ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Afferent glomerular arteriole ; Renin ; Myosin ; Juxtaglomerular cells ; Tubulo-glomerular feedback ; Rats ; Mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The PAP-technique and antibodies to myosin were used to demonstrate the prerequisites for vasoconstriction in the juxtaglomerular part of the preglomerular arteriole as compared with its proximal segment in rats and mice. In contrast with the myosin-positive/renin-negative proximal part of the afferent arteriole no myosin-like activity could be demonstrated in its distal, renin-positive part. In accordance, no thick myofilaments were found in fully differentiated juxtaglomerular epithelioid cells replete with mature secretory granules. Stimulation of the renin-angiotensin system was followed by an increase of the reninpositive/myosin-negative portions of the preglomerular arteriole. Marked interspecies and internephron variations in the length of this vessel segment under control and stimulated conditions were observed. The juxtaglomerular part of the preglomerular arteriole close to the macula densa seems therefore to have only limited capabilities for vasoconstriction. This finding may be of importance regarding the tubulo-glomerular feedback, a mechanism allegedly triggered by the so-called ‘macula densa-signal’. It is suggested that this non-contractile segment of the afferent arteriole may represent the renal vascular receptor responsible for the increase of renin secretion during pressure reduction. Unlike the afferent arterioles, most of the efferent arterioles showed the highest level of their weak but distinct myosin-like immunoreactivity in the juxtaglomerular region, indicating some efferent juxtaglomerular vasoconstrictive ability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-07-03
    Description: Lymphocyte development is critically influenced by self-antigens. T cells are subject to both positive and negative selection, depending on their degree of self-reactivity. Although B cells are subject to negative selection, it has been difficult to test whether self-antigen plays any positive role in B cell development. A murine model system of naturally generated autoreactive B cells with a germ line gene-encoded specificity for the Thy-1 (CD90) glycoprotein was developed, in which the presence of self-antigen promotes B cell accumulation and serum autoantibody secretion. Thus, B cells can be subject to positive selection, generated, and maintained on the basis of their autoreactivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayakawa, K -- Asano, M -- Shinton, S A -- Gui, M -- Allman, D -- Stewart, C L -- Silver, J -- Hardy, R R -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA. K_Hayakawa@fccc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390361" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Animals ; Antigens, CD5/analysis ; Antigens, Thy-1/*immunology ; Autoantibodies/*biosynthesis/blood/immunology ; Autoantigens/*immunology ; B-Lymphocyte Subsets/*immunology ; Genes, Immunoglobulin ; Hybridomas ; Immunity, Innate ; Immunologic Surveillance ; Mice ; Mice, SCID ; Mice, Transgenic ; Receptors, Antigen, B-Cell/immunology ; Signal Transduction ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-25
    Description: Cell proliferation requires cell growth; that is, cells only divide after they reach a critical size. However, the mechanisms by which cells grow and maintain their appropriate size have remained elusive. Drosophila deficient in the S6 kinase gene (dS6K) exhibited an extreme delay in development and a severe reduction in body size. These flies had smaller cells rather than fewer cells. The effect was cell-autonomous, displayed throughout larval development, and distinct from that of ribosomal protein mutants (Minutes). Thus, the dS6K gene product regulates cell size in a cell-autonomous manner without impinging on cell number.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montagne, J -- Stewart, M J -- Stocker, H -- Hafen, E -- Kozma, S C -- Thomas, G -- F32 GM15926/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2126-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497130" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Body Constitution ; Cell Count ; Cell Division ; Cell Size ; Drosophila melanogaster/cytology/*enzymology/genetics/*growth & development ; Epithelial Cells/cytology ; Female ; Genes, Insect ; Larva/cytology/growth & development ; Male ; Metamorphosis, Biological ; Molecular Sequence Data ; Mutation ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; Wings, Animal/*cytology/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-10-06
