ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-13
    Print ISSN: 0010-3616
    Electronic ISSN: 1432-0916
    Topics: Mathematics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2012-11-21
    Description: Shelves have been estimated to account for more than one fifth of the global marine primary production. It has been also conjectured that shelves strongly influence the oceanic absorption of atmospheric CO2 (carbon shelf pump). Owing to their coarse resolution, currently applied global climate models are inappropriate to investigate the impact of climate change on shelfs and regional models do not account for the complex interaction with the adjacent open ocean. In this study, a global ocean general circulation model and biogeochemistry model were set up with a distorted grid providing a maximal resolution for the NW European shelf and the adjacent North Atlantic. Using model climate projections we found that already a moderate warming of about 2.0 K of the sea surface is linked with a reduction by ~ 30% of biological production on the NW European shelf. If we consider the decline of anthropogenic riverine eutrophication since the 90's the reduction of biological production amounts to 39%. The decline of NW European shelf productivity is twice as strong as the decline in the open ocean (~ 15%). The underlying mechanism is a spatially well confined stratification feedback along the continental shelf break. This feedback reduces the nutrient supply from the deep Atlantic to about 50%. In turn, the reduced productivity draws down CO2 absorption on the NW European shelf by ~ 34% at the end of the 21st century compared to the end of the 20th century implying a strong weakening of shelf carbon pumping. Sensitivity experiments with diagnostic tracers indicate that not more than 20% of the carbon absorbed in the North Sea contributes to the long term carbon uptake of the world ocean. The rest remains within the ocean mixed layer where it is exposed to the atmosphere. The predicted decline in biological productivity and decrease of phytoplankton concentration (by averaged 25%) due to reduced nutrient imports from the deeper Atlantic will probably negatively affect the local fish stock and therefore fisheries in the North Sea.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-11
    Description: There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are crucial. Thirdly, the presence of remnant continental ice from the preceding glacial has shown to be important when determining the timing of maximum LIG warmth in the Northern Hemisphere. Finally, the results reveal that changes in the monsoon regime exert a strong control on the evolution of LIG temperatures over parts of Africa and India. By listing these inter-model differences, we provide a starting point for future proxy-data studies and the sensitivity experiments needed to constrain the climate simulations and to further enhance our understanding of the temperature evolution of the LIG period.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-20
    Description: There is a growing number of proxy-based reconstructions detailing the climatic changes during the Last Interglacial period. This period is of special interest because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in the light of projected global warming. However, mainly because synchronizing the different records is difficult, there is no consensus on a global picture of Last Interglacial temperature changes. Here we present the first model inter-comparison of transient simulations covering the Last Interglacial period. By comparing the different simulations we aim at investigating the robustness of the simulated surface air temperature evolution. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–122 ka BP with temperatures 0.4 to 6.8 K above pre-industrial values. This temperature evolution is in line with the changes in June insolation and greenhouse-gas concentrations. For the evolution of July temperatures in the Southern Hemisphere, the picture emerging from the inter-comparison is less clear. However, it does show that including greenhouse-gas concentration changes is critical. The simulations that include this forcing show an early, 128 ka BP July temperature anomaly maximum of 0.5 to 2.6 K. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. In these latitudes maximum January temperature anomalies of respectively −2.5 to 2 K and 0 to 2 K are simulated for the period after 118 ka BP. The inter-comparison is inconclusive on the evolution of January temperatures in the high-latitudes of the Northern Hemisphere. Further investigation of regional anomalous patterns and inter-model differences indicate that in specific regions, feedbacks within the climate system are important for the simulated temperature evolution. Firstly in the Arctic region, changes in the summer sea-ice cover control the evolution of Last Interglacial winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are critical. The third important feedback, having an impact on the temperature evolution of the Northern Hemisphere, is shown to be the presence of remnant continental ice from the preceding glacial period. Another important feedback are changes in the monsoon regime which controls the evolution of temperatures over parts of Africa and India. Finally, the simulations reveal an important land-sea contrast, with temperature changes over the oceans lagging continental temperatures by up to several thousand years. The aforementioned feedback mechanisms tend to be highly model-dependent, indicating that specific proxy-data is needed to constrain future climate simulations and to further enhance our understanding of the evolution of the climate during the Last Interglacial period.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-06-12
