ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (9)
  • Nature Publishing Group (NPG)  (4)
  • 1
    Publication Date: 2010-08-14
    Description: Dendritic cells (DCs) play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens. However, the intracellular signaling networks that program DCs to become tolerogenic remain unknown. We report here that the Wnt-beta-catenin signaling in intestinal dendritic cells regulates the balance between inflammatory versus regulatory responses in the gut. beta-catenin in intestinal dendritic cells was required for the expression of anti-inflammatory mediators such as retinoic acid-metabolizing enzymes, interleukin-10, and transforming growth factor-beta, and the stimulation of regulatory T cell induction while suppressing inflammatory effector T cells. Furthermore, ablation of beta-catenin expression in DCs enhanced inflammatory responses and disease in a mouse model of inflammatory bowel disease. Thus, beta-catenin signaling programs DCs to a tolerogenic state, limiting the inflammatory response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732486/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732486/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manicassamy, Santhakumar -- Reizis, Boris -- Ravindran, Rajesh -- Nakaya, Helder -- Salazar-Gonzalez, Rosa Maria -- Wang, Yi-Chong -- Pulendran, Bali -- HHSN266 200700006C/PHS HHS/ -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- R01 AI048638/AI/NIAID NIH HHS/ -- R01 AI056499/AI/NIAID NIH HHS/ -- R01 DK057665/DK/NIDDK NIH HHS/ -- R01DK057665,/DK/NIDDK NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R37AI48638,/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19AI057266,/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54AI057157/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):849-53. doi: 10.1126/science.1188510.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, and Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705860" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/metabolism ; Dendritic Cells/*immunology/metabolism ; Gene Expression Profiling ; *Inflammation ; Inflammatory Bowel Diseases/*immunology ; Intestinal Mucosa/cytology/*immunology/metabolism ; Macrophages/immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Oligonucleotide Array Sequence Analysis ; *Self Tolerance ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology ; T-Lymphocytes, Regulatory/*immunology ; Tretinoin/metabolism ; Wnt Proteins/metabolism ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-11
    Description: In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kraus, Daniel -- Yang, Qin -- Kong, Dong -- Banks, Alexander S -- Zhang, Lin -- Rodgers, Joseph T -- Pirinen, Eija -- Pulinilkunnil, Thomas C -- Gong, Fengying -- Wang, Ya-chin -- Cen, Yana -- Sauve, Anthony A -- Asara, John M -- Peroni, Odile D -- Monia, Brett P -- Bhanot, Sanjay -- Alhonen, Leena -- Puigserver, Pere -- Kahn, Barbara B -- K01 DK094943/DK/NIDDK NIH HHS/ -- K08 DK090149/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01CA120964/CA/NCI NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK0460200/DK/NIDDK NIH HHS/ -- P30 DK046200/DK/NIDDK NIH HHS/ -- P30 DK057521/DK/NIDDK NIH HHS/ -- P30 DK57521/DK/NIDDK NIH HHS/ -- P30CA006516-46/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK100385/DK/NIDDK NIH HHS/ -- R01 DK69966/DK/NIDDK NIH HHS/ -- R37 DK043051/DK/NIDDK NIH HHS/ -- R37 DK43051/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):258-62. doi: 10.1038/nature13198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] [3] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA. ; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, PO Box 1627, FI-70211 Kuopio, Finland [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; 1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA [2] Division of Nephrology, Department of Internal Medicine I, Wurzburg University Hospital, Oberdurrbacher Strasse 6, 97080 Wurzburg, Germany (D.K.); Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, and Center for Epigenetics and Metabolism, University of California, Irvine, California 92697, USA (Q.Y.); Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland (E.P.); Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, New Brunswick E2L4L5, USA (T.C.P.); Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (F.G.); School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland (L.A.). ; Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Division of Signal Transduction, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, Massachusetts 02215, USA. ; Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California 92008-7326, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717514" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Adipocytes/metabolism/secretion ; Adipose Tissue/enzymology/metabolism ; Adipose Tissue, White/enzymology/metabolism ; Animals ; Diabetes Mellitus, Type 2/enzymology/metabolism ; *Diet ; Energy Metabolism ; Fatty Liver ; Gene Knockdown Techniques ; Glucose Intolerance ; Glucose Transporter Type 4/deficiency/genetics/metabolism ; Insulin Resistance ; Liver/enzymology ; Male ; Mice ; Mice, Inbred C57BL ; NAD/metabolism ; Niacinamide/metabolism ; Nicotinamide N-Methyltransferase/*deficiency/genetics/*metabolism ; Obesity/*enzymology/etiology/genetics/*prevention & control ; Ornithine Decarboxylase/metabolism ; Oxidoreductases Acting on CH-NH Group Donors/metabolism ; S-Adenosylmethionine/metabolism ; Sirtuin 1/metabolism ; Spermine/analogs & derivatives/metabolism ; Thinness/enzymology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-30