    Description: The signal transducers and activators of transcription (STAT) transcription factors become phosphorylated on tyrosine and translocate to the nucleus after stimulation of cells with growth factors or cytokines. We show that the Rac1 guanosine triphosphatase can bind to and regulate STAT3 activity. Dominant negative Rac1 inhibited STAT3 activation by growth factors, whereas activated Rac1 stimulated STAT3 phosphorylation on both tyrosine and serine residues. Moreover, activated Rac1 formed a complex with STAT3 in mammalian cells. Yeast two-hybrid analysis indicated that STAT3 binds directly to active but not inactive Rac1 and that the interaction occurs via the effector domain. Rac1 may serve as an alternate mechanism for targeting STAT3 to tyrosine kinase signaling complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, A R -- Vikis, H G -- Stewart, S -- Fanburg, B L -- Cochran, B H -- Guan, K L -- GM-54304/GM/NIGMS NIH HHS/ -- K08-HL-03547/HL/NHLBI NIH HHS/ -- P30-DK34928/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pulmonary and Critical Care Division, Tupper Research Institute, New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021801" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; COS Cells ; Cell Line ; Cercopithecus aethiops ; DNA-Binding Proteins/genetics/*metabolism ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Gene Expression Regulation ; Genes, Reporter ; Genetic Vectors ; Guanine Nucleotide Exchange Factors/genetics/metabolism ; Humans ; Janus Kinase 2 ; Mutation ; Neoplasm Proteins ; Phosphorylation ; Phosphoserine/metabolism ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/genetics/metabolism ; *Proto-Oncogene Proteins ; Rats ; STAT3 Transcription Factor ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transfection ; Two-Hybrid System Techniques ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-06-01
    Description: The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mural, Richard J -- Adams, Mark D -- Myers, Eugene W -- Smith, Hamilton O -- Miklos, George L Gabor -- Wides, Ron -- Halpern, Aaron -- Li, Peter W -- Sutton, Granger G -- Nadeau, Joe -- Salzberg, Steven L -- Holt, Robert A -- Kodira, Chinnappa D -- Lu, Fu -- Chen, Lin -- Deng, Zuoming -- Evangelista, Carlos C -- Gan, Weiniu -- Heiman, Thomas J -- Li, Jiayin -- Li, Zhenya -- Merkulov, Gennady V -- Milshina, Natalia V -- Naik, Ashwinikumar K -- Qi, Rong -- Shue, Bixiong Chris -- Wang, Aihui -- Wang, Jian -- Wang, Xin -- Yan, Xianghe -- Ye, Jane -- Yooseph, Shibu -- Zhao, Qi -- Zheng, Liansheng -- Zhu, Shiaoping C -- Biddick, Kendra -- Bolanos, Randall -- Delcher, Arthur L -- Dew, Ian M -- Fasulo, Daniel -- Flanigan, Michael J -- Huson, Daniel H -- Kravitz, Saul A -- Miller, Jason R -- Mobarry, Clark M -- Reinert, Knut -- Remington, Karin A -- Zhang, Qing -- Zheng, Xiangqun H -- Nusskern, Deborah R -- Lai, Zhongwu -- Lei, Yiding -- Zhong, Wenyan -- Yao, Alison -- Guan, Ping -- Ji, Rui-Ru -- Gu, Zhiping -- Wang, Zhen-Yuan -- Zhong, Fei -- Xiao, Chunlin -- Chiang, Chia-Chien -- Yandell, Mark -- Wortman, Jennifer R -- Amanatides, Peter G -- Hladun, Suzanne L -- Pratts, Eric C -- Johnson, Jeffery E -- Dodson, Kristina L -- Woodford, Kerry J -- Evans, Cheryl A -- Gropman, Barry -- Rusch, Douglas B -- Venter, Eli -- Wang, Mei -- Smith, Thomas J -- Houck, Jarrett T -- Tompkins, Donald E -- Haynes, Charles -- Jacob, Debbie -- Chin, Soo H -- Allen, David R -- Dahlke, Carl E -- Sanders, Robert -- Li, Kelvin -- Liu, Xiangjun -- Levitsky, Alexander A -- Majoros, William H -- Chen, Quan -- Xia, Ashley C -- Lopez, John R -- Donnelly, Michael T -- Newman, Matthew H -- Glodek, Anna -- Kraft, Cheryl