    Description: Shelves have been estimated to account for more than one-fifth of the global marine primary production. It has been also conjectured that shelves strongly influence the oceanic absorption of anthropogenic CO2 (carbon shelf pump). Owing to their coarse resolution, currently applied global climate models are inappropriate to investigate the impact of climate change on shelves and regional models do not account for the complex interaction with the adjacent open ocean. In this study, a global ocean general circulation model and biogeochemistry model were set up with a distorted grid providing a maximal resolution for the NW European shelf and the adjacent northeast Atlantic. Using model climate projections we found that already a~moderate warming of about 2.0 K of the sea surface is linked with a reduction by ~ 30% of the biological production on the NW European shelf. If we consider the decline of anthropogenic riverine eutrophication since the 1990s, the reduction of biological production amounts is even larger. The relative decline of NW European shelf productivity is twice as strong as the decline in the open ocean (~ 15%). The underlying mechanism is a spatially well confined stratification feedback along the continental shelf break. This feedback reduces the nutrient supply from the deep Atlantic to about 50%. In turn, the reduced productivity draws down CO2 absorption in the North Sea by ~ 34% at the end of the 21st century compared to the end of the 20th century implying a strong weakening of shelf carbon pumping. Sensitivity experiments with diagnostic tracers indicate that not more than 20% of the carbon absorbed in the North Sea contributes to the long-term carbon uptake of the world ocean. The rest remains within the ocean's mixed layer where it is exposed to the atmosphere. The predicted decline in biological productivity, and decrease of phytoplankton concentration (in the North Sea by averaged 25%) due to reduced nutrient imports from the deeper Atlantic will probably affect the local fish stock negatively and therefore fisheries in the North Sea.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-14
    Description: Though primarily driven by insolation changes associated with well-known variations in Earth's astronomical parameters, the response of the climate system during interglacials includes a diversity of feedbacks involving the atmosphere, ocean, sea ice, vegetation and land ice. A thorough multi-model-data comparison is essential to assess the ability of climate models to resolve interglacial temperature trends and to help in understanding the recorded climatic signal and the underlying climate dynamics. We present the first multi-model-data comparison of transient millennial-scale temperature changes through two intervals of the Present Interglacial (PIG; 8–1.2 ka) and the Last Interglacial (LIG; 123–116.2 ka) periods. We include temperature trends simulated by 9 different climate models, alkenone-based temperature reconstructions from 117 globally distributed locations (about 45% of them within the LIG) and 12 ice-core-based temperature trends from Greenland and Antarctica (50% of them within the LIG). The definitions of these specific interglacial intervals enable a consistent inter-comparison of the two intervals because both are characterised by minor changes in atmospheric greenhouse gas concentrations and more importantly by insolation trends that show clear similarities. Our analysis shows that in general the reconstructed PIG and LIG Northern Hemisphere mid-to-high latitude cooling compares well with multi-model, mean-temperature trends for the warmest months and that these cooling trends reflect a linear response to the warmest-month insolation decrease over the interglacial intervals. The most notable exception is the strong LIG cooling trend reconstructed from Greenland ice cores that is not simulated by any of the models. A striking model-data mismatch is found for both the PIG and the LIG over large parts of the mid-to-high latitudes of the Southern Hemisphere where the data depicts negative temperature trends that are not in agreement with near zero trends in the simulations. In this area, the positive local summer insolation trend is counteracted in climate models by an enhancement of the Southern Ocean summer sea-ice cover and/or an increase in Southern Ocean upwelling. If the general picture emerging from reconstructions is realistic, then the model-data mismatch in mid and high Southern Hemisphere latitudes implies that none of the models is able to resolve the correct balance of these feedbacks, or, alternatively, that interglacial Southern Hemisphere temperature trends are driven by mechanisms which are not included in the transient simulations, such as changes in the Antarctic ice sheet or meltwater-induced changes in the overturning circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...