ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-29
    Description: The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 A resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yu-Hang -- Hu, Lei -- Punta, Marco -- Bruni, Renato -- Hillerich, Brandan -- Kloss, Brian -- Rost, Burkhard -- Love, James -- Siegelbaum, Steven A -- Hendrickson, Wayne A -- R01 GM034102/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 28;467(7319):1074-80. doi: 10.1038/nature09487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981093" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/genetics/metabolism ; Arabidopsis Proteins/*chemistry ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Electric Conductivity ; Haemophilus influenzae/*chemistry/genetics ; Ion Channel Gating ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Oocytes/metabolism ; Phenylalanine/chemistry/metabolism ; Plant Stomata/*metabolism ; Static Electricity ; *Structural Homology, Protein ; Substrate Specificity ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-17
    Description: As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans. The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5) mediates such interactions. The existing paradigm is that 'sialidase-sensitive' animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas 'sialidase-insensitive' human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies, it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells, and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori and noroviruses. Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world's population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Liya -- Crawford, Sue E -- Czako, Rita -- Cortes-Penfield, Nicolas W -- Smith, David F -- Le Pendu, Jacques -- Estes, Mary K -- Prasad, B V Venkataram -- AI 080656/AI/NIAID NIH HHS/ -- AI36040/AI/NIAID NIH HHS/ -- GM62116/GM/NIGMS NIH HHS/ -- P30 DK056338/DK/NIDDK NIH HHS/ -- P30 DK56338/DK/NIDDK NIH HHS/ -- P41 GM103694/GM/NIGMS NIH HHS/ -- R01 AI080656/AI/NIAID NIH HHS/ -- U54 GM062116/GM/NIGMS NIH HHS/ -- U54 GM062116-01A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Apr 15;485(7397):256-9. doi: 10.1038/nature10996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22504179" target="_blank"〉PubMed〈/a〉
    Keywords: ABO Blood-Group System/chemistry/genetics/immunology/*metabolism ; Amino Acid Sequence ; Animals ; CHO Cells ; Cricetinae ; Crystallography, X-Ray ; Erythrocytes/metabolism/virology ; Host Specificity/*physiology ; Humans ; Models, Molecular ; Molecular Sequence Data ; N-Acetylneuraminic Acid/antagonists & inhibitors/chemistry/immunology/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Receptors, Virus/chemistry/genetics/*metabolism ; *Rotavirus/chemistry/classification/metabolism/pathogenicity ; Viral Nonstructural Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-16
    Description: For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenen, Martien A M -- Archibald, Alan L -- Uenishi, Hirohide -- Tuggle, Christopher K -- Takeuchi, Yasuhiro -- Rothschild, Max F -- Rogel-Gaillard, Claire -- Park, Chankyu -- Milan, Denis -- Megens, Hendrik-Jan -- Li, Shengting -- Larkin, Denis M -- Kim, Heebal -- Frantz, Laurent A F -- Caccamo, Mario -- Ahn, Hyeonju -- Aken, Bronwen L -- Anselmo, Anna -- Anthon, Christian -- Auvil, Loretta -- Badaoui, Bouabid -- Beattie, Craig W -- Bendixen, Christian -- Berman, Daniel -- Blecha, Frank -- Blomberg, Jonas -- Bolund, Lars -- Bosse, Mirte -- Botti, Sara -- Bujie, Zhan -- Bystrom, Megan -- Capitanu, Boris -- Carvalho-Silva, Denise -- Chardon, Patrick -- Chen, Celine -- Cheng, Ryan -- Choi, Sang-Haeng -- Chow, William -- Clark, Richard C -- Clee, Christopher -- Crooijmans, Richard P M A -- Dawson, Harry D -- Dehais, Patrice -- De Sapio, Fioravante -- Dibbits, Bert -- Drou, Nizar -- Du, Zhi-Qiang -- Eversole, Kellye -- Fadista, Joao -- Fairley, Susan -- Faraut, Thomas -- Faulkner, Geoffrey J -- Fowler, Katie E -- Fredholm, Merete -- Fritz, Eric -- Gilbert, James G R -- Giuffra, Elisabetta -- Gorodkin, Jan -- Griffin, Darren K -- Harrow, Jennifer L -- Hayward, Alexander -- Howe, Kerstin -- Hu, Zhi-Liang -- Humphray, Sean J -- Hunt, Toby -- Hornshoj, Henrik -- Jeon, Jin-Tae -- Jern, Patric -- Jones, Matthew -- Jurka, Jerzy -- Kanamori, Hiroyuki -- Kapetanovic, Ronan -- Kim, Jaebum -- Kim, Jae-Hwan -- Kim, Kyu-Won -- Kim, Tae-Hun -- Larson, Greger -- Lee, Kyooyeol -- Lee, Kyung-Tai -- Leggett, Richard -- Lewin, Harris A -- Li, Yingrui -- Liu, Wansheng -- Loveland, Jane E -- Lu, Yao -- Lunney, Joan K -- Ma, Jian -- Madsen, Ole -- Mann, Katherine -- Matthews, Lucy -- McLaren, Stuart -- Morozumi, Takeya -- Murtaugh, Michael P -- Narayan, Jitendra -- Nguyen, Dinh Truong -- Ni, Peixiang -- Oh, Song-Jung -- Onteru, Suneel -- Panitz, Frank -- Park, Eung-Woo -- Park, Hong-Seog -- Pascal, Geraldine -- Paudel, Yogesh -- Perez-Enciso, Miguel -- Ramirez-Gonzalez, Ricardo -- Reecy, James M -- Rodriguez-Zas, Sandra -- Rohrer, Gary A -- Rund, Lauretta -- Sang, Yongming -- Schachtschneider, Kyle -- Schraiber, Joshua G -- Schwartz, John -- Scobie, Linda -- Scott, Carol -- Searle, Stephen -- Servin, Bertrand -- Southey, Bruce R -- Sperber, Goran -- Stadler, Peter -- Sweedler, Jonathan V -- Tafer, Hakim -- Thomsen, Bo -- Wali, Rashmi -- Wang, Jian -- Wang, Jun -- White, Simon -- Xu, Xun -- Yerle, Martine -- Zhang, Guojie -- Zhang, Jianguo -- Zhang, Jie -- Zhao, Shuhong -- Rogers, Jane -- Churcher, Carol -- Schook, Lawrence B -- 095908/Wellcome Trust/United Kingdom -- 249894/European Research Council/International -- 5 P41 LM006252/LM/NLM NIH HHS/ -- 5 P41LM006252/LM/NLM NIH HHS/ -- BB/E010520/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010520/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010768/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E011640/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G004013/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H005935/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025328/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0900950/Medical Research Council/United Kingdom -- P20-RR017686/RR/NCRR NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R13 RR020283A/RR/NCRR NIH HHS/ -- R13 RR032267A/RR/NCRR NIH HHS/ -- R21 DA027548/DA/NIDA NIH HHS/ -- R21 HG006464/HG/NHGRI NIH HHS/ -- T32 AI083196/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):393-8. doi: 10.1038/nature11622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands. martien.groenen@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Demography ; Genome/*genetics ; Models, Animal ; Molecular Sequence Data ; *Phylogeny ; Population Dynamics ; Sus scrofa/*classification/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-15
    Description: The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Jianjin -- Zhao, Yue -- Wang, Yupeng -- Gao, Wenqing -- Ding, Jingjin -- Li, Peng -- Hu, Liyan -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):187-92. doi: 10.1038/nature13683. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing 102206, China [2] National Institute of Biological Sciences, Beijing 102206, China [3]. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2]. ; National Institute of Biological Sciences, Beijing 102206, China. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; 1] Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing 102206, China [2] National Institute of Biological Sciences, Beijing 102206, China [3] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [4] National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspases/chemistry/genetics/immunology/*metabolism ; Caspases, Initiator/chemistry/genetics/immunology/*metabolism ; Cell Death/drug effects ; Cells, Cultured ; Enzyme Activation/drug effects/genetics ; Epithelial Cells/cytology/metabolism ; Genetic Complementation Test ; Humans ; *Immunity, Innate ; Inflammation/enzymology ; Keratinocytes/cytology/metabolism ; Lipid A/metabolism ; Lipopolysaccharides/immunology/*metabolism/pharmacology ; Macrophages/cytology/drug effects/metabolism ; Mice ; Mutant Proteins/chemistry/metabolism ; Necrosis/chemically induced ; Protein Binding ; Protein Multimerization/drug effects/genetics ; Rhodobacter sphaeroides/chemistry/immunology ; Substrate Specificity ; Surface Plasmon Resonance
