ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Immunity, Innate  (1)
  • Amino Acids/administration & dosage/deficiency/*metabolism/pharmacology  (1)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-07-28
    Description: Nearly half of the world's population harbors helminth infections or suffers from allergic disorders. A common feature of this population is the so-called "type 2 immune response," which confers protection against helminths, but also promotes pathologic responses associated with allergic inflammation. However, the mechanisms that initiate and control type 2 responses remain enigmatic. Recent advances have revealed a role for the innate immune system in orchestrating type 2 responses against a bewildering array of stimuli, from nanometer-sized allergens to 20-meter-long helminth parasites. Here, we review these advances and suggest that the human immune system has evolved multiple mechanisms of sensing such stimuli, from recognition of molecular patterns via innate immune receptors to detecting metabolic changes and tissue damage caused by these stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pulendran, Bali -- Artis, David -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI083480/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- HHSN266200700006C/PHS HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R37AI48638/AI/NIAID NIH HHS/ -- R37DK057665/DK/NIDDK NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U19AI057266/AI/NIAID NIH HHS/ -- U19AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54AI057157/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):431-5. doi: 10.1126/science.1221064.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA. bpulend@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22837519" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/*immunology ; Animals ; Basophils/immunology ; Biological Evolution ; Cell Communication ; Cellular Microenvironment ; Dendritic Cells/immunology ; Helminthiasis/*immunology ; Helminths/*immunology ; Humans ; Hypersensitivity/*immunology ; *Immunity, Innate ; Inflammation/immunology ; Receptors, Pattern Recognition/immunology/metabolism ; Signal Transduction ; Th2 Cells/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-17
    Description: The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1beta production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1beta resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Loebbermann, Jens -- Nakaya, Helder I -- Khan, Nooruddin -- Ma, Hualing -- Gama, Leonardo -- Machiah, Deepa K -- Lawson, Benton -- Hakimpour, Paul -- Wang, Yi-chong -- Li, Shuzhao -- Sharma, Prachi -- Kaufman, Randal J -- Martinez, Jennifer -- Pulendran, Bali -- R01 DK088227/DK/NIDDK NIH HHS/ -- R01 DK103185/DK/NIDDK NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK042394/DK/NIDDK NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- ZIA ES103286-01/Intramural NIH HHS/ -- England -- Nature. 2016 Mar 24;531(7595):523-7. doi: 10.1038/nature17186. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508, Brazil. ; Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India. ; Division of Pathology, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Virology Core, Emory Vaccine Center and Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037 USA. ; National Institute of Environmental Health Sciences, Mail Drop D2-01 Research Triangle Park, North Carolina 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/administration & dosage/deficiency/*metabolism/pharmacology ; Animals ; Antigen-Presenting Cells/immunology/metabolism ; Autophagy ; Colitis/etiology/*metabolism/pathology/prevention & control ; Disease Models, Animal ; Epithelial Cells/metabolism ; Female ; Humans ; Inflammasomes/*antagonists & inhibitors/metabolism ; Inflammation/etiology/*metabolism/pathology/prevention & control ; Interleukin-1beta/immunology ; Intestines/*metabolism/*pathology ; Male ; Mice ; Microtubule-Associated Proteins/deficiency/metabolism ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Reactive Oxygen Species/metabolism ; Stress, Physiological ; Th17 Cells/immunology ; Ubiquitin-Activating Enzymes/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...