Cells ; Herpes Genitalis/genetics/*immunology ; *Herpesvirus 2, Human ; Humans ; Interferons/genetics/*immunology ; Ligands ; Mice ; Mice, Inbred C57BL ; Oligodeoxyribonucleotides/immunology ; Poly I-C/immunology ; Poly dA-dT/immunology ; Toll-Like Receptors/*immunology ; Uterus/immunology ; Vagina/*immunology/microbiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-01-18
    Description: Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its approximately 20-megabase genome, which contains approximately 6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520129/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520129/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loftus, Brendan J -- Fung, Eula -- Roncaglia, Paola -- Rowley, Don -- Amedeo, Paolo -- Bruno, Dan -- Vamathevan, Jessica -- Miranda, Molly -- Anderson, Iain J -- Fraser, James A -- Allen, Jonathan E -- Bosdet, Ian E -- Brent, Michael R -- Chiu, Readman -- Doering, Tamara L -- Donlin, Maureen J -- D'Souza, Cletus A -- Fox, Deborah S -- Grinberg, Viktoriya -- Fu, Jianmin -- Fukushima, Marilyn -- Haas, Brian J -- Huang, James C -- Janbon, Guilhem -- Jones, Steven J M -- Koo, Hean L -- Krzywinski, Martin I -- Kwon-Chung, June K -- Lengeler, Klaus B -- Maiti, Rama -- Marra, Marco A -- Marra, Robert E -- Mathewson, Carrie A -- Mitchell, Thomas G -- Pertea, Mihaela -- Riggs, Florenta R -- Salzberg, Steven L -- Schein, Jacqueline E -- Shvartsbeyn, Alla -- Shin, Heesun -- Shumway, Martin -- Specht, Charles A -- Suh, Bernard B -- Tenney, Aaron -- Utterback, Terry R -- Wickes, Brian L -- Wortman, Jennifer R -- Wye, Natasja H -- Kronstad, James W -- Lodge, Jennifer K -- Heitman, Joseph -- Davis, Ronald W -- Fraser, Claire M -- Hyman, Richard W -- AI47087/AI/NIAID NIH HHS/ -- AI48594/AI/NIAID NIH HHS/ -- R01 AI050184/AI/NIAID NIH HHS/ -- R01 AI050184-05/AI/NIAID NIH HHS/ -- R01 HL088905/HL/NHLBI NIH HHS/ -- R01 HL088905-04A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1321-4. Epub 2005 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA. bjloftus@tigr.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15653466" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Cell Wall/metabolism ; Chromosomes, Fungal/genetics ; Computational Biology ; Cryptococcus neoformans/*genetics/pathogenicity/physiology ; DNA Transposable Elements ; Fungal Proteins/metabolism ; Gene Library ; Genes, Fungal ; *Genome, Fungal ; Humans ; Introns ; Molecular Sequence Data ; Phenotype ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Polysaccharides/metabolism ; RNA, Antisense ; Sequence Analysis, DNA ; Transcription, Genetic ; Virulence ; Virulence Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-10-08
    Description: The exchange of the oocyte's genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cells affected in degenerative human diseases. Such cells, carrying the patient's genome, might be useful for cell replacement. Here we report that the development of human oocytes after genome exchange arrests at late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, the resultant triploid cells develop to the blastocyst stage. Stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies removal of the oocyte genome as the primary cause of developmental failure after genome exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noggle, Scott -- Fung, Ho-Lim -- Gore, Athurva -- Martinez, Hector -- Satriani, Kathleen Crumm -- Prosser, Robert -- Oum, Kiboong -- Paull, Daniel -- Druckenmiller, Sarah -- Freeby, Matthew -- Greenberg, Ellen -- Zhang, Kun -- Goland, Robin -- Sauer, Mark V -- Leibel, Rudolph L -- Egli, Dieter -- England -- Nature. 2011 Oct 5;478(7367):70-5. doi: 10.1038/nature10397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The New York Stem Cell Foundation Laboratory, New York, New York, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21979046" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Blastocyst/cytology/metabolism ; Cell Differentiation ; *Cellular Reprogramming ; DNA Methylation ; Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genome, Human/genetics ; Germ Layers/cytology/embryology/metabolism ; Humans ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Oocyte Donation ; Oocytes/*cytology/growth & development/*physiology ; Primary Cell Culture ; Transcription, Genetic ; Triploidy ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-12
    Description: Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2 A resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Cheng -- Srinivasan, Yoga -- Arlow, Daniel H -- Fung, Juan Jose -- Palmer, Daniel -- Zheng, Yaowu -- Green, Hillary F -- Pandey, Anjali -- Dror, Ron O -- Shaw, David E -- Weis, William I -- Coughlin, Shaun R -- Kobilka, Brian K -- HL44907/HL/NHLBI NIH HHS/ -- HL65590/HL/NHLBI NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 HL044907/HL/NHLBI NIH HHS/ -- R01 HL065185/HL/NHLBI NIH HHS/ -- R01 HL065590/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Dec 20;492(7429):387-92. doi: 10.1038/nature11701. Epub 2012 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222541" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation/genetics ; Humans ; Hydrolysis ; Lactones/chemistry/pharmacology ; Ligands ; Models, Molecular ; Molecular Dynamics Simulation ; Myocardial Infarction/prevention & control ; Protein Conformation ; Pyridines/chemistry/pharmacology ; Receptor, PAR-1/agonists/antagonists & inhibitors/*chemistry/metabolism ; Receptors, G-Protein-Coupled/chemistry/classification ; Receptors, Thrombin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-03-04
    Description: Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods, it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous, nonsense or splice variants, and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies, whereas the rest occurred during or after reprogramming. Thus, hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074107/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074107/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gore, Athurva -- Li, Zhe -- Fung, Ho-Lim -- Young, Jessica E -- Agarwal, Suneet -- Antosiewicz-Bourget, Jessica -- Canto, Isabel -- Giorgetti, Alessandra -- Israel, Mason A -- Kiskinis, Evangelos -- Lee, Je-Hyuk -- Loh, Yuin-Han -- Manos, Philip D -- Montserrat, Nuria -- Panopoulos, Athanasia D -- Ruiz, Sergio -- Wilbert, Melissa L -- Yu, Junying -- Kirkness, Ewen F -- Izpisua Belmonte, Juan Carlos -- Rossi, Derrick J -- Thomson, James A -- Eggan, Kevin -- Daley, George Q -- Goldstein, Lawrence S B -- Zhang, Kun -- K08 HL089150/HL/NHLBI NIH HHS/ -- R01 HL094963/HL/NHLBI NIH HHS/ -- R01 HL094963-01/HL/NHLBI NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 HL100001/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 3;471(7336):63-7. doi: 10.1038/nature09805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368825" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Cellular Reprogramming/*genetics ; DNA Mutational Analysis ; Epistasis, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Humans ; Induced Pluripotent Stem Cells/cytology/*metabolism ; Male ; Middle Aged ; Models, Genetic ; Mutagenesis/*genetics ; Open Reading Frames/genetics ; Point Mutation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...