ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-06-01
    Description: Genes include cis-regulatory regions that contain transcriptional enhancers. Recent reports have shown that developmental genes often possess multiple discrete enhancer modules that drive transcription in similar spatio-temporal patterns: primary enhancers located near the basal promoter and secondary, or 'shadow', enhancers located at more remote positions. It has been proposed that the seemingly redundant activity of primary and secondary enhancers contributes to phenotypic robustness. We tested this hypothesis by generating a deficiency that removes two newly discovered enhancers of shavenbaby (svb, a transcript of the ovo locus), a gene encoding a transcription factor that directs development of Drosophila larval trichomes. At optimal temperatures for embryonic development, this deficiency causes minor defects in trichome patterning. In embryos that develop at both low and high extreme temperatures, however, absence of these secondary enhancers leads to extensive loss of trichomes. These temperature-dependent defects can be rescued by a transgene carrying a secondary enhancer driving transcription of the svb cDNA. Finally, removal of one copy of wingless, a gene required for normal trichome patterning, causes a similar loss of trichomes only in flies lacking the secondary enhancers. These results support the hypothesis that secondary enhancers contribute to phenotypic robustness in the face of environmental and genetic variability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909378/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909378/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frankel, Nicolas -- Davis, Gregory K -- Vargas, Diego -- Wang, Shu -- Payre, Francois -- Stern, David L -- GM063622-06A1/GM/NIGMS NIH HHS/ -- R01 GM063622/GM/NIGMS NIH HHS/ -- R01 GM063622-09/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 22;466(7305):490-3. doi: 10.1038/nature09158. Epub 2010 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20512118" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/anatomy & histology/embryology ; Animals ; DNA-Binding Proteins/*genetics ; Drosophila Proteins/*genetics ; Drosophila melanogaster/anatomy & histology/*embryology/*genetics/growth & ; development ; Enhancer Elements, Genetic/*genetics ; *Gene Expression Regulation, Developmental ; Larva/anatomy & histology/genetics/growth & development ; Models, Genetic ; *Phenotype ; Temperature ; Transcription Factors/*genetics ; Transcription, Genetic/*genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-21
    Description: Theory predicts that the evolution of cooperative behaviour is favoured by low levels of promiscuity leading to high within-group relatedness. However, in vertebrates, cooperation often occurs between non-relatives and promiscuity rates are among the highest recorded. Here we resolve this apparent inconsistency with a phylogenetic analysis of 267 bird species, demonstrating that cooperative breeding is associated with low promiscuity; that in cooperative species, helping is more common when promiscuity is low; and that intermediate levels of promiscuity favour kin discrimination. Overall, these results suggest that promiscuity is a unifying feature across taxa in explaining transitions to and from cooperative societies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cornwallis, Charlie K -- West, Stuart A -- Davis, Katie E -- Griffin, Ashleigh S -- England -- Nature. 2010 Aug 19;466(7309):969-72. doi: 10.1038/nature09335.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Edward Grey Institute, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/classification/genetics/*physiology ; *Cooperative Behavior ; Fathers ; Female ; Male ; Models, Biological ; Mothers ; Phylogeny ; Reproduction/genetics/physiology ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-02-19
    Description: The recognition of foreign antigens by T lymphocytes is essential to most adaptive immune responses. It is driven by specific T-cell antigen receptors (TCRs) binding to antigenic peptide-major histocompatibility complex (pMHC) molecules on other cells. If productive, these interactions promote the formation of an immunological synapse. Here we show that synaptic TCR-pMHC binding dynamics differ significantly from TCR-pMHC binding in solution. We used single-molecule microscopy and fluorescence resonance energy transfer (FRET) between fluorescently tagged TCRs and their cognate pMHC ligands to measure the kinetics of TCR-pMHC binding in situ. When compared with solution measurements, the dissociation of this complex was increased significantly (4-12-fold). Disruption of actin polymers reversed this effect, indicating that cytoskeletal dynamics destabilize this interaction directly or indirectly. Nevertheless, TCR affinity for pMHC was significantly elevated as the result of a large (about 100-fold) increase in the association rate, a likely consequence of complementary molecular orientation and clustering. In helper T cells, the CD4 molecule has been proposed to bind cooperatively with the TCR to the same pMHC complex. However, CD4 blockade had no effect on the synaptic TCR affinity, nor did it destabilize TCR-pMHC complexes, indicating that the TCR binds pMHC independently of CD4.