ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-09-25
    Description: The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, without affecting the expression of other cytokines that require calcineurin but not NFAT. Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction without affecting calcineurin phosphatase activity may be useful as therapeutic agents that are less toxic than current drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aramburu, J -- Yaffe, M B -- Lopez-Rodriguez, C -- Cantley, L C -- Hogan, P G -- Rao, A -- R01 AI 40127/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HL 03601/HL/NHLBI NIH HHS/ -- R43 AI 43726/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cyclosporine/pharmacology ; Cytokines/biosynthesis/genetics ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HeLa Cells ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; Jurkat Cells ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Oligopeptides/chemistry/metabolism/*pharmacology ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-01-07
    Description: Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yaffe, M B -- Schutkowski, M -- Shen, M -- Zhou, X Z -- Stukenberg, P T -- Rahfeld, J U -- Xu, J -- Kuang, J -- Kirschner, M W -- Fischer, G -- Cantley, L C -- Lu, K P -- GM56203/GM/NIGMS NIH HHS/ -- GM56230/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1957-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395400" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Antibodies, Monoclonal ; Binding Sites ; Carrier Proteins/metabolism ; Cell Cycle Proteins/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Epitopes ; HeLa Cells ; Heat-Shock Proteins/metabolism ; Humans ; Isomerism ; *Mitosis ; Models, Molecular ; Oligopeptides/chemistry/*metabolism ; Peptide Library ; Peptidylprolyl Isomerase/chemistry/*metabolism ; Phosphoproteins/chemistry/immunology/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Proline/*metabolism ; Protein Conformation ; Recombinant Fusion Proteins/chemistry/metabolism ; Substrate Specificity ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-07-11
    Description: Polo-like kinase-1 (PLK1) is an essential mitotic kinase regulating multiple aspects of the cell division process. Activation of PLK1 requires phosphorylation of a conserved threonine residue (Thr 210) in the T-loop of the PLK1 kinase domain, but the kinase responsible for this has not yet been affirmatively identified. Here we show that in human cells PLK1 activation occurs several hours before entry into mitosis, and requires aurora A (AURKA, also known as STK6)-dependent phosphorylation of Thr 210. We find that aurora A can directly phosphorylate PLK1 on Thr 210, and that activity of aurora A towards PLK1 is greatly enhanced by Bora (also known as C13orf34 and FLJ22624), a known cofactor for aurora A (ref. 7). We show that Bora/aurora-A-dependent phosphorylation is a prerequisite for PLK1 to promote mitotic entry after a checkpoint-dependent arrest. Importantly, expression of a PLK1-T210D phospho-mimicking mutant partially overcomes the requirement for aurora A in checkpoint recovery. Taken together, these data demonstrate that the initial activation of PLK1 is a primary function of aurora A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macurek, Libor -- Lindqvist, Arne -- Lim, Dan -- Lampson, Michael A -- Klompmaker, Rob -- Freire, Raimundo -- Clouin, Christophe -- Taylor, Stephen S -- Yaffe, Michael B -- Medema, Rene H -- CA112967/CA/NCI NIH HHS/ -- GM-60594/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Sep 4;455(7209):119-23. doi: 10.1038/nature07185. Epub 2008 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, University Medical Center Utrecht, Utrecht 3584CG, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18615013" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinase A ; Aurora Kinases ; Cell Cycle/*physiology ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; DNA Damage ; Enzyme Activation ; Humans ; Mitosis ; Molecular Sequence Data ; Phosphorylation ; Phosphothreonine/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-02-22
    Description: We have developed a proteomic approach for identifying phosphopeptide binding domains that modulate kinase-dependent signaling pathways. An immobilized library of partially degenerate phosphopeptides biased toward a particular protein kinase phosphorylation motif is used to isolate phospho-binding domains that bind to proteins phosphorylated by that kinase. Applying this approach to cyclin-dependent kinases (Cdks), we identified the polo-box domain (PBD) of the mitotic kinase polo-like kinase 1 (Plk1) as a specific phosphoserine (pSer) or phosphothreonine (pThr) binding domain and determined its optimal binding motif. This motif is present in known Plk1 substrates such as Cdc25, and an optimal phosphopeptide containing the motif disrupted PBD-substrate binding and localization of the PBD to centrosomes. This finding reveals how Plk1 can localize to specific sites within cells in response to Cdk phosphorylation at those sites and provides a structural mechanism for targeting the Plk1 kinase domain to its substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elia, Andrew E H -- Cantley, Lewis C -- Yaffe, Michael B -- GM52981/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Calorimetry ; Cell Cycle Proteins ; Centrosome/metabolism ; HeLa Cells ; Humans ; Ligands ; Mitosis ; Peptide Library ; Phosphopeptides/chemistry/*metabolism ; Phosphorylation ; Phosphoserine/*metabolism ; Phosphothreonine/*metabolism ; Point Mutation ; Protein Binding ; Protein Kinases/*chemistry/genetics/*metabolism ; *Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Proto-Oncogene Proteins ; Signal Transduction ; cdc25 Phosphatases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-08-16
