ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-04
    Description: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, approximately 8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a approximately 24,000-year-old Siberian. By approximately 6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact approximately 4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced approximately 75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least approximately 3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haak, Wolfgang -- Lazaridis, Iosif -- Patterson, Nick -- Rohland, Nadin -- Mallick, Swapan -- Llamas, Bastien -- Brandt, Guido -- Nordenfelt, Susanne -- Harney, Eadaoin -- Stewardson, Kristin -- Fu, Qiaomei -- Mittnik, Alissa -- Banffy, Eszter -- Economou, Christos -- Francken, Michael -- Friederich, Susanne -- Pena, Rafael Garrido -- Hallgren, Fredrik -- Khartanovich, Valery -- Khokhlov, Aleksandr -- Kunst, Michael -- Kuznetsov, Pavel -- Meller, Harald -- Mochalov, Oleg -- Moiseyev, Vayacheslav -- Nicklisch, Nicole -- Pichler, Sandra L -- Risch, Roberto -- Rojo Guerra, Manuel A -- Roth, Christina -- Szecsenyi-Nagy, Anna -- Wahl, Joachim -- Meyer, Matthias -- Krause, Johannes -- Brown, Dorcas -- Anthony, David -- Cooper, Alan -- Alt, Kurt Werner -- Reich, David -- GM100233/GM/NIGMS NIH HHS/ -- R01 HG006399/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 11;522(7555):207-11. doi: 10.1038/nature14317. Epub 2015 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Centre for Ancient DNA, School of Earth and Environmental Sciences &Environment Institute, University of Adelaide, Adelaide, South Australia 5005, Australia. ; 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [3] Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Institute of Anthropology, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany. ; 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [3] Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany [4] Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100049, China. ; Institute for Archaeological Sciences, University of Tubingen, D-72070 Tubingen, Germany. ; 1] Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Science, H-1014 Budapest, Hungary [2] Romisch Germanische Kommission (RGK) Frankfurt, D-60325 Frankfurt, Germany. ; Archaeological Research Laboratory, Stockholm University, 114 18 Stockholm, Sweden. ; Departments of Paleoanthropology and Archaeogenetics, Senckenberg Center for Human Evolution and Paleoenvironment, University of Tubingen, D-72070 Tubingen, Germany. ; State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany. ; Departamento de Prehistoria y Arqueologia, Facultad de Filosofia y Letras, Universidad Autonoma de Madrid, E-28049 Madrid, Spain. ; The Cultural Heritage Foundation, Vasteras 722 12, Sweden. ; Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg 199034, Russia. ; Volga State Academy of Social Sciences and Humanities, Samara 443099, Russia. ; Deutsches Archaeologisches Institut, Abteilung Madrid, E-28002 Madrid, Spain. ; 1] Institute of Anthropology, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany [2] State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany [3] Danube Private University, A-3500 Krems, Austria. ; Institute for Prehistory and Archaeological Science, University of Basel, CH-4003 Basel, Switzerland. ; Departamento de Prehistoria, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain. ; Departamento de Prehistoria y Arqueolgia, Universidad de Valladolid, E-47002 Valladolid, Spain. ; 1] Institute of Anthropology, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany [2] Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Science, H-1014 Budapest, Hungary. ; State Office for Cultural Heritage Management Baden-Wurttemberg, Osteology, D-78467 Konstanz, Germany. ; Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. ; 1] Institute for Archaeological Sciences, University of Tubingen, D-72070 Tubingen, Germany [2] Departments of Paleoanthropology and Archaeogenetics, Senckenberg Center for Human Evolution and Paleoenvironment, University of Tubingen, D-72070 Tubingen, Germany [3] Max Planck Institute for the Science of Human History, D-07745 Jena, Germany. ; Anthropology Department, Hartwick College, Oneonta, New York 13820, USA. ; 1] Institute of Anthropology, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany [2] State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany [3] Danube Private University, A-3500 Krems, Austria [4] Institute for Prehistory and Archaeological Science, University of Basel, CH-4003 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731166" target="_blank"〉PubMed〈/a〉
    Keywords: Cultural Evolution/*history ; Europe/ethnology ; Genome, Human/genetics ; *Grassland ; History, Ancient ; Human Migration/*history ; Humans ; Language/*history ; Male ; Polymorphism, Genetic/genetics ; Population Dynamics ; Russia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-12