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273423/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273423/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huppa, Johannes B -- Axmann, Markus -- Mortelmaier, Manuel A -- Lillemeier, Bjorn F -- Newell, Evan W -- Brameshuber, Mario -- Klein, Lawrence O -- Schutz, Gerhard J -- Davis, Mark M -- R0 AI52211/AI/NIAID NIH HHS/ -- R01 AI022511/AI/NIAID NIH HHS/ -- R01 AI022511-23/AI/NIAID NIH HHS/ -- R01 AI022511-27/AI/NIAID NIH HHS/ -- T32 AI007290/AI/NIAID NIH HHS/ -- Y 250/Austrian Science Fund FWF/Austria -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 18;463(7283):963-7. doi: 10.1038/nature08746.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford School of Medicine, California 94305-5323, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164930" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Antigens, CD4/drug effects/metabolism ; Cell Line ; Cells, Cultured ; Cytoskeleton/metabolism ; Drosophila melanogaster ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes ; Histocompatibility Antigens Class I/immunology/*metabolism ; Immunological Synapses/drug effects/*immunology/*metabolism ; Kinetics ; Ligands ; Mice ; Mice, Transgenic ; Peptides/*immunology/*metabolism ; Protein Binding/drug effects ; Receptors, Antigen, T-Cell/immunology/*metabolism ; Signal Transduction ; Surface Plasmon Resonance ; T-Lymphocytes, Helper-Inducer/drug effects/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-21
    Description: Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library-many of which showed potent in vitro activity against drug-resistant P. falciparum strains-and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874979/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874979/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guiguemde, W Armand -- Shelat, Anang A -- Bouck, David -- Duffy, Sandra -- Crowther, Gregory J -- Davis, Paul H -- Smithson, David C -- Connelly, Michele -- Clark, Julie -- Zhu, Fangyi -- Jimenez-Diaz, Maria B -- Martinez, Maria S -- Wilson, Emily B -- Tripathi, Abhai K -- Gut, Jiri -- Sharlow, Elizabeth R -- Bathurst, Ian -- El Mazouni, Farah -- Fowble, Joseph W -- Forquer, Isaac -- McGinley, Paula L -- Castro, Steve -- Angulo-Barturen, Inigo -- Ferrer, Santiago -- Rosenthal, Philip J -- Derisi, Joseph L -- Sullivan, David J -- Lazo, John S -- Roos, David S -- Riscoe, Michael K -- Phillips, Margaret A -- Rathod, Pradipsinh K -- Van Voorhis, Wesley C -- Avery, Vicky M -- Guy, R Kiplin -- AI045774/AI/NIAID NIH HHS/ -- AI053680/AI/NIAID NIH HHS/ -- AI067921/AI/NIAID NIH HHS/ -- AI075517/AI/NIAID NIH HHS/ -- AI075594/AI/NIAID NIH HHS/ -- AI080625/AI/NIAID NIH HHS/ -- AI082617/AI/NIAID NIH HHS/ -- AI28724/AI/NIAID NIH HHS/ -- AI35707/AI/NIAID NIH HHS/ -- AI53862/AI/NIAID NIH HHS/ -- AI772682/AI/NIAID NIH HHS/ -- CA78039/CA/NCI NIH HHS/ -- F32 AI077268/AI/NIAID NIH HHS/ -- F32 AI077268-03/AI/NIAID NIH HHS/ -- P01 AI035707/AI/NIAID NIH HHS/ -- P01 AI035707-140007/AI/NIAID NIH HHS/ -- P01 CA078039-10/CA/NCI NIH HHS/ -- P41 RR001614/RR/NCRR NIH HHS/ -- P41 RR001614-246970/RR/NCRR NIH HHS/ -- R01 AI045774/AI/NIAID NIH HHS/ -- R01 AI045774-09/AI/NIAID NIH HHS/ -- R37 AI028724/AI/NIAID NIH HHS/ -- R37 AI028724-17/AI/NIAID NIH HHS/ -- R56 AI082617/AI/NIAID NIH HHS/ -- R56 AI082617-01/AI/NIAID NIH HHS/ -- U01 AI053862/AI/NIAID NIH HHS/ -- U01 AI053862-05/AI/NIAID NIH HHS/ -- U01 AI075594-03/AI/NIAID NIH HHS/ -- UL1 TR000005/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 May 20;465(7296):311-5. doi: 10.1038/nature09099.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/*analysis/isolation & purification/*pharmacology ; Cell Line ; *Drug Discovery ; Drug Evaluation, Preclinical ; Drug Resistance/drug effects ; Drug Therapy, Combination ; Erythrocytes/drug effects/parasitology ; Humans ; Malaria, Falciparum/drug therapy/parasitology ; Mice ; Phenotype ; Phylogeny ; Plasmodium falciparum/*drug effects/*genetics/metabolism ; Reproducibility of Results ; Small Molecule Libraries/chemistry/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-02