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-10
    Description: Replication fork maintenance pathways preserve chromosomes, but their faulty application at nonallelic repeats could generate rearrangements causing cancer, genomic disorders and speciation. Potential causal mechanisms are homologous recombination and error-free postreplication repair (EF-PRR). Homologous recombination repairs damage-induced DNA double-strand breaks (DSBs) and single-ended DSBs within replication. To facilitate homologous recombination, the recombinase RAD51 and mediator BRCA2 form a filament on the 3' DNA strand at a break to enable annealing to the complementary sister chromatid while the RecQ helicase, BLM (Bloom syndrome mutated) suppresses crossing over to prevent recombination. Homologous recombination also stabilizes and restarts replication forks without a DSB. EF-PRR bypasses DNA incongruities that impede replication by ubiquitinating PCNA (proliferating cell nuclear antigen) using the RAD6-RAD18 and UBC13-MMS2-RAD5 ubiquitin ligase complexes. Some components are common to both homologous recombination and EF-PRR such as RAD51 and RAD18. Here we delineate two pathways that spontaneously fuse inverted repeats to generate unstable chromosomal rearrangements in wild-type mouse embryonic stem (ES) cells. Gamma-radiation induced a BLM-regulated pathway that selectively fused identical, but not mismatched, repeats. By contrast, ultraviolet light induced a RAD18-dependent pathway that efficiently fused mismatched repeats. Furthermore, TREX2 (a 3'--〉5' exonuclease) suppressed identical repeat fusion but enhanced mismatched repeat fusion, clearly separating these pathways. TREX2 associated with UBC13 and enhanced PCNA ubiquitination in response to ultraviolet light, consistent with it being a novel member of EF-PRR. RAD18 and TREX2 also suppressed replication fork stalling in response to nucleotide depletion. Interestingly, replication fork stalling induced fusion for identical and mismatched repeats, implicating faulty replication as a causal mechanism for both pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805358/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805358/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Lingchuan -- Kim, Tae Moon -- Son, Mi Young -- Kim, Sung-A -- Holland, Cory L -- Tateishi, Satoshi -- Kim, Dong Hyun -- Yew, P Renee -- Montagna, Cristina -- Dumitrache, Lavinia C -- Hasty, Paul -- 1 R01 CA123203-01A1/CA/NCI NIH HHS/ -- 2P01AG017242-12/AG/NIA NIH HHS/ -- P30 CA054174/CA/NCI NIH HHS/ -- P30CA013330/CA/NCI NIH HHS/ -- R01 CA123203/CA/NCI NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):569-72. doi: 10.1038/nature12500. Epub 2013 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine/Institute of Biotechnology, The Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245-3207, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24013173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomal Instability/*genetics ; Chromosome Breakage ; Chromosomes, Mammalian/*genetics ; DNA Breaks, Double-Stranded ; DNA Repair/*genetics ; DNA Replication/*genetics ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells/metabolism ; Exodeoxyribonucleases/metabolism ; Homologous Recombination/*genetics ; Hydroxyurea/pharmacology ; Inverted Repeat Sequences/*genetics ; Mice ; Nucleotides/deficiency/metabolism ; Proliferating Cell Nuclear Antigen/metabolism ; Rad51 Recombinase/metabolism ; RecQ Helicases/metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitination/radiation effects ; Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-01-24
