ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Volante, S. ; Collins, W. J. ; Blereau, E. ; [et al.]
    Springer Berlin Heidelberg
    Publication Date: 2023-06-23
    Description: Accessory mineral thermometry and thermodynamic modelling are fundamental tools for constraining petrogenetic models of granite magmatism. U–Pb geochronology on zircon and monazite from S-type granites emplaced within a semi-continuous, whole-crust section in the Georgetown Inlier (GTI), NE Australia, indicates synchronous crystallisation at 1550 Ma. Zircon saturation temperature (Tzr) and titanium-in-zircon thermometry (T(Ti–zr)) estimate magma temperatures of ~ 795 ± 41 °C (Tzr) and ~ 845 ± 46 °C (T(Ti-zr)) in the deep crust, ~ 735 ± 30 °C (Tzr) and ~ 785 ± 30 °C (T(Ti-zr)) in the middle crust, and ~ 796 ± 45 °C (Tzr) and ~ 850 ± 40 °C (T(Ti-zr)) in the upper crust. The differing averages reflect ambient temperature conditions (Tzr) within the magma chamber, whereas the higher T(Ti-zr) values represent peak conditions of hotter melt injections. Assuming thermal equilibrium through the crust and adiabatic ascent, shallower magmas contained 4 wt% H2O, whereas deeper melts contained 7 wt% H2O. Using these H2O contents, monazite saturation temperature (Tmz) estimates agree with Tzr values. Thermodynamic modelling indicates that plagioclase, garnet and biotite were restitic phases, and that compositional variation in the GTI suites resulted from entrainment of these minerals in silicic (74–76 wt% SiO2) melts. At inferred emplacement P–T conditions of 5 kbar and 730 °C, additional H2O is required to produce sufficient melt with compositions similar to the GTI granites. Drier and hotter magmas required additional heat to raise adiabatically to upper-crustal levels. S-type granites are low-T mushes of melt and residual phases that stall and equilibrate in the middle crust, suggesting that discussions on the unreliability of zircon-based thermometers should be modulated.
    Description: Centre of Excellence for Core to Crust Fluid Systems, Australian Research Council http://dx.doi.org/10.13039/100012537
    Description: Ruhr-Universität Bochum (1007)
    Keywords: ddc:549 ; Zircon and monazite thermometry ; Water content ; Granitic melts ; Complete crustal section ; Phase equilibria diagrams
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 448 (2007), S. 791-794 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The evolution of the Earth’s climate over the twenty-first century depends on the rate at which anthropogenic carbon dioxide emissions are removed from the atmosphere by the ocean and land carbon cycles. Coupled climate–carbon cycle models suggest that global warming will act to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 8 (1990), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Anmatjira Range and adjacent Reynolds Range, central Australia, comprise early Proterozoic metasediments and othogneisses that were affected by three, and possibly four, temporally distinct metamorphic events, M1–4, and deformation events, D1–4, in the period 1820–1590 Ma. The north-western portion of the range, around Mt Stafford, preserves the effects of ±1820 Ma M1-D1, and shows a spectacular lateral transition from muscovite + quartz-bearing schists to interlayered andalusite-bearing migmatites and two-pyroxene granofelses that reflect extremely low-pressure granulite facies conditions, over a distance of less than 10 km. Orthopyroxene + cordierite + garnet + K-feldspar + quartz-bearing gneisses occur at the highest grade, implying peak conditions of ±750°C and 2.5 ± 0.6 kbar. An anticlockwise P–T path for M1 is inferred from syn- to late-D1 sillimanite overprinting andalusite, petrogenetic grid considerations and quantitative estimates of metamorphic conditions for inferred overprinting assemblages. The effects of M1 have been variably overprinted to the south-east by a c. 1760 Ma M2–D2 event. Much of the central Anmatjira Range, around Ingellina Gap, comprises orthogneiss, deformed during D2, and metapelites that have M1 andalusite and K-feldspar overprinted by M2 sillimanite and muscovite. The south-eastern portion of the range, around Mt Weldon, comprises metasediments and orthogneisses that were completely recrystallized during M2–D2, with metapelitic gneisses characterized by spinel + sillimanite + K-feldspar + quartz-bearing assemblages that suggest peak M2 conditions of 〉750°C and 5.5 ± 1 kbar. Overprinting parageneses in metapelitic gneisses imply that D2 occurred during essentially isobaric cooling. A third granulite facies event, M3, affected rocks in the Reynolds Range, immediately to the south of the Anmatjira Range, at c. 1730 Ma. A possible fourth event, M4, with a minimum age of c. 1590 My affected both Ranges, but resulted in only minor overprinting of M1–3 assemblages. The superimposed effects of M1–4, mapped for the entire Anmatjira–Reynolds Range area, indicate that only minor or no dislocation of the regional geology occurred during any of the metamorphic and accompanying folding, events. Although the immediate cause of each of the metamorphic events involved advection, the ultimate causes were external to the metasediments and most probably external to the crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The Cooma Complex of the Lachlan Fold Belt, south-eastern Australia, is characterised by a large (c. 10 km