ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2013-01-01
    Description: Scalar-tensor theories of gravitation attract again a great interest since the discovery of the Chameleon mechanism and of the Galileon models. The former allows reconciling the presence of a scalar field with the constraints from Solar System experiments. The latter leads to inflationary models that do not need ad hoc potentials. Further generalizations lead to a tensor-scalar theory, dubbed the “Fab Four,” with only first and second order derivatives of the fields in the equations of motion that self-tune to a vanishing cosmological constant. This model needs to be confronted with experimental data in order to constrain its large parameter space. We present some results regarding a subset of this theory named “John,” which corresponds to a nonminimal derivative coupling between the scalar field and the Einstein tensor in the action. We show that this coupling gives rise to an inflationary model with very unnatural initial conditions. Thus, we include the term named “George,” namely, a nonminimal, but nonderivative, coupling between the scalar field and Ricci scalar. We find a more natural inflationary model, and, by performing a post-Newtonian analysis, we derive the set of equations that constrain the parameter space with data from experiments in the Solar System.
    Print ISSN: 1687-7969
    Electronic ISSN: 1687-7977
    Topics: Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-22
    Description: Scalar-tensor theories of gravitation attract again a great interest since the discovery of the Chameleon mechanism and of the Galileon models. The former allows reconciling the presence of a scalar field with the constraints from Solar System experiments. The latter leads to inflationary models that do not need ad hoc potentials. Further generalizations lead to a tensor-scalar theory, dubbed the “Fab Four,” with only first and second order derivatives of the fields in the equations of motion that self-tune to a vanishing cosmological constant. This model needs to be confronted with experimental data in order to constrain its large parameter space. We present some results regarding a subset of this theory named “John,” which corresponds to a nonminimal derivative coupling between the scalar field and the Einstein tensor in the action. We show that this coupling gives rise to an inflationary model with very unnatural initial conditions. Thus, we include the term named “George,” namely, a nonminimal, but nonderivative, coupling between the scalar field and Ricci scalar. We find a more natural inflationary model, and, by performing a post-Newtonian analysis, we derive the set of equations that constrain the parameter space with data from experiments in the Solar System.
    Print ISSN: 1687-7969
    Electronic ISSN: 1687-7977
    Topics: Physics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-01-01
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The development of temporary and permanent broad-band seismic arrays reinforces the need for advanced interpretation techniques in surface-wave analysis. We present a new method based on 2-D paraxial ray theory of inverting teleseismic surface-wave phase information and constructing phase velocity maps on a regional scale. Measurements of local phase velocities and propagation directions of Rayleigh waves taken from full waveform synthetic seismograms are used to validate the ray theory for smooth structures on a regional scale. Curved wavefronts created by heterogeneous structure outside the study area are taken into account through joint inversion for the phase velocity field and the shape of the incoming wavefronts. In the forward ray tracing procedure, the curved wavefronts are introduced through the boundary conditions by equating the slowness vector of the ray at the edge of the study region with the known gradient of the arrival time of the wave. To make the inverse problem non-singular we constrain the parameters in the inversion primarily by applying a smoothness criteria on the velocity field and on the incoming wave-field. Inversions of synthetic data sets computed by direct ray tracing and by full waveform modelling show that for 100 km spacing between stations the minimum size of structure that we can image is approximately 150 km. Heterogeneities with a size approximately equal to the wavelength are reconstructed by the ray-based inversion even though velocity variations are underestimated due to the wave-field smoothing of the structures. A minimum signal-to-noise ratio of 3.5 is necessary in order to correctly retrieve the phase velocity field. Inversion of a subset of the SVEKALAPKO data for 60 s period demonstrates the applicability of the method on real data.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Geophysical Journal International
    Publication Date: 2020-02-12