    Description: Simian immunodeficiency virus (SIV) is a primate lentivirus related to human immunodeficiency viruses and is an etiologic agent for acquired immunodeficiency syndrome (AIDS)-like diseases in macaques. To date, only inactivated whole virus vaccines have been shown to protect macaques against SIV infection. Protective immunity was elicited by recombinant subunit vaccines. Four Macaca fascicularis were immunized with recombinant vaccinia virus expressing SIVmne gp160 and were boosted with gp160 produced in baculovirus-infected cells. All four animals were protected against an intravenous challenge of the homologous virus at one to nine animal-infectious doses. These results indicate that immunization with viral envelope antigens alone is sufficient to elicit protective immunity against a primate immunodeficiency virus. The combination immunization regimen, similar to one now being evaluated in humans as candidate human immunodeficiency virus (HIV)-1 vaccines, appears to be an effective way to elicit such immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, S L -- Abrams, K -- Barber, G N -- Moran, P -- Zarling, J M -- Langlois, A J -- Kuller, L -- Morton, W R -- Benveniste, R E -- AI26503/AI/NIAID NIH HHS/ -- R01 AI28065/AI/NIAID NIH HHS/ -- RR00166/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 24;255(5043):456-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1531159" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA, Viral/genetics ; Gene Products, env ; Genetic Vectors ; Lymphocyte Activation ; Macaca fascicularis ; Molecular Sequence Data ; Neutralization Tests ; Oligonucleotides/chemistry ; Polymerase Chain Reaction ; Simian Acquired Immunodeficiency Syndrome/immunology/*prevention & control ; Simian Immunodeficiency Virus/*immunology ; T-Lymphocytes, Helper-Inducer/immunology ; Time Factors ; Vaccination ; Vaccines, Synthetic/*immunology ; Viral Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-04-25
    Description: To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bovine Genome Sequencing and Analysis Consortium -- Elsik, Christine G -- Tellam, Ross L -- Worley, Kim C -- Gibbs, Richard A -- Muzny, Donna M -- Weinstock, George M -- Adelson, David L -- Eichler, Evan E -- Elnitski, Laura -- Guigo, Roderic -- Hamernik, Debora L -- Kappes, Steve M -- Lewin, Harris A -- Lynn, David J -- Nicholas, Frank W -- Reymond, Alexandre -- Rijnkels, Monique -- Skow, Loren C -- Zdobnov, Evgeny M -- Schook, Lawrence -- Womack, James -- Alioto, Tyler -- Antonarakis, Stylianos E -- Astashyn, Alex -- Chapple, Charles E -- Chen, Hsiu-Chuan -- Chrast, Jacqueline -- Camara, Francisco -- Ermolaeva, Olga -- Henrichsen, Charlotte N -- Hlavina, Wratko -- Kapustin, Yuri -- Kiryutin, Boris -- Kitts, Paul -- Kokocinski, Felix -- Landrum, Melissa -- Maglott, Donna -- Pruitt, Kim -- Sapojnikov, Victor -- Searle, Stephen M -- Solovyev, Victor -- Souvorov, Alexandre -- Ucla, Catherine -- Wyss, Carine -- Anzola, Juan M -- Gerlach, Daniel -- Elhaik, Eran -- Graur, Dan -- Reese, Justin T -- Edgar, Robert C -- McEwan, John C -- Payne, Gemma M -- Raison, Joy M -- Junier, Thomas -- Kriventseva, Evgenia V -- Eyras, Eduardo -- Plass, Mireya -- Donthu, Ravikiran -- Larkin, Denis M -- Reecy, James -- Yang, Mary Q -- Chen, Lin -- Cheng, Ze -- Chitko-McKown, Carol G -- Liu, George E -- Matukumalli, Lakshmi K -- Song, Jiuzhou -- Zhu, Bin -- Bradley, Daniel G -- Brinkman, Fiona S L -- Lau, Lilian P L -- Whiteside, Matthew D -- Walker, Angela -- Wheeler, Thomas T -- Casey, Theresa -- German, J Bruce -- Lemay, Danielle G -- Maqbool, Nauman J -- Molenaar, Adrian J -- Seo, Seongwon -- Stothard, Paul -- Baldwin, Cynthia L -- Baxter, Rebecca -- Brinkmeyer-Langford, Candice L -- Brown, Wendy C -- Childers, Christopher P -- Connelley, Timothy -- Ellis, Shirley A -- Fritz, Krista -- Glass, Elizabeth J -- Herzig, Carolyn T A -- Iivanainen, Antti -- Lahmers, Kevin K -- Bennett, Anna K -- Dickens, C Michael -- Gilbert, James G R -- Hagen, Darren E -- Salih, Hanni -- Aerts, Jan -- Caetano, Alexandre R -- Dalrymple, Brian -- Garcia, Jose Fernando -- Gill, Clare A -- Hiendleder, Stefan G -- Memili, Erdogan -- Spurlock, Diane -- Williams, John L -- Alexander, Lee -- Brownstein, Michael J -- Guan, Leluo -- Holt, Robert A -- Jones, Steven J M -- Marra, Marco A -- Moore, Richard -- Moore, Stephen S -- Roberts, Andy -- Taniguchi, Masaaki -- Waterman, Richard C -- Chacko, Joseph -- Chandrabose, Mimi M -- Cree, Andy -- Dao, Marvin Diep -- Dinh, Huyen H -- Gabisi, Ramatu Ayiesha -- Hines, Sandra -- Hume, Jennifer -- Jhangiani, Shalini N -- Joshi, Vandita -- Kovar, Christie L -- Lewis, Lora R -- Liu, Yih-Shin -- Lopez, John -- Morgan, Margaret B -- Nguyen, Ngoc Bich -- Okwuonu, Geoffrey O -- Ruiz, San Juana -- Santibanez, Jireh -- Wright, Rita A -- Buhay, Christian -- Ding, Yan -- Dugan-Rocha, Shannon -- Herdandez, Judith -- Holder, Michael -- Sabo, Aniko -- Egan, Amy -- Goodell, Jason -- Wilczek-Boney, Katarzyna -- Fowler, Gerald R -- Hitchens, Matthew Edward -- Lozado, Ryan J -- Moen, Charles -- Steffen, David -- Warren, James T -- Zhang, Jingkun -- Chiu, Readman -- Schein, Jacqueline E -- Durbin, K James -- Havlak, Paul -- Jiang, Huaiyang -- Liu, Yue -- Qin, Xiang -- Ren, Yanru -- Shen, Yufeng -- Song, Henry -- Bell, Stephanie Nicole -- Davis, Clay -- Johnson, Angela Jolivet -- Lee, Sandra -- Nazareth, Lynne V -- Patel, Bella Mayurkumar -- Pu, Ling-Ling -- Vattathil, Selina -- Williams, Rex Lee Jr -- Curry, Stacey -- Hamilton, Cerissa -- Sodergren, Erica -- Wheeler, David A -- Barris, Wes -- Bennett, Gary L -- Eggen, Andre -- Green, Ronnie D -- Harhay, Gregory P -- Hobbs, Matthew -- Jann, Oliver -- Keele, John W -- Kent, Matthew P -- Lien, Sigbjorn -- McKay, Stephanie D -- McWilliam, Sean -- Ratnakumar, Abhirami -- Schnabel, Robert D -- Smith, Timothy -- Snelling, Warren M -- Sonstegard, Tad S -- Stone, Roger T -- Sugimoto, Yoshikazu -- Takasuga, Akiko -- Taylor, Jeremy F -- Van Tassell, Curtis P -- Macneil, Michael D -- Abatepaulo, Antonio R R -- Abbey, Colette A -- Ahola, Virpi -- Almeida, Iassudara G -- Amadio, Ariel F -- Anatriello, Elen -- Bahadue, Suria M -- Biase, Fernando H -- Boldt, Clayton R -- Carroll, Jeffery A -- Carvalho, Wanessa A -- Cervelatti, Eliane P -- Chacko, Elsa -- Chapin, Jennifer E -- Cheng, Ye -- Choi, Jungwoo -- Colley, Adam J -- de Campos, Tatiana A -- De Donato, Marcos -- Santos, Isabel K F de Miranda -- de Oliveira, Carlo J F -- Deobald, Heather -- Devinoy, Eve -- Donohue, Kaitlin E -- Dovc, Peter -- Eberlein, Annett -- Fitzsimmons, Carolyn J -- Franzin, Alessandra M -- Garcia, Gustavo R -- Genini, Sem -- Gladney, Cody J -- Grant, Jason R -- Greaser, Marion L -- Green, Jonathan A -- Hadsell, Darryl L -- Hakimov, Hatam A -- Halgren, Rob -- Harrow, Jennifer L -- Hart, Elizabeth A -- Hastings, Nicola -- Hernandez, Marta -- Hu, Zhi-Liang -- Ingham, Aaron -- Iso-Touru, Terhi -- Jamis, Catherine -- Jensen, Kirsty -- Kapetis, Dimos -- Kerr, Tovah -- Khalil, Sari S -- Khatib, Hasan -- Kolbehdari, Davood -- Kumar, Charu G -- Kumar, Dinesh -- Leach, Richard -- Lee, Justin C-M -- Li, Changxi -- Logan, Krystin M -- Malinverni, Roberto -- Marques, Elisa -- Martin, William F -- Martins, Natalia F -- Maruyama, Sandra R -- Mazza, Raffaele -- McLean, Kim L -- Medrano, Juan F -- Moreno, Barbara T -- More, Daniela D -- Muntean, Carl T -- Nandakumar, Hari P -- Nogueira, Marcelo F G -- Olsaker, Ingrid -- Pant, Sameer D -- Panzitta, Francesca -- Pastor, Rosemeire C P -- Poli, Mario A -- Poslusny, Nathan -- Rachagani, Satyanarayana -- Ranganathan, Shoba -- Razpet, Andrej -- Riggs, Penny K -- Rincon, Gonzalo -- Rodriguez-Osorio, Nelida -- Rodriguez-Zas, Sandra L -- Romero, Natasha E -- Rosenwald, Anne -- Sando, Lillian -- Schmutz, Sheila M -- Shen, Libing -- Sherman, Laura -- Southey, Bruce R -- Lutzow, Ylva Strandberg -- Sweedler, Jonathan V -- Tammen, Imke -- Telugu, Bhanu Prakash V L -- Urbanski, Jennifer M -- Utsunomiya, Yuri T -- Verschoor, Chris P -- Waardenberg, Ashley J -- Wang, Zhiquan -- Ward, Robert -- Weikard, Rosemarie -- Welsh, Thomas H Jr -- White, Stephen N -- Wilming, Laurens G -- Wunderlich, Kris R -- Yang, Jianqi -- Zhao, Feng-Qi -- 062023/Wellcome Trust/United Kingdom -- 077198/Wellcome Trust/United Kingdom -- BBS/B/13438/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/13446/Biotechnology and Biological Sciences Research Council/United Kingdom -- P30 DA018310/DA/NIDA NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54 HG003273-04/HG/NHGRI NIH HHS/ -- U54 HG003273-04S1/HG/NHGRI NIH HHS/ -- U54 HG003273-05/HG/NHGRI NIH HHS/ -- U54 HG003273-05S1/HG/NHGRI NIH HHS/ -- U54 HG003273-05S2/HG/NHGRI NIH HHS/ -- U54 HG003273-06/HG/NHGRI NIH HHS/ -- U54 HG003273-06S1/HG/NHGRI NIH HHS/ -- U54 HG003273-06S2/HG/NHGRI NIH HHS/ -- U54 HG003273-07/HG/NHGRI NIH HHS/ -- U54 HG003273-08/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 24;324(5926):522-8. doi: 10.1126/science.1169588.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19390049" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Animals, Domestic ; *Biological Evolution ; Cattle ; Evolution, Molecular ; Female ; Genetic Variation ; *Genome ; Humans ; Male ; MicroRNAs/genetics ; Molecular Sequence Data ; Proteins/genetics ; Sequence Analysis, DNA ; Species Specificity ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-11
    Description: Limbless organisms such as snakes can navigate nearly all terrain. In particular, desert-dwelling sidewinder rattlesnakes (Crotalus cerastes) operate effectively on inclined granular media (such as sand dunes) that induce failure in field-tested limbless robots through slipping and pitching. Our laboratory experiments reveal that as granular incline angle increases, sidewinder rattlesnakes increase the length of their body in contact with the sand. Implementing this strategy in a physical robot model of the snake enables the device to ascend sandy slopes close to the angle of maximum slope stability. Plate drag experiments demonstrate that granular yield stresses decrease with increasing incline angle. Together, these three approaches demonstrate how sidewinding with contact-length control mitigates failure on granular media.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marvi, Hamidreza -- Gong, Chaohui -- Gravish, Nick -- Astley, Henry -- Travers, Matthew -- Hatton, Ross L -- Mendelson, Joseph R 3rd -- Choset, Howie -- Hu, David L -- Goldman, Daniel I -- New York, N.Y. -- Science. 2014 Oct 10;346(6206):224-9. doi: 10.1126/science.1255718.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. School of Physics, Georgia Institute of Technology, Atlanta, GA, USA. ; Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA. ; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA. ; School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR, USA. ; School of Biology, Georgia Institute of Technology, Atlanta, GA, USA. Department of Herpetology, Zoo Atlanta, Atlanta, GA, USA. ; School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. School of Physics, Georgia Institute of Technology, Atlanta, GA, USA. School of Biology, Georgia Institute of Technology, Atlanta, GA, USA. ; School of Physics, Georgia Institute of Technology, Atlanta, GA, USA. daniel.goldman@physics.gatech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25301625" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Crotalus/*anatomy & histology/*physiology ; *Locomotion ; Robotics/*instrumentation ; *Silicon Dioxide ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-29