L -- Nodell, Marc -- Ali, Feroze -- An, Hui-Jin -- Baldwin-Pitts, Danita -- Beeson, Karen Y -- Cai, Shuang -- Carnes, Mark -- Carver, Amy -- Caulk, Parris M -- Center, Angela -- Chen, Yen-Hui -- Cheng, Ming-Lai -- Coyne, My D -- Crowder, Michelle -- Danaher, Steven -- Davenport, Lionel B -- Desilets, Raymond -- Dietz, Susanne M -- Doup, Lisa -- Dullaghan, Patrick -- Ferriera, Steven -- Fosler, Carl R -- Gire, Harold C -- Gluecksmann, Andres -- Gocayne, Jeannine D -- Gray, Jonathan -- Hart, Brit -- Haynes, Jason -- Hoover, Jeffery -- Howland, Tim -- Ibegwam, Chinyere -- Jalali, Mena -- Johns, David -- Kline, Leslie -- Ma, Daniel S -- MacCawley, Steven -- Magoon, Anand -- Mann, Felecia -- May, David -- McIntosh, Tina C -- Mehta, Somil -- Moy, Linda -- Moy, Mee C -- Murphy, Brian J -- Murphy, Sean D -- Nelson, Keith A -- Nuri, Zubeda -- Parker, Kimberly A -- Prudhomme, Alexandre C -- Puri, Vinita N -- Qureshi, Hina -- Raley, John C -- Reardon, Matthew S -- Regier, Megan A -- Rogers, Yu-Hui C -- Romblad, Deanna L -- Schutz, Jakob -- Scott, John L -- Scott, Richard -- Sitter, Cynthia D -- Smallwood, Michella -- Sprague, Arlan C -- Stewart, Erin -- Strong, Renee V -- Suh, Ellen -- Sylvester, Karena -- Thomas, Reginald -- Tint, Ni Ni -- Tsonis, Christopher -- Wang, Gary -- Wang, George -- Williams, Monica S -- Williams, Sherita M -- Windsor, Sandra M -- Wolfe, Keriellen -- Wu, Mitchell M -- Zaveri, Jayshree -- Chaturvedi, Kabir -- Gabrielian, Andrei E -- Ke, Zhaoxi -- Sun, Jingtao -- Subramanian, Gangadharan -- Venter, J Craig -- Pfannkoch, Cynthia M -- Barnstead, Mary -- Stephenson, Lisa D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1661-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. richard.mural@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Chromosomes/*genetics ; Chromosomes, Human/genetics ; Computational Biology ; Conserved Sequence ; Databases, Nucleic Acid ; Evolution, Molecular ; Genes ; Genetic Markers ; *Genome ; *Genome, Human ; Genomics ; Humans ; Mice ; Mice, Inbred A/genetics ; Mice, Inbred DBA/genetics ; Mice, Inbred Strains/*genetics ; Molecular Sequence Data ; Physical Chromosome Mapping ; Proteins/chemistry/genetics ; Sequence Alignment ; *Sequence Analysis, DNA ; Species Specificity ; *Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-05-20
    Description: The set of viable design elements available for animals to use in building skeletons has been fully exploited. Analysis of animal skeletons in relation to the multivariate, theoretical "Skeleton Space" has shown that a large proportion of these options are used in each phylum. Here, we show that structural elements deployed in the skeletons of Burgess Shale animals (Middle Cambrian) incorporate 146 of 182 character pairs defined in this morphospace. Within 15 million years of the appearance of crown groups of phyla with substantial hard parts, at least 80 percent of skeletal design elements recognized among living and extinct marine metazoans were exploited.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas, R D -- Shearman, R M -- Stewart, G W -- New York, N.Y. -- Science. 2000 May 19;288(5469):1239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Franklin & Marshall College, Lancaster, PA 17604, USA. r_thomas@acad.fandm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10817998" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/anatomy & histology ; *Biological Evolution ; Cnidaria/anatomy & histology ; *Fossils ; Mollusca/anatomy & histology ; *Morphogenesis ; Oceans and Seas ; Porifera/anatomy & histology ; *Skeleton
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-06-17
