ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-05
    Description: Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Delin -- Garcia, Heriberto -- Huang, Wei -- Tran, Duong D -- Jain, Ankita D -- Yi, Dong Hoon -- Gong, Zheng -- Jech, J Michael -- Godo, Olav Rune -- Makris, Nicholas C -- Ratilal, Purnima -- England -- Nature. 2016 Mar 17;531(7594):366-70. doi: 10.1038/nature16960. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Ocean Acoustics and Ecosystem Sensing, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA. ; Laboratory for Undersea Remote Sensing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. ; Northeast Fisheries Science Center, 166 Water Street, Woods Hole, Massachusetts 02543, USA. ; Institute of Marine Research, Post Office Box 1870, Nordnes, N-5817 Bergen, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934221" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Aquatic Organisms/*physiology ; Atlantic Ocean ; Diet/veterinary ; Ecosystem ; *Feeding Behavior ; Fishes/*physiology ; Male ; Mammals/*physiology ; *Predatory Behavior ; Time Factors ; *Vocalization, Animal ; Whales/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 34 (1987), S. 977-988 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In this paper, the synthesis of different catalytic systems based on the reduction of TiCl4 by Grignard compounds has been systematically studied. The catalysts exhibited the highest activities when used in the copolymerization of ethylene with n-hexene. The profile of the kinetic curves also changed when the comonomer was present during polymerization. By thermal analysis and scanning electron microscopy techniques, it could be found that the incorporation of the comonomer to the polymer chain brings about a decrease in the polymer crystallinities and an increase in the porosities of the growing particles. Due to that, the diffusion of the monomer to the catalytic active centers takes place more easily, consequently increasing the polymerization rate. In addition, catalysts control better the morphology (size and shape) of the nascent polymer particles when used for copolymerization.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 70 (1998), S. 1029-1035 
    ISSN: 0020-7608
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The basic and fundamental mechanisms governing the catalytic reaction of small iridium clusters with H2 are presented here with the purpose to determine its behavior in hydrogenation reactions. The iridium dimer/s lowest states in interaction with H2 potential energy surface were obtained using ab initio multiconfigurational self-consistent-field calculations (MC-SCF), with relativististic pseudopotentials. The electronic correlation contribution was included by configurations interaction (CI) calculations, which considered a variational part plus a second-order perturbative part. The Ir2+H2 reactions were developed in the C2v symmetry. The Ir2's five lowest electronic states were determined, 5Πg, 3Πg, 1Σg+, 3Σu+, and 5Σg, and studied when reacted with H2. It was found that the iridium dimer, in these five states, might capture and break the H—H bond, spontaneously in certain cases and after surmounting activation barriers in other cases.   © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 1029-1035, 1998
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...