    Description: During tissue morphogenesis, simple epithelial sheets undergo folding to form complex structures. The prevailing model underlying epithelial folding involves cell shape changes driven by myosin-dependent apical constriction. Here we describe an alternative mechanism that requires differential positioning of adherens junctions controlled by modulation of epithelial apical-basal polarity. Using live embryo imaging, we show that before the initiation of dorsal transverse folds during Drosophila gastrulation, adherens junctions shift basally in the initiating cells, but maintain their original subapical positioning in the neighbouring cells. Junctional positioning in the dorsal epithelium depends on the polarity proteins Bazooka and Par-1. In particular, the basal shift that occurs in the initiating cells is associated with a progressive decrease in Par-1 levels. We show that uniform reduction of the activity of Bazooka or Par-1 results in uniform apical or lateral positioning of junctions and in each case dorsal fold initiation is abolished. In addition, an increase in the Bazooka/Par-1 ratio causes formation of ectopic dorsal folds. The basal shift of junctions not only alters the apical shape of the initiating cells, but also forces the lateral membrane of the adjacent cells to bend towards the initiating cells, thereby facilitating tissue deformation. Our data thus establish a direct link between modification of epithelial polarity and initiation of epithelial folding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597240/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597240/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yu-Chiun -- Khan, Zia -- Kaschube, Matthias -- Wieschaus, Eric F -- 5R37HD15587/HD/NICHD NIH HHS/ -- P50 GM071508/GM/NIGMS NIH HHS/ -- R37 HD015587/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 28;484(7394):390-3. doi: 10.1038/nature10938.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22456706" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/*physiology/ultrastructure ; Animals ; *Cell Polarity ; Cell Shape ; Choristoma ; Drosophila Proteins/deficiency/genetics/metabolism ; Drosophila melanogaster/*cytology/*embryology/genetics/metabolism ; Epithelial Cells/*cytology/metabolism/ultrastructure ; Epithelium/*embryology/metabolism/ultrastructure ; Gastrula/cytology/embryology/metabolism/ultrastructure ; Gastrulation/*physiology ; Glycogen Synthase Kinase 3 ; Intracellular Signaling Peptides and Proteins/deficiency/genetics/metabolism ; Protein-Serine-Threonine Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-17
    Description: The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1beta production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1beta resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Loebbermann, Jens -- Nakaya, Helder I -- Khan, Nooruddin -- Ma, Hualing -- Gama, Leonardo -- Machiah, Deepa K -- Lawson, Benton -- Hakimpour, Paul -- Wang, Yi-chong -- Li, Shuzhao -- Sharma, Prachi -- Kaufman, Randal J -- Martinez, Jennifer -- Pulendran, Bali -- R01 DK088227/DK/NIDDK NIH HHS/ -- R01 DK103185/DK/NIDDK NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK042394/DK/NIDDK NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- ZIA ES103286-01/Intramural NIH HHS/ -- England -- Nature. 2016 Mar 24;531(7595):523-7. doi: 10.1038/nature17186. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508, Brazil. ; Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India. ; Division of Pathology, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Virology Core, Emory Vaccine Center and Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037 USA. ; National Institute of Environmental Health Sciences, Mail Drop D2-01 Research Triangle Park, North Carolina 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/administration & dosage/deficiency/*metabolism/pharmacology ; Animals ; Antigen-Presenting Cells/immunology/metabolism ; Autophagy ; Colitis/etiology/*metabolism/pathology/prevention & control ; Disease Models, Animal ; Epithelial Cells/metabolism ; Female ; Humans ; Inflammasomes/*antagonists & inhibitors/metabolism ; Inflammation/etiology/*metabolism/pathology/prevention & control ; Interleukin-1beta/immunology ; Intestines/*metabolism/*pathology ; Male ; Mice ; Microtubule-Associated Proteins/deficiency/metabolism ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Reactive Oxygen Species/metabolism ; Stress, Physiological ; Th17 Cells/immunology ; Ubiquitin-Activating Enzymes/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-11