    Description: Because ribosome biogenesis plays an essential role in cell proliferation, control mechanisms may have evolved to recognize lesions in this critical anabolic process. To test this possibility, we conditionally deleted the gene encoding 40S ribosomal protein S6 in the liver of adult mice. Unexpectedly, livers from fasted animals deficient in S6 grew in response to nutrients even though biogenesis of 40S ribosomes was abolished. However, liver cells failed to proliferate or induce cyclin E expression after partial hepatectomy, despite formation of active cyclin D-CDK4 complexes. These results imply that abrogation of 40S ribosome biogenesis may induce a checkpoint control that prevents cell cycle progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volarevic, S -- Stewart, M J -- Ledermann, B -- Zilberman, F -- Terracciano, L -- Montini, E -- Grompe, M -- Kozma, S C -- Thomas, G -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2045-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Division ; Cyclin D1/biosynthesis/metabolism ; Cyclin E/genetics/metabolism ; Cyclin-Dependent Kinase 4 ; Cyclin-Dependent Kinase 6 ; Cyclin-Dependent Kinases/metabolism ; DNA/biosynthesis ; Food Deprivation ; G1 Phase ; Gene Deletion ; Gene Targeting ; Hepatectomy ; Interferon-alpha/pharmacology ; Liver/*cytology/metabolism/*physiology ; Liver Regeneration ; Mice ; Mice, Inbred Strains ; Phosphorylation ; Polyribosomes/metabolism ; *Protein Biosynthesis ; Protein-Serine-Threonine Kinases/metabolism ; *Proto-Oncogene Proteins ; RNA, Ribosomal/metabolism ; Ribosomal Protein S6 ; Ribosomal Proteins/genetics/*physiology ; Ribosomes/metabolism ; S Phase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2001-02-22
    Description: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venter, J C -- Adams, M D -- Myers, E W -- Li, P W -- Mural, R J -- Sutton, G G -- Smith, H O -- Yandell, M -- Evans, C A -- Holt, R A -- Gocayne, J D -- Amanatides, P -- Ballew, R M -- Huson, D H -- Wortman, J R -- Zhang, Q -- Kodira, C D -- Zheng, X H -- Chen, L -- Skupski, M -- Subramanian, G -- Thomas, P D -- Zhang, J -- Gabor Miklos, G L -- Nelson, C -- Broder, S -- Clark, A G -- Nadeau, J -- McKusick, V A -- Zinder, N -- Levine, A J -- Roberts, R J -- Simon, M -- Slayman, C -- Hunkapiller, M -- Bolanos, R -- Delcher, A -- Dew, I -- Fasulo, D -- Flanigan, M -- Florea, L -- Halpern, A -- Hannenhalli, S -- Kravitz, S -- Levy, S -- Mobarry, C -- Reinert, K -- Remington, K -- Abu-Threideh, J -- Beasley, E -- Biddick, K -- Bonazzi, V -- Brandon, R -- Cargill, M -- Chandramouliswaran, I -- Charlab, R -- Chaturvedi, K -- Deng, Z -- Di Francesco, V -- Dunn, P -- Eilbeck, K -- Evangelista, C -- Gabrielian, A E -- Gan, W -- Ge, W -- Gong, F -- Gu, Z -- Guan, P -- Heiman, T J -- Higgins, M E -- Ji, R R -- Ke, Z -- Ketchum, K A -- Lai, Z -- Lei, Y -- Li, Z -- Li, J -- Liang, Y -- Lin, X -- Lu, F -- Merkulov, G V -- Milshina, N -- Moore, H M -- Naik, A K -- Narayan, V A -- Neelam, B -- Nusskern, D -- Rusch, D B -- Salzberg, S -- Shao, W -- Shue, B -- Sun, J -- Wang, Z -- Wang, A -- Wang, X -- Wang, J -- Wei, M -- Wides, R -- Xiao, C -- Yan, C -- Yao, A -- Ye, J -- Zhan, M -- Zhang, W -- Zhang, H -- Zhao, Q -- Zheng, L -- Zhong, F -- Zhong, W -- Zhu, S -- Zhao, S -- Gilbert, D -- Baumhueter, S -- Spier, G -- Carter, C -- Cravchik, A -- Woodage, T -- Ali, F -- An, H -- Awe, A -- Baldwin, D -- Baden, H -- Barnstead, M -- Barrow, I -- Beeson, K -- Busam, D -- Carver, A -- Center, A -- Cheng, M L -- Curry, L -- Danaher, S -- Davenport, L -- Desilets, R -- Dietz, S -- Dodson, K -- Doup, L -- Ferriera, S -- Garg, N -- Gluecksmann, A -- Hart, B -- Haynes, J -- Haynes, C -- Heiner, C -- Hladun, S -- Hostin, D -- Houck, J -- Howland, T -- Ibegwam, C -- Johnson, J -- Kalush, F -- Kline, L -- Koduru, S -- Love, A -- Mann, F -- May, D -- McCawley, S -- McIntosh, T -- McMullen, I -- Moy, M -- Moy, L -- Murphy, B -- Nelson, K -- Pfannkoch, C -- Pratts, E -- Puri, V -- Qureshi, H -- Reardon, M -- Rodriguez, R -- Rogers, Y H -- Romblad, D -- Ruhfel, B -- Scott, R -- Sitter, C -- Smallwood, M -- Stewart, E -- Strong, R -- Suh, E -- Thomas, R -- Tint, N N -- Tse, S -- Vech, C -- Wang, G -- Wetter, J -- Williams, S -- Williams, M -- Windsor, S -- Winn-Deen, E -- Wolfe, K -- Zaveri, J -- Zaveri, K -- Abril, J F -- Guigo, R -- Campbell, M J -- Sjolander, K V -- Karlak, B -- Kejariwal, A -- Mi, H -- Lazareva, B -- Hatton, T -- Narechania, A -- Diemer, K -- Muruganujan, A -- Guo, N -- Sato, S -- Bafna, V -- Istrail, S -- Lippert, R -- Schwartz, R -- Walenz, B -- Yooseph, S -- Allen, D -- Basu, A -- Baxendale, J -- Blick, L -- Caminha, M -- Carnes-Stine, J -- Caulk, P -- Chiang, Y H -- Coyne, M -- Dahlke, C -- Mays, A -- Dombroski, M -- Donnelly, M -- Ely, D -- Esparham, S -- Fosler, C -- Gire, H -- Glanowski, S -- Glasser, K -- Glodek, A -- Gorokhov, M -- Graham, K -- Gropman, B -- Harris, M -- Heil, J -- Henderson, S -- Hoover, J -- Jennings, D -- Jordan, C -- Jordan, J -- Kasha, J -- Kagan, L -- Kraft, C -- Levitsky, A -- Lewis, M -- Liu, X -- Lopez, J -- Ma, D -- Majoros, W -- McDaniel, J -- Murphy, S -- Newman, M -- Nguyen, T -- Nguyen, N -- Nodell, M -- Pan, S -- Peck, J -- Peterson, M -- Rowe, W -- Sanders, R -- Scott, J -- Simpson, M -- Smith, T -- Sprague, A -- Stockwell, T -- Turner, R -- Venter, E -- Wang, M -- Wen, M -- Wu, D -- Wu, M -- Xia, A -- Zandieh, A -- Zhu, X -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1304-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. humangenome@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11181995" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Chromosome Banding ; Chromosome Mapping ; Chromosomes, Artificial, Bacterial ; Computational Biology ; Consensus Sequence ; CpG Islands ; DNA, Intergenic ; Databases, Factual ; Evolution, Molecular ; Exons ; Female ; Gene Duplication ; Genes ; Genetic Variation ; *Genome, Human ; *Human Genome Project ; Humans ; Introns ; Male ; Phenotype ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; Proteins/genetics/physiology ; Pseudogenes ; Repetitive Sequences, Nucleic Acid ; Retroelements ; *Sequence Analysis, DNA/methods ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-06-13
    Description: Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget's disease and multiple myeloma. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1alpha (HIF1alpha) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1alpha through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bozec, Aline -- Bakiri, Latifa -- Hoebertz, Astrid -- Eferl, Robert -- Schilling, Arndt F -- Komnenovic, Vukoslav -- Scheuch, Harald -- Priemel, Matthias -- Stewart, Colin L -- Amling, Michael -- Wagner, Erwin F -- England -- Nature. 2008 Jul 10;454(7201):221-5. doi: 10.1038/nature07019. Epub 2008 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (I.M.P.), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18548006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Anoxia/*metabolism/pathology ; Bone and Bones/cytology/metabolism/pathology ; *Cell Size ; Cell Survival ; DNA-Binding Proteins/metabolism ; Female ; Fos-Related Antigen-2/deficiency/genetics/*metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Hypoxia-Inducible Factor-Proline Dioxygenases ; Immediate-Early Proteins/metabolism ; Leukemia Inhibitory Factor/deficiency/genetics/*metabolism ; Leukemia Inhibitory Factor Receptor alpha Subunit/*metabolism ; Male ; Mice ; Osteoclasts/*cytology/metabolism/pathology ; Procollagen-Proline Dioxygenase ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2 ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-11-09
    Description: Anterior-specific neural induction can be assayed by means of an antibody that recognizes the Xenopus homeobox-containing protein En-2. The En-2 antigen is an excellent early marker, since it is present as a discrete band in the anterior neural plate of neurula embryos. Regional induction was assayed by combining dorsal mesoderm with competent ectoderm. Anterior notochord from the early neurula induced En-2 frequently, while posterior notochord induced En-2 less frequently. Presumptive somitic mesoderm and presumptive head mesoderm, though they induced neural tissue, were not strong inducers of En-2. Thus, anterior notochord may be the primary mesodermal tissue responsible for the patterning of the anterior neural plate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hemmati-Brivanlou, A -- Stewart, R M -- Harland, R M -- GM 19363/GM/NIGMS NIH HHS/ -- GM 42341/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 9;250(4982):800-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1978411" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Gene Expression Regulation ; *Genes, Homeobox ; Notochord/*physiology ; Transcription Factors/*blood/genetics ; Xenopus/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...