    Description: The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerstein, Mark B -- Rozowsky, Joel -- Yan, Koon-Kiu -- Wang, Daifeng -- Cheng, Chao -- Brown, James B -- Davis, Carrie A -- Hillier, LaDeana -- Sisu, Cristina -- Li, Jingyi Jessica -- Pei, Baikang -- Harmanci, Arif O -- Duff, Michael O -- Djebali, Sarah -- Alexander, Roger P -- Alver, Burak H -- Auerbach, Raymond -- Bell, Kimberly -- Bickel, Peter J -- Boeck, Max E -- Boley, Nathan P -- Booth, Benjamin W -- Cherbas, Lucy -- Cherbas, Peter -- Di, Chao -- Dobin, Alex -- Drenkow, Jorg -- Ewing, Brent -- Fang, Gang -- Fastuca, Megan -- Feingold, Elise A -- Frankish, Adam -- Gao, Guanjun -- Good, Peter J -- Guigo, Roderic -- Hammonds, Ann -- Harrow, Jen -- Hoskins, Roger A -- Howald, Cedric -- Hu, Long -- Huang, Haiyan -- Hubbard, Tim J P -- Huynh, Chau -- Jha, Sonali -- Kasper, Dionna -- Kato, Masaomi -- Kaufman, Thomas C -- Kitchen, Robert R -- Ladewig, Erik -- Lagarde, Julien -- Lai, Eric -- Leng, Jing -- Lu, Zhi -- MacCoss, Michael -- May, Gemma -- McWhirter, Rebecca -- Merrihew, Gennifer -- Miller, David M -- Mortazavi, Ali -- Murad, Rabi -- Oliver, Brian -- Olson, Sara -- Park, Peter J -- Pazin, Michael J -- Perrimon, Norbert -- Pervouchine, Dmitri -- Reinke, Valerie -- Reymond, Alexandre -- Robinson, Garrett -- Samsonova, Anastasia -- Saunders, Gary I -- Schlesinger, Felix -- Sethi, Anurag -- Slack, Frank J -- Spencer, William C -- Stoiber, Marcus H -- Strasbourger, Pnina -- Tanzer, Andrea -- Thompson, Owen A -- Wan, Kenneth H -- Wang, Guilin -- Wang, Huaien -- Watkins, Kathie L -- Wen, Jiayu -- Wen, Kejia -- Xue, Chenghai -- Yang, Li -- Yip, Kevin -- Zaleski, Chris -- Zhang, Yan -- Zheng, Henry -- Brenner, Steven E -- Graveley, Brenton R -- Celniker, Susan E -- Gingeras, Thomas R -- Waterston, Robert -- 1U01HG007031-01/HG/NHGRI NIH HHS/ -- 5U01HG004695-04/HG/NHGRI NIH HHS/ -- 5U54HG004555/HG/NHGRI NIH HHS/ -- HG007000/HG/NHGRI NIH HHS/ -- HG007355/HG/NHGRI NIH HHS/ -- K99 HG006698/HG/NHGRI NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 GM076655/GM/NIGMS NIH HHS/ -- RC2-HG005639/HG/NHGRI NIH HHS/ -- T15 LM007056/LM/NLM NIH HHS/ -- T32 HD060555/HD/NICHD NIH HHS/ -- U01 HG 004263/HG/NHGRI NIH HHS/ -- U01 HG004261/HG/NHGRI NIH HHS/ -- U01 HG004271/HG/NHGRI NIH HHS/ -- U01 HG007031/HG/NHGRI NIH HHS/ -- U01-HG004261/HG/NHGRI NIH HHS/ -- U01HG004258/HG/NHGRI NIH HHS/ -- U41 HG007000/HG/NHGRI NIH HHS/ -- U41 HG007234/HG/NHGRI NIH HHS/ -- U41 HG007355/HG/NHGRI NIH HHS/ -- U54 HG004555/HG/NHGRI NIH HHS/ -- U54 HG006944/HG/NHGRI NIH HHS/ -- U54 HG006994/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- U54 HG007005/HG/NHGRI NIH HHS/ -- U54HG007005/HG/NHGRI NIH HHS/ -- WT098051/Wellcome Trust/United Kingdom -- ZIA DK015600-18/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):445-8. doi: 10.1038/nature13424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [3] Department of Computer Science, Yale University, 51 Prospect Street, New Haven, Connecticut 06511, USA [4] [5]. ; 1] Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [3]. ; 1] Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA [2] Institute for Quantitative Biomedical Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766, USA [3]. ; 1] Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA [3]. ; 1] Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2]. ; 1] Department of Genome Sciences and University of Washington School of Medicine, William H. Foege Building S350D, 1705 Northeast Pacific Street, Box 355065 Seattle, Washington 98195-5065, USA [2]. ; 1] Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA [2] Department of Statistics, University of California, Los Angeles, California 90095-1554, USA [3] Department of Human Genetics, University of California, Los Angeles, California 90095-7088, USA [4]. ; 1] Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA [2]. ; 1] Centre for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain [2] Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain [3]. ; 1] Program in Computational Biology and Bioinformatics, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA [2] Department of Molecular Biophysics and Biochemistry, Yale University, Bass 432, 266 Whitney