wide) low-P, high-T metamorphic aureole surrounding a small (3 × 6 km) granite pluton. The aureole extends northward to envelop the eastern lobe of the Murrumbidgee Batholith and progressively narrows to a kilometre wide hornfelsic aureole some 50 km north of Cooma. At its northern extremity, the batholith has intruded its own volcanic cover. These regional relations suggest that the Murrumbidgee Batholith is gently tilted to the north, with the Cooma Complex representing the aureole beneath the batholith.Two main deformation events, D3 and D5, affected the aureole. The inner, high-grade migmatitic domain contains upright F5 folds defined by a composite, transposed S3/S0 fabric and S3/S0 concordant leucosomes. The folded stromatic migmatites define the western limb of a F5 synform, with its axis located in the batholith. Lenses and sheets of the Murrumbidgee Batholith intruded along S3 but also preserve S3 as a strong, solid-state foliation. S3 and the granite sheets but are also folded by F5, outlining a fanning positive flower structure. These relations indicate that most of the batholith was emplaced before and during D3, but intrusion persisted until early syn-D5.Formation of the Cooma Granodiorite occurred post-D3 to early syn-D5, after formation of the wide metamorphic aureole during early syn-D3 to early syn-D5. The Murrumbidgee Batholith was emplaced between pre-D3 to early syn-D5, synchronous with the formation of the Cooma Complex. The structural and metamorphic relations indicate that the Murrumbidgee Batholith was the ultimate heat source responsible for the Cooma Metamorphic Complex.D3 structures and metamorphic isograds are subparallel to the batholith margin for over 50 km. This concordance probably extends vertically, suggesting that the isograds also fan outward from the batholith margin. This implies an inverted metamorphic sequence focused on the Murrumbidgee Batholith, although the base has been almost completely removed by erosion in the Cooma Complex. The field evidence at Cooma, combined with previous thermal modelling results, suggest that extensive LPHT metamorphic terranes may represent regional metamorphic aureoles developed beneath high-level granitic batholiths.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford : Blackwell Science Ltd.
    Journal of metamorphic geology 14 (1996), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Granitic magmas migrated through Early Proterozoic middle–lower crust at Mt Hay, central Australia, via a diverse network of narrow structurally controlled channelways, during a period of progressive W–SW-directed thrusting (D1a–D1d). They utilized existing folds, boudins and shear zones, or created new channels by magmatic fracture either parallel to layering or, rarely, in irregular arrays. The magmas rose obliquely, parallel to the plunging (50–60°) regional elongation direction, which was defined by coaxial folds, boudin necks and a strong mineral-elongation lineation. Megacrystic charnockitic magmas migrated through metre-scale conduits during D1a–D1b, but leucosomes were generally restricted to smaller (centimetre-scale) structures that existed throughout the entire deformation history. Thus, D1a/D1b leucosomes were potential feeders of in situ partial melts to the adjacent larger conduits of charnockite magma, thereby providing a pervasive interconnected network that allowed efficient migration of all magma types during the early stages of thrusting.The upper–middle crust of the Anmatjira–Reynolds Range area contains abundant megacrystic granitoid sheets that are of similar age and geochemistry to those at Mt Hay. They are considered to have formed as syntectonic intrusions emplaced during W–SW-directed thrusting, as at Mt Hay, suggesting that granitic magmas formed near the base of the continental crust passed through the mid-lower crustal level (25–30 km) exposed at Mt Hay and accumulated, in batholithic proportions, at shallower crustal levels (12–20 km) such as the Anmatjira–Reynolds Range area.The observations imply that granitoid magmas in the deep crust are capable of pervasive migration through the crust during major compressive, noncoaxial shear deformation. Localization of magmas by sequentially developed, narrow, compressive structures suggests that dilatancy followed successive foliation-forming events, a situation that can occur during steady-state deformation if the effective confining pressures are low, which would be a result of high and possibly variable rates of magma influx. The inferred rapid melt segregation and migration during deformation suggest that large chambers do not form until magma reaches neutral buoyancy in the middle to upper continental crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 80 (1982), S. 189-200 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the Lachlan Fold Belt of southeastern Australia, Upper Devonian A-type granite suites were emplaced after the Lower Devonian I-type granites of the Bega Batholith. Individual plutons of two A-type suites are homogeneous and the granites are characterized by late interstitial annite. Chemically they are distinguished from I-type granites with similar SiO2 contents of the Bega Batholith, by higher abundances of large highly charged cations such as Nb, Ga, Y, and the REE and lower Al, Mg and Ca: high Ga/Al is diagnostic. These A-type suites are metaluminous, but