ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-15
    Description: Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 A resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 A constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hassaine, Gherici -- Deluz, Cedric -- Grasso, Luigino -- Wyss, Romain -- Tol, Menno B -- Hovius, Ruud -- Graff, Alexandra -- Stahlberg, Henning -- Tomizaki, Takashi -- Desmyter, Aline -- Moreau, Christophe -- Li, Xiao-Dan -- Poitevin, Frederic -- Vogel, Horst -- Nury, Hugues -- England -- Nature. 2014 Aug 21;512(7514):276-81. doi: 10.1038/nature13552. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] [3] Theranyx, 163 Avenue de Luminy, 13288 Marseille, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2]. ; Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland. ; Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland. ; Swiss Light Source, Paul Scherrer Institute, CH-5234 Villigen, Switzerland. ; Architecture et Fonction des Macromolecules Biologiques, CNRS UMR 7257 and Universite Aix-Marseille, F-13288 Marseille, France. ; 1] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [2] CNRS, IBS, F-38000 Grenoble, France [3] CEA, DSV, IBS, F-38000 Grenoble, France. ; Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland. ; Unite de Dynamique Structurale des Macromolecules, Institut Pasteur, CNRS UMR3528, F-75015 Paris, France. ; 1] Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland [2] Universite Grenoble Alpes, IBS, F-38000 Grenoble, France [3] CNRS, IBS, F-38000 Grenoble, France [4] CEA, DSV, IBS, F-38000 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119048" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Neurotransmitter Agents/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Receptors, Serotonin, 5-HT3/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉Ground penetrating radar (GPR) is one of the most widely used geophysical survey methods to locate cavities under roads due to its speedy exploration and high-resolution imaging. To locate underground cavities using GPR, we need to distinguish between cavity-induced reflections and other reflections, which can be achieved by examining the polarity change in reflections compared to the polarity of the transmitted signal. The polarity change can be measured from the phase shift between the target and first reflections. To estimate the phase shift in reflections, the method of computing the power spectrum difference between the original trace and background signal was proposed, but the method has a limitation for shallow reflectors. As an alternative method to avoid this limitation, we propose using only one component of the power spectrum difference, the cross-correlation between the target reflection and background signal. The cross-correlation has its maximum peak at a time lag between the target and first reflection (from the air-ground interface). Additionally, the phase at that time lag represents a phase shift between the two reflections. We compare our cross-correlation-based method with the conventional method of computing the whole power spectrum difference and investigate the feasibility of our method for distinguishing cavity-induced reflections using a 2D field data set acquired in a testbed in Sudeoksa, Korea.〈/span〉
    Print ISSN: 1083-1363
    Electronic ISSN: 1943-2658
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...