    Description: Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tong -- Liang, Liang -- Xue, Yong -- Jia, Peng-Fei -- Chen, Wei -- Zhang, Meng-Xia -- Wang, Ying-Chun -- Li, Hong-Ju -- Yang, Wei-Cai -- England -- Nature. 2016 Mar 10;531(7593):241-4. doi: 10.1038/nature16975. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China. ; University of Chinese Academy of Sciences, Beijing 100049, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863186" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism/physiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Capsella/genetics/metabolism/physiology ; Cell Membrane/metabolism ; Mutation ; Ovule/metabolism ; Phenotype ; Phosphotransferases/chemistry/genetics/*metabolism ; Pollen Tube/genetics/growth & development/metabolism ; Protein Kinases/genetics/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Reproduction ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-19
    Description: With the rapid rise in pollution-associated nitrogen inputs to the western Pacific, it has been suggested that even the open ocean has been affected. In a coral core from Dongsha Atoll, a remote coral reef ecosystem, we observe a decline in the 15 N/ 14 N of coral skeleton–bound organic matter, which signals increased deposition of anthropogenic atmospheric N on the open ocean and its incorporation into plankton and, in turn, the atoll corals. The first clear change occurred just before 2000 CE, decades later than predicted by other work. The amplitude of change suggests that, by 2010, anthropogenic atmospheric N deposition represented 20 ± 5% of the annual N input to the surface ocean in this region, which appears to be at the lower end of other estimates.
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉After 40 years of reform and "opening up," China has made remarkable economic progress. Such economic prosperity, however, has been coupled with environmental degradation. We analyze diverse long-term data to determine whether China is experiencing a decoupling of economic growth and environmental impacts, and where China stands with respect to the Sustainable Development Goals (SDGs) in terms of reducing regional division, urban-rural gap, social inequality, and land-based impacts on oceans. The results highlight that China’s desire to achieve "ecological civilization" has resulted in a decoupling trend for major pollutants since 2015, while strong coupling remains with CO〈sub〉2〈/sub〉 emissions. Progress has been made in health care provision, poverty reduction, and gender equity in education, while income disparity continues between regions and with rural-urban populations. There is a considerable way to go toward achieving delivery of the SDGs; however, China’s progress toward economic prosperity and concomitant sustainability provides important insights for other countries.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-28
    Description: The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center–12-electron d -p -conjugation. These planar chelates have broad absorption in the ultraviolet-visible–near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉With no requirements for lattice matching, van der Waals (vdW) ferromagnetic materials are rapidly establishing themselves as effective building blocks for next-generation spintronic devices. We report a hitherto rarely seen antisymmetric magnetoresistance (MR) effect in vdW heterostructured Fe〈sub〉3〈/sub〉GeTe〈sub〉2〈/sub〉 (FGT)/graphite/FGT devices. Unlike conventional giant MR (GMR), which is characterized by two resistance states, the MR in these vdW heterostructures features distinct high-, intermediate-, and low-resistance states. This unique characteristic is suggestive of underlying physical mechanisms that differ from those observed before. After theoretical calculations, the three-resistance behavior was attributed to a spin momentum locking induced spin-polarized current at the graphite/FGT interface. Our work reveals that ferromagnetic heterostructures assembled from vdW materials can exhibit substantially different properties to those exhibited by similar heterostructures grown in vacuum. Hence, it highlights the potential for new physics and new spintronic applications to be discovered using vdW heterostructures.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-13
    Description: Complex interactions between host immunity and the microbiome regulate norovirus infection. However, the mechanism of host immune promotion of enteric virus infection remains obscure. The cellular tropism of noroviruses is also unknown. Recently, we identified CD300lf as a murine norovirus (MNoV) receptor. In this study, we have shown that tuft cells, a rare type of intestinal epithelial cell, express CD300lf and are the target cell for MNoV in the mouse intestine. We found that type 2 cytokines, which induce tuft cell proliferation, promote MNoV infection in vivo. These cytokines can replace the effect of commensal microbiota in promoting virus infection. Our work thus provides insight into how the immune system and microbes can coordinately promote enteric viral infection.
    Keywords: Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...