peralkaline and peraluminous A-type granites also occur in Australia and elsewhere. Partial melting of felsic granulite is the preferred genetic model. This source rock is the residue remaining in the lower crust after production of a previous granite. High temperature, vapour-absent melting of the granulitic source generates a low viscosity, relatively anhydrous melt containing F and possibly Cl. The framework structure of this melt is considerably distorted by the presence of these dissolved halides allowing the large highly charged cations to form stable high co-ordination structures. The high concentration of Zr and probably other elements such as the REE in peralkaline or near peralkaline A-type melts is a result of the counter ion effect where excess alkali cations stabilize structures in the melt such as alkali-zircono-silicates. The melt structure determines the trace element composition of the granite. Separation of a fluid phase from an A-type magma results in destabilization of co-ordination complexes and in the formation of rare-metal deposits commonly associated with fluorite. At this stage the role of Cl in metal transport is considered more important than F.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of environmental contamination and toxicology 12 (1974), S. 62-69 
    ISSN: 1432-0800
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0662
    Keywords: global model ; three-dimensional ; Lagrangian tropospheric chemistry ; ozone ; NOX ; emission controls
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A three-dimensional Lagrangian tropospheric chemistry modelis used toinvestigate the impact of human activities on the tropospheric distributionofozone and hydroxyl radicals. The model describes the behaviour of 50 speciesincluding methane, carbon monoxide, oxides of nitrogen, sulphur dioxide andnineorganic compounds emitted from human activities and a range of other sources.Thechemical mechanism involves about 100 chemical reactions of which 16 arephotochemical reactions whose diurnal dependence is treated in full. The modelutilises a five minute chemistry time step and a three hour advection timestepfor the 50,000 air parcels. Meteorological data for the winds, temperatures,clouds and so on are taken from the UK Meteorological Office global model for1994 onwards. The impacts of a 50% reduction in European NOXemissions onglobal ozone concentrations are assessed. Surface ozoneconcentrations decrease in summertime and rise in wintertime, but to differentextents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 213: 295-305.
    Publication Date: 2003-01-01
    Description: A global three-dimensional chemistry-transport model has been applied to study the tropospheric sulphur cycle, and in particular the volcanic component. The model is in general agreement with previous studies of the global S budget. We find that volcanic emissions constitute 10% of the present-day global SO2 source to the atmosphere, but form 26% of the SO2 burden, and 14% of the sulphate aerosol burden. Two previous modelling studies suggested that the volcanic fraction of sulphate was 18% and 35%, from sources representing 7% and 14%, respectively, of the global total SO2 emission. The results are dependent upon various assumptions about volcanic emissions (magnitude, geographical location, altitude), the global distribution of oxidants, and the physical processes of dry and wet deposition. Because of this dependence upon poorly constrained parameters, it is unclear which modelling study is closest to the truth.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2016-01-22
    Description: Most granites and related calc-alkaline silicic volcanic rocks from the United States and New Zealand Cordillera are saturated with zircon between 65 and 70 wt% SiO 2 . For this silica interval, zircon saturation temperatures ( T zr ) are universally lower (〈800 °C) than those expected by dehydration melting of mafic crust ( T 〉900 °C). The values contrast with T zr from alkaline rocks from the Cenozoic U.S. Cordillera, which are typically 〉800 °C for 65–70 wt% SiO 2 . Case studies of titanium-in-zircon thermometry from the U.S. Cordillera also suggest that alkaline magma injections into granitic magma chambers are hot, but calc-alkaline magma injections are usually cooler. A model is presented suggesting that silicic Cordilleran magmas form in magmatic arcs where hydrous basaltic magmas solidify in the arc root, producing mafic underplates that exsolve aqueous fluids, which transfer to the crust and promote water-fluxed partial melting at ambient pressure-temperature (~750–800 °C at 8 kbar) conditions. Subsequent rock-buffered melting reactions modulate the water content of arc magmas. The granitic partial melts are water undersaturated, rise adiabatically as increments, but stall in the middle to upper crust, building cool and hydrous, crystal-rich magma chambers (batholiths). However, injections of hotter magmas are required to drive volcanic eruption. In the backarc, granitic magma chambers are intermittently recharged with hotter, drier alkaline magmas, which are produced mostly by decompression melting during lithospheric extension, not hydrous fluxing. This highlights the control of subduction dynamics on water content and consequently magmatic temperatures in silicic magma systems.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...