    Description: Alpha-dystroglycan (alpha-DG) is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a posttranslational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Using mass spectrometry- and nuclear magnetic resonance (NMR)-based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-DG, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. These findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida-Moriguchi, Takako -- Yu, Liping -- Stalnaker, Stephanie H -- Davis, Sarah -- Kunz, Stefan -- Madson, Michael -- Oldstone, Michael B A -- Schachter, Harry -- Wells, Lance -- Campbell, Kevin P -- 1U54NS053672/NS/NINDS NIH HHS/ -- AI55540/AI/NIAID NIH HHS/ -- P30 DK 54759/DK/NIDDK NIH HHS/ -- P30 DK054759/DK/NIDDK NIH HHS/ -- P41 RR018502/RR/NCRR NIH HHS/ -- R01 AI009484/AI/NIAID NIH HHS/ -- R01 AI009484-40/AI/NIAID NIH HHS/ -- R01 AI009484-41/AI/NIAID NIH HHS/ -- R01 AI045927/AI/NIAID NIH HHS/ -- R01 AI045927-08/AI/NIAID NIH HHS/ -- R01 AI045927-09/AI/NIAID NIH HHS/ -- R01 AI045927-10/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):88-92. doi: 10.1126/science.1180512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbohydrate Conformation ; Cell Line ; Dystroglycans/chemistry/*metabolism ; Glycosylation ; Humans ; Laminin/*metabolism ; Magnetic Resonance Spectroscopy ; Mannose/*metabolism ; Mass Spectrometry ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Muscle, Skeletal/metabolism ; Muscular Dystrophies/metabolism ; Muscular Dystrophy, Animal/metabolism ; N-Acetylglucosaminyltransferases/genetics/metabolism ; Phosphorylation ; Protein Binding ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-31
    Description: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamming, Dudley W -- Ye, Lan -- Katajisto, Pekka -- Goncalves, Marcus D -- Saitoh, Maki -- Stevens, Deanna M -- Davis, James G -- Salmon, Adam B -- Richardson, Arlan -- Ahima, Rexford S -- Guertin, David A -- Sabatini, David M -- Baur, Joseph A -- 1F32AG032833-01A1/AG/NIA NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- F32 AG032833/AG/NIA NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1638-43. doi: 10.1126/science.1215135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Female ; Gluconeogenesis ; Glucose/metabolism ; Glucose Clamp Technique ; Homeostasis ; Insulin/administration & dosage/blood ; *Insulin Resistance ; Liver/metabolism ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Muscle, Skeletal/metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-17
    Description: The Paisley Caves in Oregon record the oldest directly dated human remains (DNA) in the Western Hemisphere. More than 100 high-precision radiocarbon dates show that deposits containing artifacts and coprolites ranging in age from 12,450 to 2295 (14)C years ago are well stratified. Western Stemmed projectile points were recovered in deposits dated to 11,070 to 11,340 (14)C years ago, a time contemporaneous with or preceding the Clovis technology. There is no evidence of diagnostic Clovis technology at the site. These two distinct technologies were parallel developments, not the product of a unilinear technological evolution. "Blind testing" analysis of coprolites by an independent laboratory confirms the presence of human DNA in specimens of pre-Clovis age. The colonization of the Americas involved multiple technologically divergent, and possibly genetically divergent, founding groups.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenkins, Dennis L -- Davis, Loren G -- Stafford, Thomas W Jr -- Campos, Paula F -- Hockett, Bryan -- Jones, George T -- Cummings, Linda Scott -- Yost, Chad -- Connolly, Thomas J -- Yohe, Robert M 2nd -- Gibbons, Summer C -- Raghavan, Maanasa -- Rasmussen, Morten -- Paijmans, Johanna L A -- Hofreiter, Michael -- Kemp, Brian M -- Barta, Jodi Lynn -- Monroe, Cara -- Gilbert, M Thomas P -- Willerslev, Eske -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):223-8. doi: 10.1126/science.1218443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403, USA. djenkins@uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Archaeology ; *Caves ; DNA/analysis ; Emigration and Immigration/history ; Feces ; *Fossils ; History, Ancient ; Humans ; Molecular Sequence Data ; North America ; Oregon ; Population Dynamics ; Radiometric Dating ; Rodentia ; Technology/history ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-12
    Description: The cJun NH(2)-terminal kinase (JNK) signaling pathway contributes to inflammation and plays a key role in the metabolic response to obesity, including insulin resistance. Macrophages are implicated in this process. To test the role of JNK, we established mice with selective JNK deficiency in macrophages. We report that feeding a high-fat diet to control and JNK-deficient mice caused similar obesity, but only mice with JNK-deficient macrophages remained insulin-sensitive. The protection of mice with macrophage-specific JNK deficiency against insulin resistance was associated with reduced tissue infiltration by macrophages. Immunophenotyping demonstrated that JNK was required for pro-inflammatory macrophage polarization. These