ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-07-23
    Description: 5-methylcytosine (5mC) in DNA plays an important role in gene expression, genomic imprinting, and suppression of transposable elements. 5mC can be converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) proteins. Here, we show that, in addition to 5hmC, the Tet proteins can generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5mC in an enzymatic activity-dependent manner. Furthermore, we reveal the presence of 5fC and 5caC in genomic DNA of mouse embryonic stem cells and mouse organs. The genomic content of 5hmC, 5fC, and 5caC can be increased or reduced through overexpression or depletion of Tet proteins. Thus, we identify two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins. Our study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Shinsuke -- Shen, Li -- Dai, Qing -- Wu, Susan C -- Collins, Leonard B -- Swenberg, James A -- He, Chuan -- Zhang, Yi -- GM071440/GM/NIGMS NIH HHS/ -- GM68804/GM/NIGMS NIH HHS/ -- P30 ES010126/ES/NIEHS NIH HHS/ -- P30 ES010126-11/ES/NIEHS NIH HHS/ -- P30ES10126/ES/NIEHS NIH HHS/ -- P42 ES005948/ES/NIEHS NIH HHS/ -- P42 ES005948-17/ES/NIEHS NIH HHS/ -- P42ES5948/ES/NIEHS NIH HHS/ -- R01 GM068804/GM/NIGMS NIH HHS/ -- U01 DK089565/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778364" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Humans ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-09-04
    Description: The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, T C -- Sparks, A B -- Rago, C -- Hermeking, H -- Zawel, L -- da Costa, L T -- Morin, P J -- Vogelstein, B -- Kinzler, K W -- CA57345/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1509-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Johns Hopkins Oncology Center, 424 North Bond Street, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727977" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Binding Sites ; Cell Line ; Colorectal Neoplasms/*genetics ; Cytoskeletal Proteins/genetics/metabolism ; *Gene Expression Regulation, Neoplastic ; *Genes, APC ; Genes, Reporter ; *Genes, myc ; HT29 Cells ; Humans ; Mutation ; Promoter Regions, Genetic ; Proto-Oncogene Proteins c-myc/metabolism ; Signal Transduction ; TCF Transcription Factors ; *Trans-Activators ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/metabolism ; Transcription, Genetic ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-29
    Description: N(6)-methyladenosine (m(6)A) is the most prevalent internal (non-cap) modification present in the messenger RNA of all higher eukaryotes. Although essential to cell viability and development, the exact role of m(6)A modification remains to be determined. The recent discovery of two m(6)A demethylases in mammalian cells highlighted the importance of m(6)A in basic biological functions and disease. Here we show that m(6)A is selectively recognized by the human YTH domain family 2 (YTHDF2) 'reader' protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m(6)A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies. The carboxy-terminal domain of YTHDF2 selectively binds to m(6)A-containing mRNA, whereas the amino-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m(6)A modification is recognized by selectively binding proteins to affect the translation status and lifetime of mRNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877715/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877715/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiao -- Lu, Zhike -- Gomez, Adrian -- Hon, Gary C -- Yue, Yanan -- Han, Dali -- Fu, Ye -- Parisien, Marc -- Dai, Qing -- Jia, Guifang -- Ren, Bing -- Pan, Tao -- He, Chuan -- GM071440/GM/NIGMS NIH HHS/ -- GM088599/GM/NIGMS NIH HHS/ -- K01 HG006699/HG/NHGRI NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- R01 GM088599/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jan 2;505(7481):117-20. doi: 10.1038/nature12730. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, UCSD Moores Cancer Center and Institute of Genome Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. ; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA [2] Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284625" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism/pharmacology ; Base Sequence ; DNA-Binding Proteins/genetics ; HeLa Cells ; Humans ; Nucleotide Motifs ; Organelles/genetics/metabolism ; Protein Binding ; Protein Biosynthesis ; *RNA Stability/drug effects ; RNA Transport ; RNA, Messenger/*chemistry/*metabolism ; RNA, Untranslated/chemistry/metabolism ; RNA-Binding Proteins/chemistry/classification/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-06
