ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-19
    Description: A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH4) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. All but one model transports were driven by reanalysis products from 3 different meteorological agencies. The transport and removal of CH4 in six different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6) was simulated to check the interhemispheric transport, radon (222Rn) to check the subgrid scale transport, and methyl chloroform (CH3CCl3) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations (IAVs) and interhemispheric (IH) gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. An average IH exchange time of 1.39 ± 0.18 yr is derived from SF6 time series. Sensitivity simulations suggest that the estimated trends in exchange time, over the period of 1996–2007, are caused by a change of SF6 emissions towards the tropics. Using six sets of emission scenarios, we show that the decadal average CH4 growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. Up to 60% of the IAVs in the observed CH4 concentrations can be explained by accounting for the IAVs in emissions, from biomass burning and wetlands, as well as meteorology in the forward models. The modeled CH4 budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus on the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH4 and CH3CCl3 atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little IAV due to transport and temperature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-18
    Description: The influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone is evaluated between 30 and 90° N from 1990–2009 using ozone measurements and a global chemical transport model, the Community Atmospheric Model with chemistry (CAM-chem). Long-term measurements from ozonesondes, at 150 and 500 hPa, and the Measurements of OZone and water vapour by in-service Airbus aircraft programme (MOZAIC), at 500 hPa, are analyzed over Japan, Canada, the Eastern US and Northern and Central Europe. The measurements generally emphasize northern latitudes, although the simulation suggests that measurements over the Canadian, Northern and Central European regions are representative of the large-scale interannual ozone variability from 30 to 90° N at 500 hPa. CAM-chem is run with input meteorology from the National Center for Environmental Prediction; a tagging methodology is used to identify the stratospheric contribution to tropospheric ozone concentrations. A variant of the synthetic ozone tracer (synoz) is used to represent stratospheric ozone. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability at 500 hPa and the surface. In particular, the simulation and the measurements suggest large stratospheric influence at the surface sites of Mace Head (Ireland) and Jungfraujoch (Switzerland) as well as many 500 hPa measurement locations. Both the measurements and simulation suggest the stratosphere has contributed to tropospheric ozone trends. In many locations between 30–90° N 500 hPa ozone significantly increased from 1990–2000, but has leveled off since (from 2000–2009). The simulated global ozone budget suggests global stratosphere-troposphere exchange increased in 1998–1999 in association with a global ozone anomaly. Discrepancies between the simulated and measured ozone budget include a large underestimation of measured ozone variability and discrepancies in long-term stratospheric ozone trends. This suggests the need for more sophisticated simulations including better representations of stratospheric chemistry and circulation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-06-30
    Description: A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-range Transboundary Air Pollution (LRTAP). Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations. In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further. At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by region. Intercontinental transport of ozone is finally determined based on differences in model ensemble calculations. With emissions perturbed by 20% per region, calculated intercontinental contributions to ozone in the free troposphere range from less than 1 ppb to 3 ppb, with small contributions in winter. The results are corroborated by the retroplume calculations. At several locations the seasonal contributions to ozone in the free troposphere from intercontinental transport differ from what was shown earlier at the surface using the same dataset. The large spread in model results points to a need of further evaluation of the chemical and physical processes in order to improve the credibility of global model results.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-16
    Description: Fires are a global phenomenon that impact climate and biogeochemical cycles, and interact with the biosphere, atmosphere and cryosphere. These impacts occur on a range of temporal and spatial scales and are difficult to quantify globally based solely on observations. Here we assess the role of fires in the climate system using model estimates of radiative forcing (RF) from global fires in pre-industrial, present day, and future time periods. Fire emissions of trace gases and aerosols are derived from Community Land Model simulations and then used in a series of Community Atmosphere Model simulations with representative emissions from the years 1850, 2000, and 2100. Additional simulations are carried out with fire emissions from the Global Fire Emission Database for a present-day comparison. These results are compared against the results of simulations with no fire emissions to compute the contribution from fires. We consider the impacts of fire on greenhouse gas concentrations, aerosol effects (including aerosol effects on biogeochemical cycles), and land and snow surface albedo. Overall, we estimate that pre-industrial fires were responsible for a RF of −1 W m−2 with respect to a pre-industrial climate without fires. The largest magnitude pre-industrial forcing from fires was the indirect aerosol effect on clouds (−1.6 W m−2). This was balanced in part by an increase in carbon dioxide concentrations due to fires (+0.83 W m−2). The RF of fires increases by 0.5 W m−2 from 1850 to 2000 and 0.2 W m−2 from 1850 to 2100 in the model representation from a combination of changes in fire activity and changes in the background environment in which fires occur, especially increases and decreases in the anthropogenic aerosol burden. Thus, fires play an important role in both the natural equilibrium climate and the climate perturbed by anthropogenic activity and need to be considered in future climate projections.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-01
    Description: A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES) global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-08-10
    Description: Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street compared to that with free horizon. This allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in a street depends strongly on the relative width of the street and its orientation towards the sun. Averaged over atmospheric conditions and street orientation, the NO2 photolysis frequency is reduced in comparison with the values for free horizon: to less than 20% for narrow skyscraper streets, to about 40% for typical urban streets, and only to about 80% for garden streets. A parameterization with the global solar irradiance is given for the averaged RJ values.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-21
