ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-06-20
    Description: Crystal structures of bovine heart cytochrome c oxidase in the fully oxidized, fully reduced, azide-bound, and carbon monoxide-bound states were determined at 2.30, 2.35, 2.9, and 2.8 angstrom resolution, respectively. An aspartate residue apart from the O2 reduction site exchanges its effective accessibility to the matrix aqueous phase for one to the cytosolic phase concomitantly with a significant decrease in the pK of its carboxyl group, on reduction of the metal sites. The movement indicates the aspartate as the proton pumping site. A tyrosine acidified by a covalently linked imidazole nitrogen is a possible proton donor for the O2 reduction by the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshikawa, S -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yamashita, E -- Inoue, N -- Yao, M -- Fei, M J -- Libeu, C P -- Mizushima, T -- Yamaguchi, H -- Tomizaki, T -- Tsukihara, T -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1723-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Himeji Institute of Technology and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/chemistry/metabolism ; Azides/metabolism ; Binding Sites ; Carbon Monoxide/metabolism ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/chemistry/metabolism ; Hydrogen-Ion Concentration ; Ligands ; Metals/metabolism ; Models, Chemical ; Models, Molecular ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; *Proton Pumps ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-15
    Description: Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 A resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 A constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hassaine, Gherici -- Deluz, Cedric -- Grasso, Luigino -- Wyss, Romain -- Tol, Menno B -- Hovius, Ruud -- Graff, Alexandra -- Stahlberg, Henning -- Tomizaki, Takashi -- Desmyter, Aline -- Moreau, Christophe -- Li, Xiao-Dan -- Poitevin, Frederic -- Vogel, Horst -- Nury, Hugues -- England -- Nature. 2014 Aug 21;512(7514):276-81. doi: 10.1038/nature13552. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] [3] Theranyx, 163 Avenue de Luminy, 13288 Marseille, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2]. ; Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland. ; Swiss Light Source, Paul Scherrer Institute, CH-5234 Villigen, Switzerland. ; Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 7257 and Universite Aix-Marseille, F-13288 Marseille, France. ; 1] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [2] CNRS, IBS, F-38000 Grenoble, France [3] CEA, DSV, IBS, F-38000 Grenoble, France. ; Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Unite de Dynamique Structurale des Macromolecules, Institut Pasteur, CNRS UMR3528, F-75015 Paris, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [3] CNRS, IBS, F-38000 Grenoble, France [4] CEA, DSV, IBS, F-38000 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119048" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Agents/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Receptors, Serotonin, 5-HT3/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-08-25
    Description: The high resolution three-dimensional x-ray structure of the metal sites of bovine heart cytochrome c oxidase is reported. Cytochrome c oxidase is the largest membrane protein yet crystallized and analyzed at atomic resolution. Electron density distribution of the oxidized bovine cytochrome c oxidase at 2.8 A resolution indicates a dinuclear copper center with an unexpected structure similar to a [2Fe-2S]-type iron-sulfur center. Previously predicted zinc and magnesium sites have been located, the former bound by a nuclear encoded subunit on the matrix side of the membrane, and the latter situated between heme a3 and CuA, at the interface of subunits I and II. The O2 binding site contains heme a3 iron and copper atoms (CuB) with an interatomic distance of 4.5 A; there is no detectable bridging ligand between iron and copper atoms in spite of a strong antiferromagnetic coupling between them. A hydrogen bond is present between a hydroxyl group of the hydroxyfarnesylethyl side chain of heme a3 and an OH of a tyrosine. The tyrosine phenol plane is immediately adjacent and perpendicular to an imidazole group bonded to CuB, suggesting a possible role in intramolecular electron transfer or conformational control, the latter of which could induce the redox-coupled proton pumping. A phenyl group located halfway between a pyrrole plane of the heme a3 and an imidazole plane liganded to the other heme (heme a) could also influence electron transfer or conformational control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukihara, T -- Aoyama, H -- Yamashita, E -- Tomizaki, T -- Yamaguchi, H -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yoshikawa, S -- New York, N.Y. -- Science. 1995 Aug 25;269(5227):1069-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, Suita, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652554" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Copper/*analysis ; Crystallization ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex IV/*chemistry/metabolism ; Fourier Analysis ; Heme/*analogs & derivatives/analysis ; Hydrogen Bonding ; Magnesium/*analysis ; Mitochondria, Heart/enzymology ; Models, Molecular ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Proton Pumps ; Zinc/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...