    Description: The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brandt, Guido -- Haak, Wolfgang -- Adler, Christina J -- Roth, Christina -- Szecsenyi-Nagy, Anna -- Karimnia, Sarah -- Moller-Rieker, Sabine -- Meller, Harald -- Ganslmeier, Robert -- Friederich, Susanne -- Dresely, Veit -- Nicklisch, Nicole -- Pickrell, Joseph K -- Sirocko, Frank -- Reich, David -- Cooper, Alan -- Alt, Kurt W -- Genographic Consortium -- R01 GM100233/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):257-61. doi: 10.1126/science.1241844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Anthropology, Johannes Gutenberg University of Mainz, Mainz, Germany. brandtg@uni-mainz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115443" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/history ; Base Sequence ; DNA, Mitochondrial/*genetics/history ; Europe ; *Genetic Drift ; *Genetic Variation ; History, Ancient ; Humans ; Molecular Sequence Data ; Population/*genetics ; Transients and Migrants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: On 8 January 2006, an intermediate-depth earthquake occurred at the western part of the Hellenic trench close to the island of Kythera (southern Greece). This is the first intermediate-depth earthquake in the broader Aegean area that has produced such an extensive set of useful recordings, as it was recorded by the main permanent seismological networks and numerous acceleration sensors operating in Greece, as well as by EGELADOS, a large-scale temporary amphibian broadband seismological network deployed in the southern Aegean area. An effort to combine all the available data (broadband velocity and acceleration sensor) was made to study the properties of ground-motion attenuation of this earthquake. The combination of both types of data revealed interesting properties of the earthquake wave field, which would remain hidden if only one type of data was used. Moreover, the data have been used for a validation of existing peak ground-motion empirical prediction relations and the preliminary study of the very inhomogeneous attenuation pattern of the southern Aegean intermediate-depth events at both near- and far-source distances
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: Information on the structure of the upper mantle comes from two main sources. Regional seismic studies provide indirect information on large portions of the lithosphere, and mantle xenoliths provide direct information about the composition and physical properties of the small regions sampled by kimberlites and other magmas. Fundamental mode Rayleigh wave arrival times at seismic stations of the SVEKALAPKO seismic experiment, with periods between 10.5 and 190 s, were inverted to obtain a regional average shear-wave velocity model in the central Baltic Shield to a depth of 300 km. This model is very well constrained except for the crust and immediately below the Moho. Calculated velocities are approximately 4% faster than in standard Earth models for the upper mantle down to 250-km depth. A low velocity zone that could define the base of the lithosphere is absent. We compared our seismically derived shear-wave velocities to models derived from the compositions of lherzolite and harzburgite xenoliths in Finnish kimberlites, sampled in regions where the geotherm is well constrained. The velocities are similar for depths between 160 and 300 km. For depths shallower than 160 km, our seismically derived velocities are slower than those from the petrologic models, and they have a positive gradient with depth in contrast with the negative gradient predicted for homogeneous material in this depth interval. Our data are best explained by a chemical layering of the lithospheric mantle: A layer with abnormally low velocities in the upper part of the lithosphere apparently grades downwards into more normal peridotitic compositions. Possible candidates for the slow composition of the shallower mantle are metasomatized peridotites, or ultramafic cumulates or restites.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Regional seismic tomography provides valuable information on the structure of shields, thereby gaining insight to the formation and stabilization of old continents. Fennoscandia (known as the Baltic Shield for its exposed part) is a composite shield for which the last recorded tectonic event is the intrusion of the Rapakivi granitoids around 1.6 Ga. A seismic experiment carried out as part of the European project Svecofennian-Karelia-Lapland-Kola (SVEKALAPKO) was designed to study the upper mantle of the Finnish part of the Baltic Shield, especially the boundary between Archean and Proterozoic domains. We invert the fundamental mode Rayleigh waves to obtain a three-dimensional shear wave velocity model using a ray-based method accounting for the curvature of wave fronts. The experiment geometry allows an evaluation of lateral variations in velocities down to 150 km depth. The obtained model exhibits variations of up to ±3% in S wave velocities. As the thermal variations beneath Finland are very small, these lateral variations must be caused by different rock compositions. The lithospheres beneath the Archean and Proterozoic domains are not noticeably different in the S wave velocity maps. A classification of the velocity profiles with depth yields four main families and five intermediate regions that can be correlated with surface features. The comparison of these profiles with composition-based shear wave velocities implies both lateral and vertical variations of the mineralogy.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...