    Description: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hong, Jeong-Ho -- Hwang, Eun Sook -- McManus, Michael T -- Amsterdam, Adam -- Tian, Yu -- Kalmukova, Ralitsa -- Mueller, Elisabetta -- Benjamin, Thomas -- Spiegelman, Bruce M -- Sharp, Phillip A -- Hopkins, Nancy -- Yaffe, Michael B -- CA042063/CA/NCI NIH HHS/ -- GM60594/GM/NIGMS NIH HHS/ -- GM68762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1074-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E18-580, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099986" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; Animals ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/pharmacology ; Cell Differentiation ; Cell Line ; Core Binding Factor Alpha 1 Subunit ; Gene Expression Regulation, Developmental ; Humans ; Mesenchymal Stromal Cells/*cytology/physiology ; Mice ; Neoplasm Proteins/metabolism ; Oligonucleotides, Antisense ; Osteoblasts/*cytology ; Osteocalcin/genetics ; Osteogenesis ; PPAR gamma/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*physiology ; RNA, Small Interfering ; Transcription Factors/chemistry/genetics/metabolism/*physiology ; Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/pharmacology ; Zebrafish ; Zebrafish Proteins/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-12-13
    Description: Signal transduction pathways control cellular responses to stimuli, but it is unclear how molecular information is processed as a network. We constructed a systems model of 7980 intracellular signaling events that directly links measurements to 1440 response outputs associated with apoptosis. The model accurately predicted multiple time-dependent apoptotic responses induced by a combination of the death-inducing cytokine tumor necrosis factor with the prosurvival factors epidermal growth factor and insulin. By capturing the role of unsuspected autocrine circuits activated by transforming growth factor-alpha and interleukin-1alpha, the model revealed new molecular mechanisms connecting signaling to apoptosis. The model derived two groupings of intracellular signals that constitute fundamental dimensions (molecular "basis axes") within the apoptotic signaling network. Projection along these axes captures the entire measured apoptotic network, suggesting that cell survival is determined by signaling through this canonical basis set.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janes, Kevin A -- Albeck, John G -- Gaudet, Suzanne -- Sorger, Peter K -- Lauffenburger, Douglas A -- Yaffe, Michael B -- GM059281/GM/NIGMS NIH HHS/ -- P50-GM68762/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1646-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biological Engineering Division, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16339439" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Autocrine Communication ; Cell Survival ; Cytokines/*physiology ; Epidermal Growth Factor/physiology ; HT29 Cells ; Humans ; Insulin/physiology ; Interleukin-1/physiology ; JNK Mitogen-Activated Protein Kinases/metabolism ; Least-Squares Analysis ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Models, Biological ; *Signal Transduction ; *Systems Biology ; Systems Theory ; Transforming Growth Factor alpha/physiology ; Tumor Necrosis Factor-alpha/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-10-25
    Description: We used a proteomic approach to identify phosphopeptide-binding modules mediating signal transduction events in the DNA damage response pathway. Using a library of partially degenerate phosphopeptides, we identified tandem BRCT (BRCA1 carboxyl-terminal) domains in PTIP (Pax transactivation domain-interacting protein) and in BRCA1 as phosphoserine- or phosphothreonine-specific binding modules that recognize substrates phosphorylated by the kinases ATM (ataxia telangiectasia-mutated) and ATR (ataxia telangiectasia- and RAD3-related) in response to gamma-irradiation. PTIP tandem BRCT domains are responsible for phosphorylation-dependent protein localization into 53BP1- and phospho-H2AX (gamma-H2AX)-containing nuclear foci, a marker of DNA damage. These findings provide a molecular basis for BRCT domain function in the DNA damage response and may help to explain why the BRCA1 BRCT domain mutation Met1775 --〉 Arg, which fails to bind phosphopeptides, predisposes women to breast and ovarian cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manke, Isaac A -- Lowery, Drew M -- Nguyen, Anhco -- Yaffe, Michael B -- GM60594/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):636-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576432" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Ataxia Telangiectasia Mutated Proteins ; BRCA1 Protein/*chemistry/*metabolism ; Caffeine/pharmacology ; Calorimetry ; Carrier Proteins/*chemistry/*metabolism ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Cell Nucleus/metabolism ; Cytosol/metabolism ; DNA Damage ; DNA-Binding Proteins ; Gamma Rays ; Humans ; Nuclear Proteins/*chemistry/*metabolism ; Peptide Library ; Phosphopeptides/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proteomics ; Signal Transduction ; Tumor Cells, Cultured ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-04