    Description: This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport models. The method successfully reproduces the results of full simulations with these models. For a given emission scenario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an estimate of the associated uncertainty as represented by the variation between models. Using the Representative Concentration Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emission changes by 2050 and how changes in precursor emissions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4–6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb between the outlying RCP 2.6 and RCP 8.5 scenarios, about 75% of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in modelled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-09
    Description: An extensive set of measurements was made in and around Mexico City as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) experiments in March 2006. Simulations with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), a global chemical transport model, have been used to provide a regional context for these observations and assist in their interpretation. These MOZART-4 simulations reproduce the aircraft observations generally well, but some differences in the modeled volatile organic compounds (VOCs) from the observations result from incorrect VOC speciation assumed for the emission inventories. The different types of CO sources represented in the model have been "tagged" to quantify the contributions of regions outside Mexico, as well as the various emissions sectors within Mexico, to the regional air quality of Mexico. This analysis indicates open fires have some, but not a dominant, impact on the atmospheric composition in the region around Mexico City, when averaged over the month. However, considerable variation in the fire contribution (2–15% of total CO) is seen during the month. The transport and photochemical aging of Mexico City emissions were studied using tags of CO emissions for each day, showing that typically the air near Mexico City was a combination of many ages. Ozone production in MOZART-4 is shown to agree well with the net production rates from box model calculations constrained by the MILAGRO aircraft measurements. Ozone production efficiency derived from the ratio of Ox to NOz is higher in MOZART-4 than in the observations for moderately polluted air. OH reactivity determined from the MOZART-4 results shows the same increase in relative importance of oxygenated VOCs downwind of Mexico City as the reactivity inferred from the observations. The amount of ozone produced by emissions from Mexico City and surrounding areas has been quantified in the model by tracking NO emissions, showing little influence beyond Mexico's borders, and also relatively minor influence from fire emissions on the monthly average tropospheric ozone column.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-11
    Description: We evaluate the influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone from 30–90° N between 1990 and 2009 using ozone measurements and a global chemical transport model (the Community Atmospheric Model with chemistry) with input meteorology from the National Center for Environmental Prediction. The model simulation uses constant interannual emissions. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability and contributes to long-term tropospheric ozone trends. To diagnose the measured variability we utilized measurements from ozonesondes and the Measurements of OZone and water vapour by in-service Airbus airCraft programme (MOZAIC) north of 30° N. We identify a regionally robust 150 hPa ozone signal from measurements over Canadian, Northern European and Central European regions and at 500 hPa over Canadian, Northern European and Eastern US regions. Averaged over these regions, the 150 hPa interannual ozone variability explains 69 % of the interannual variability at 500 hPa. The simulated stratospheric signal explains 81 % of the simulated variability over these same regions. Simulated and measured ozone are significantly correlated over these regions and the simulation suggests that the ozone record over these regions is representative of the overall hemispheric 500 hPa ozone record from 30–90° N. The measured 500 hPa trends averaged over these three regions between 1990 and 2000 and 1990 and 2009 are 0.73 (±0.51) ppbv yr−1 and 0.27 (±0.19) ppbv yr−1, respectively. The simulated trends in 1990–2000 and 1990–2009 are 0.29±0.10 ppbv yr−1 and 0.13±0.05 ppbv yr−1, respectively; however, these trends are substantially larger when the model is sampled for missing data exactly as the measurements are. Simulated stratospheric ozone accounts for 79 % of the simulated 500 hPa trend between 1990 and 2000 and 100 % of the simulated trend between 1990 and 2009. Due to the importance of local meteorology and emissions at the surface it is difficult to isolate the stratospheric component of measured surface ozone variability. Overall when averaged between 30–90° N simulated surface interannual ozone trends are 0.18 ppbv yr−1 and 0.07 ppbv yr−1 between 1990 and 1999, and between 1990 and 2009, respectively. We have identified a number of surface sites where the measured interannual ozone variability is correlated with the 150 hPa ozone signal. Most notably these sites include the high mountain sites over Europe and Macehead, Ireland. Over Macehead the measured 150 hPa ozone signal explains 40 % of the interannual variability of the unfiltered measured ozone record. The simulated and measured ozone are highly correlated over Macehead. The Macehead measured and simulated unfiltered ozone trends between 1990 and 2000 are 0.28 (±0.33) and 0.17 (±0.13) ppbv yr−1 respectively; between 1990 and 2009 the measured and simulated trends are 0.18 (±0.11) and 0.08 (±0.06) ppbv yr−1, respectively. Increases in the simulated stratospheric ozone component accounts for 53 % and 75 % of the overall modeled trend for the two periods at Macehead.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-07-01
    Description: A transport model intercomparison experiment (TransCom-CH4) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. The transport and removal of six CH4 tracers with different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6) was simulated to check the interhemispheric transport, radon (222Rn) to check the subgrid scale transport, and methyl chloroform (CH3CCl3) to check the chemical removal by the tropospheric hydroxyl radical (OH). The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations and interhemispheric gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. We find that the interhemispheric exchange rate (1.39 ± 0.18 yr) derived from SF6 is faster by about 11 % in the 2000s compared to the 1990s. Up to 60 % of the interannual variations in the forward CH4 simulations can be explained by accounting for the interannual variations in emissions from biomass burning and wetlands. We also show that the decadal average growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. The modeled CH4 budget is shown to depend strongly on the troposphere-stratosphere exchange rate and thus to the model's vertical grid structure and circulation in the lower stratosphere. The 15-model median CH4 and CH3CCl3 atmospheric lifetimes are estimated to be 9.99 ± 0.08 and 4.61 ± 0.13 yr, respectively, with little interannual variability due to transport and temperature as noted by the ± 1 σ.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...