ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-01-20
    Description: Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2-beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Congcong -- Bassik, Michael C -- Moresi, Viviana -- Sun, Kai -- Wei, Yongjie -- Zou, Zhongju -- An, Zhenyi -- Loh, Joy -- Fisher, Jill -- Sun, Qihua -- Korsmeyer, Stanley -- Packer, Milton -- May, Herman I -- Hill, Joseph A -- Virgin, Herbert W -- Gilpin, Christopher -- Xiao, Guanghua -- Bassel-Duby, Rhonda -- Scherer, Philipp E -- Levine, Beth -- 1P01 DK0887761/DK/NIDDK NIH HHS/ -- P01 DK088761/DK/NIDDK NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 CA109618/CA/NCI NIH HHS/ -- R01 CA112023/CA/NCI NIH HHS/ -- R01 DK055758/DK/NIDDK NIH HHS/ -- R0I AI084887/AI/NIAID NIH HHS/ -- R0I HL080244/HL/NHLBI NIH HHS/ -- R0I HL090842/HL/NHLBI NIH HHS/ -- RC1 DK086629/DK/NIDDK NIH HHS/ -- RCI DK086629/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 18;481(7382):511-5. doi: 10.1038/nature10758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Autophagy Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22258505" target="_blank"〉PubMed〈/a〉
    Keywords: Adiponectin/blood ; Animals ; Apoptosis Regulatory Proteins/genetics/metabolism ; Autophagy/drug effects/genetics/*physiology ; Cells, Cultured ; Dietary Fats/adverse effects ; Food Deprivation/physiology ; Gene Knock-In Techniques ; Glucose/*metabolism ; Glucose Intolerance/chemically induced/prevention & control ; Glucose Tolerance Test ; *Homeostasis/drug effects ; Leptin/blood ; Male ; Mice ; Mice, Transgenic ; Muscle, Skeletal/cytology/drug effects/*metabolism ; Mutation ; Myocardium/cytology/*metabolism ; Phosphorylation/genetics ; Physical Conditioning, Animal/*physiology ; Physical Endurance/genetics/physiology ; Physical Exertion/genetics/physiology ; Protein Binding/genetics ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2 ; Running/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...