    Description: DNA damage activates a signalling network that blocks cell-cycle progression, recruits DNA repair factors and/or triggers senescence or programmed cell death. Alterations in chromatin structure are implicated in the initiation and propagation of the DNA damage response. Here we further investigate the role of chromatin structure in the DNA damage response by monitoring ionizing-radiation-induced signalling and response events with a high-content multiplex RNA-mediated interference screen of chromatin-modifying and -interacting genes. We discover that an isoform of Brd4, a bromodomain and extra-terminal (BET) family member, functions as an endogenous inhibitor of DNA damage response signalling by recruiting the condensin II chromatin remodelling complex to acetylated histones through bromodomain interactions. Loss of this isoform results in relaxed chromatin structure, rapid cell-cycle checkpoint recovery and enhanced survival after irradiation, whereas functional gain of this isoform compacted chromatin, attenuated DNA damage response signalling and enhanced radiation-induced lethality. These data implicate Brd4, previously known for its role in transcriptional control, as an insulator of chromatin that can modulate the signalling response to DNA damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683358/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683358/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Floyd, Scott R -- Pacold, Michael E -- Huang, Qiuying -- Clarke, Scott M -- Lam, Fred C -- Cannell, Ian G -- Bryson, Bryan D -- Rameseder, Jonathan -- Lee, Michael J -- Blake, Emily J -- Fydrych, Anna -- Ho, Richard -- Greenberger, Benjamin A -- Chen, Grace C -- Maffa, Amanda -- Del Rosario, Amanda M -- Root, David E -- Carpenter, Anne E -- Hahn, William C -- Sabatini, David M -- Chen, Clark C -- White, Forest M -- Bradner, James E -- Yaffe, Michael B -- 1-U54-CA112967-04/CA/NCI NIH HHS/ -- ES-002109/ES/NIEHS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30 ES002109/ES/NIEHS NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01-ES15339/ES/NIEHS NIH HHS/ -- R21 CA109661/CA/NCI NIH HHS/ -- R21 NS063917/NS/NINDS NIH HHS/ -- R21-NS063917/NS/NINDS NIH HHS/ -- U54 CA112967/CA/NCI NIH HHS/ -- England -- Nature. 2013 Jun 13;498(7453):246-50. doi: 10.1038/nature12147. Epub 2013 Jun 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23728299" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Adenosine Triphosphatases/metabolism ; Cell Cycle Checkpoints/radiation effects ; Cell Line, Tumor ; Cell Survival/radiation effects ; Chromatin/chemistry/*metabolism/radiation effects ; *Chromatin Assembly and Disassembly/radiation effects ; *DNA Damage ; DNA Repair/radiation effects ; DNA-Binding Proteins/metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/chemistry/metabolism ; Multiprotein Complexes/metabolism ; Nuclear Proteins/chemistry/deficiency/genetics/*metabolism ; Phosphorylation/radiation effects ; Positive Transcriptional Elongation Factor B/metabolism ; Protein Isoforms/metabolism ; Radiation, Ionizing ; *Signal Transduction/radiation effects ; Transcription Factors/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-11
    Description: The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Peggy P -- Kang, Seong A -- Rameseder, Jonathan -- Zhang, Yi -- Ottina, Kathleen A -- Lim, Daniel -- Peterson, Timothy R -- Choi, Yongmun -- Gray, Nathanael S -- Yaffe, Michael B -- Marto, Jarrod A -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM68762/GM/NIGMS NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA103866-09/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jun 10;332(6035):1317-22. doi: 10.1126/science.1199498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659604" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; GRB10 Adaptor Protein/*metabolism ; Humans ; Insulin/metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Mass Spectrometry ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Phosphoproteins/metabolism ; Phosphorylation ; Proteins/*metabolism ; Proteome/metabolism ; *Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-28
    Description: The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seong A -- Pacold, Michael E -- Cervantes, Christopher L -- Lim, Daniel -- Lou, Hua Jane -- Ottina, Kathleen -- Gray, Nathanael S -- Turk, Benjamin E -- Yaffe, Michael B -- Sabatini, David M -- AI047389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM59281/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):1236566. doi: 10.1126/science.1236566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acids/metabolism ; Animals ; Cell Line ; Culture Media ; Humans ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Peptides/chemistry/*metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...