    Description: The prevalent DNA modification in higher organisms is the methylation of cytosine to 5-methylcytosine (5mC), which is partially converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) family of dioxygenases. Despite their importance in epigenetic regulation, it is unclear how these cytosine modifications are reversed. Here, we demonstrate that 5mC and 5hmC in DNA are oxidized to 5-carboxylcytosine (5caC) by Tet dioxygenases in vitro and in cultured cells. 5caC is specifically recognized and excised by thymine-DNA glycosylase (TDG). Depletion of TDG in mouse embyronic stem cells leads to accumulation of 5caC to a readily detectable level. These data suggest that oxidation of 5mC by Tet proteins followed by TDG-mediated base excision of 5caC constitutes a pathway for active DNA demethylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yu-Fei -- Li, Bin-Zhong -- Li, Zheng -- Liu, Peng -- Wang, Yang -- Tang, Qingyu -- Ding, Jianping -- Jia, Yingying -- Chen, Zhangcheng -- Li, Lin -- Sun, Yan -- Li, Xiuxue -- Dai, Qing -- Song, Chun-Xiao -- Zhang, Kangling -- He, Chuan -- Xu, Guo-Liang -- 1S10RR027643-01/RR/NCRR NIH HHS/ -- GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- S10 RR027643/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Group of DNA Metabolism, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817016" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; RNA, Small Interfering ; Thymine DNA Glycosylase/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-27
    Description: RNA-binding proteins control many aspects of cellular biology through binding single-stranded RNA binding motifs (RBMs). However, RBMs can be buried within their local RNA structures, thus inhibiting RNA-protein interactions. N(6)-methyladenosine (m(6)A), the most abundant and dynamic internal modification in eukaryotic messenger RNA, can be selectively recognized by the YTHDF2 protein to affect the stability of cytoplasmic mRNAs, but how m(6)A achieves its wide-ranging physiological role needs further exploration. Here we show in human cells that m(6)A controls the RNA-structure-dependent accessibility of RBMs to affect RNA-protein interactions for biological regulation; we term this mechanism 'the m(6)A-switch'. We found that m(6)A alters the local structure in mRNA and long non-coding RNA (lncRNA) to facilitate binding of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an abundant nuclear RNA-binding protein responsible for pre-mRNA processing. Combining photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and anti-m(6)A immunoprecipitation (MeRIP) approaches enabled us to identify 39,060 m(6)A-switches among HNRNPC-binding sites; and global m(6)A reduction decreased HNRNPC binding at 2,798 high-confidence m(6)A-switches. We determined that these m(6)A-switch-regulated HNRNPC-binding activities affect the abundance as well as alternative splicing of target mRNAs, demonstrating the regulatory role of m(6)A-switches on gene expression and RNA maturation. Our results illustrate how RNA-binding proteins gain regulated access to their RBMs through m(6)A-dependent RNA structural remodelling, and provide a new direction for investigating RNA-modification-coded cellular biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355918/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355918/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Nian -- Dai, Qing -- Zheng, Guanqun -- He, Chuan -- Parisien, Marc -- Pan, Tao -- GM088599/GM/NIGMS NIH HHS/ -- K01 HG006699/HG/NHGRI NIH HHS/ -- K01HG006699/HG/NHGRI NIH HHS/ -- R01 GM088599/GM/NIGMS NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 26;518(7540):560-4. doi: 10.1038/nature14234.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA. ; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA [2] Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [3] Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA [4] Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA [2] Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25719671" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Alternative Splicing/genetics ; Base Sequence ; Cross-Linking Reagents ; HEK293 Cells ; HeLa Cells ; Heterogeneous-Nuclear Ribonucleoprotein Group C/*metabolism ; Humans ; Immunoprecipitation ; *Nucleic Acid Conformation ; Nucleotide Motifs ; Protein Binding ; RNA, Messenger/analysis/*chemistry/*metabolism ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...