Avenue, New Haven, Connecticut 06520, USA. ; Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, Massachusetts 02115, USA. ; Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA. ; Department of Genome Sciences and University of Washington School of Medicine, William H. Foege Building S350D, 1705 Northeast Pacific Street, Box 355065 Seattle, Washington 98195-5065, USA. ; 1] Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Biostatistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720-3860, USA. ; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. ; 1] Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, Indiana 47405-7005, USA [2] Center for Genomics and Bioinformatics, Indiana University, 1001 East 3rd Street, Bloomington, Indiana 47405-7005, USA. ; MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ; 1] Centre for Genomic Regulation, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain [2] Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain. ; 1] Center for Integrative Genomics, University of Lausanne, Genopode building, Lausanne 1015, Switzerland [2] Swiss Institute of Bioinformatics, Genopode building, Lausanne 1015, Switzerland. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Medical and Molecular Genetics, King's College London, London WC2R 2LS, UK. ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA. ; Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, Connecticut 06520, USA. ; Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, Indiana 47405-7005, USA. ; Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, New York 10065, USA. ; 1] Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA [2] Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 USA. ; Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, Tennessee 37232-8240, USA. ; 1] Developmental and Cell Biology, University of California, Irvine, California 92697, USA [2] Center for Complex Biological Systems, University of California, Irvine, California 92697, USA. ; Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA. ; 1] Department of Genetics and Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA [2] Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA. ; Center for Integrative Genomics, University of Lausanne, Genopode building, Lausanne 1015, Switzerland. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SD, UK. ; 1] Bioinformatics and Genomics Programme, Center for Genomic Regulation, Universitat Pompeu Fabra (CRG-UPF), 08003 Barcelona, Catalonia, Spain [2] Institute for Theoretical Chemistry, Theoretical Biochemistry Group (TBI), University of Vienna, Wahringerstrasse 17/3/303, A-1090 Vienna, Austria. ; 1] Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, Connecticut 06030, USA [2] Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. ; 1] Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong [2] 5 CUHK-BGI Innovation Institute of Trans-omics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. ; 1] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [2] Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA [3]. ; 1] Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25164755" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/*genetics/growth & development ; Chromatin/genetics ; Cluster Analysis ; Drosophila melanogaster/*genetics/growth & development ; *Gene Expression Profiling ; Gene Expression Regulation, Developmental/genetics ; Histones/metabolism ; Humans ; Larva/genetics/growth & development ; Models, Genetic ; Molecular Sequence Annotation ; Promoter Regions, Genetic/genetics ; Pupa/genetics/growth & development ; RNA, Untranslated/genetics ; Sequence Analysis, RNA ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Journal of High Resolution Chromatography 1 (1978), S. 304-306 
    ISSN: 0935-6304
    Keywords: Aromatic boronic acids ; Pinacol boronates ; Physical and chromatographic properties ; Mass spectra ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...