    Description: The development of temporary and permanent broad-band seismic arrays reinforces the need for advanced interpretation techniques in surface-wave analysis. We present a new method based on 2-D paraxial ray theory of inverting teleseismic surface-wave phase information and constructing phase velocity maps on a regional scale. Measurements of local phase velocities and propagation directions of Rayleigh waves taken from full waveform synthetic seismograms are used to validate the ray theory for smooth structures on a regional scale. Curved wavefronts created by heterogeneous structure outside the study area are taken into account through joint inversion for the phase velocity field and the shape of the incoming wavefronts. In the forward ray tracing procedure, the curved wavefronts are introduced through the boundary conditions by equating the slowness vector of the ray at the edge of the study region with the known gradient of the arrival time of the wave. To make the inverse problem non-singular we constrain the parameters in the inversion primarily by applying a smoothness criteria on the velocity field and on the incoming wave-field. Inversions of synthetic data sets computed by direct ray tracing and by full waveform modelling show that for 100 km spacing between stations the minimum size of structure that we can image is approximately 150 km. Heterogeneities with a size approximately equal to the wavelength are reconstructed by the ray-based inversion even though velocity variations are underestimated due to the wave-field smoothing of the structures. A minimum signal-to-noise ratio of 3.5 is necessary in order to correctly retrieve the phase velocity field. Inversion of a subset of the SVEKALAPKO data for 60 s period demonstrates the applicability of the method on real data.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: Information on the structure of the upper mantle comes from two main sources. Regional seismic studies provide indirect information on large portions of the lithosphere, and mantle xenoliths provide direct information about the composition and physical properties of the small regions sampled by kimberlites and other magmas. Fundamental mode Rayleigh wave arrival times at seismic stations of the SVEKALAPKO seismic experiment, with periods between 10.5 and 190 s, were inverted to obtain a regional average shear-wave velocity model in the central Baltic Shield to a depth of 300 km. This model is very well constrained except for the crust and immediately below the Moho. Calculated velocities are approximately 4% faster than in standard Earth models for the upper mantle down to 250-km depth. A low velocity zone that could define the base of the lithosphere is absent. We compared our seismically derived shear-wave velocities to models derived from the compositions of lherzolite and harzburgite xenoliths in Finnish kimberlites, sampled in regions where the geotherm is well constrained. The velocities are similar for depths between 160 and 300 km. For depths shallower than 160 km, our seismically derived velocities are slower than those from the petrologic models, and they have a positive gradient with depth in contrast with the negative gradient predicted for homogeneous material in this depth interval. Our data are best explained by a chemical layering of the lithospheric mantle: A layer with abnormally low velocities in the upper part of the lithosphere apparently grades downwards into more normal peridotitic compositions. Possible candidates for the slow composition of the shallower mantle are metasomatized peridotites, or ultramafic cumulates or restites.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: Regional seismic tomography provides valuable information on the structure of shields, thereby gaining insight to the formation and stabilization of old continents. Fennoscandia (known as the Baltic Shield for its exposed part) is a composite shield for which the last recorded tectonic event is the intrusion of the Rapakivi granitoids around 1.6 Ga. A seismic experiment carried out as part of the European project Svecofennian-Karelia-Lapland-Kola (SVEKALAPKO) was designed to study the upper mantle of the Finnish part of the Baltic Shield, especially the boundary between Archean and Proterozoic domains. We invert the fundamental mode Rayleigh waves to obtain a three-dimensional shear wave velocity model using a ray-based method accounting for the curvature of wave fronts. The experiment geometry allows an evaluation of lateral variations in velocities down to 150 km depth. The obtained model exhibits variations of up to ±3% in S wave velocities. As the thermal variations beneath Finland are very small, these lateral variations must be caused by different rock compositions. The lithospheres beneath the Archean and Proterozoic domains are not noticeably different in the S wave velocity maps. A classification of the velocity profiles with depth yields four main families and five intermediate regions that can be correlated with surface features. The comparison of these profiles with composition-based shear wave velocities implies both lateral and vertical variations of the mineralogy.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...