studies demonstrate that JNK in macrophages is required for the establishment of obesity-induced insulin resistance and inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835653/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835653/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Myoung Sook -- Jung, Dae Young -- Morel, Caroline -- Lakhani, Saquib A -- Kim, Jason K -- Flavell, Richard A -- Davis, Roger J -- CA065861/CA/NCI NIH HHS/ -- DK032520/DK/NIDDK NIH HHS/ -- DK080756/DK/NIDDK NIH HHS/ -- DK090963/DK/NIDDK NIH HHS/ -- DK093000/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- R24 DK090963/DK/NIDDK NIH HHS/ -- U24 DK093000/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):218-22. doi: 10.1126/science.1227568. Epub 2012 Dec 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223452" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/immunology/pathology ; Animals ; Diet, High-Fat ; Glucose Clamp Technique ; Immunophenotyping ; Inflammation/immunology/*physiopathology ; *Insulin Resistance ; Islets of Langerhans/pathology ; MAP Kinase Signaling System ; Macrophage Activation ; Macrophages/*enzymology/*immunology/physiology ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Mitogen-Activated Protein Kinase 9/deficiency/genetics/*metabolism ; Obesity/immunology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-04
    Description: Pumas (Puma concolor) live in diverse, often rugged, complex habitats. The energy they expend for hunting must account for this complexity but is difficult to measure for this and other large, cryptic carnivores. We developed and deployed a physiological SMART (species movement, acceleration, and radio tracking) collar that used accelerometry to continuously monitor energetics, movements, and behavior of free-ranging pumas. This felid species displayed marked individuality in predatory activities, ranging from low-cost sit-and-wait behaviors to constant movements with energetic costs averaging 2.3 times those predicted for running mammals. Pumas reduce these costs by remaining cryptic and precisely matching maximum pouncing force (overall dynamic body acceleration = 5.3 to 16.1g) to prey size. Such instantaneous energetics help to explain why most felids stalk and pounce, and their analysis represents a powerful approach for accurately forecasting resource demands required for survival by large, mobile predators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Terrie M -- Wolfe, Lisa -- Davis, Tracy -- Kendall, Traci -- Richter, Beau -- Wang, Yiwei -- Bryce, Caleb -- Elkaim, Gabriel Hugh -- Wilmers, Christopher C -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):81-5. doi: 10.1126/science.1254885. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA. williams@biology.ucsc.edu. ; Wildlife Health Program, Colorado Parks and Wildlife, 4330 West Laporte Avenue, Fort Collins, CO 80521, USA. ; Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA. ; Center for Integrated Spatial Research, Department of Environmental Studies, University of California, Santa Cruz, CA 95064, USA. ; Autonomous Systems Lab, Department of Computer Engineering, University of California, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carnivora ; *Energy Metabolism ; *Predatory Behavior ; Puma/*metabolism/*psychology ; Running
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-05-24
    Description: Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289942/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289942/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sander, Leif E -- Davis, Michael J -- Boekschoten, Mark V -- Amsen, Derk -- Dascher, Christopher C -- Ryffel, Bernard -- Swanson, Joel A -- Muller, Michael -- Blander, J Magarian -- AI080959A/AI/NIAID NIH HHS/ -- R01 AI064668/AI/NIAID NIH HHS/ -- R01 AI095245/AI/NIAID NIH HHS/ -- R21 AI080959/AI/NIAID NIH HHS/ -- R21 AI080959-01A1/AI/NIAID NIH HHS/ -- England -- Nature. 2011 May 22;474(7351):385-9. doi: 10.1038/nature10072.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21602824" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/deficiency/immunology ; Animals ; Antibodies, Bacterial/immunology ; Bacteria/genetics/immunology/pathogenicity ; Bacterial Vaccines/genetics/immunology ; Carrier Proteins/metabolism ; Cells, Cultured ; Dendritic Cells/cytology/immunology/microbiology ; Immunity, Innate/*immunology ; Inflammasomes/immunology/metabolism ; Interferon-beta/genetics/immunology ; Macrophages/cytology/immunology/microbiology ; Mice ; Mice, Inbred C57BL ; Microbial Viability/*genetics/*immunology ; Phagocytosis ; Phagosomes/immunology/microbiology ; RNA, Bacterial/genetics/*immunology ; RNA, Messenger/genetics/*immunology ; Vaccines, Attenuated/genetics/immunology ; Vaccines, Inactivated/immunology ; Virulence Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...