ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-13
    Description: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Laura D -- Parsons, D Williams -- Jones, Sian -- Lin, Jimmy -- Sjoblom, Tobias -- Leary, Rebecca J -- Shen, Dong -- Boca, Simina M -- Barber, Thomas -- Ptak, Janine -- Silliman, Natalie -- Szabo, Steve -- Dezso, Zoltan -- Ustyanksky, Vadim -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Karchin, Rachel -- Wilson, Paul A -- Kaminker, Joshua S -- Zhang, Zemin -- Croshaw, Randal -- Willis, Joseph -- Dawson, Dawn -- Shipitsin, Michail -- Willson, James K V -- Sukumar, Saraswati -- Polyak, Kornelia -- Park, Ben Ho -- Pethiyagoda, Charit L -- Pant, P V Krishna -- Ballinger, Dennis G -- Sparks, Andrew B -- Hartigan, James -- Smith, Douglas R -- Suh, Erick -- Papadopoulos, Nickolas -- Buckhaults, Phillip -- Markowitz, Sanford D -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Velculescu, Victor E -- Vogelstein, Bert -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA109274/CA/NCI NIH HHS/ -- CA112828/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM070219/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- P30-CA43703/CA/NCI NIH HHS/ -- RR017698/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism ; Cell Line ; Chromosome Mapping ; Colorectal Neoplasms/*genetics/metabolism ; Computational Biology ; DNA, Neoplasm ; Databases, Genetic ; Genes, Neoplasm ; Genome, Human ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neoplasm Proteins/genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-12-06
    Description: A high-fat diet causes activation of the regulatory protein c-Jun NH2-terminal kinase 1 (JNK1) and triggers development of insulin resistance. JNK1 is therefore a potential target for therapeutic treatment of metabolic syndrome. We explored the mechanism of JNK1 signaling by engineering mice in which the Jnk1 gene was ablated selectively in adipose tissue. JNK1 deficiency in adipose tissue suppressed high-fat diet-induced insulin resistance in the liver. JNK1-dependent secretion of the inflammatory cytokine interleukin-6 by adipose tissue caused increased expression of liver SOCS3, a protein that induces hepatic insulin resistance. Thus, JNK1 activation in adipose tissue can cause insulin resistance in the liver.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabio, Guadalupe -- Das, Madhumita -- Mora, Alfonso -- Zhang, Zhiyou -- Jun, John Y -- Ko, Hwi Jin -- Barrett, Tamera -- Kim, Jason K -- Davis, Roger J -- DK52530/DK/NIDDK NIH HHS/ -- R01 CA065861/CA/NCI NIH HHS/ -- R01 CA065861-14/CA/NCI NIH HHS/ -- R01 DK080756/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1539-43. doi: 10.1126/science.1160794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056984" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/metabolism ; Animals ; Dietary Fats/administration & dosage ; Enzyme Activation ; Glucose/metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins/metabolism ; *Insulin Resistance ; Interleukin-6/administration & dosage/metabolism ; Liver/*metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase 8/deficiency/genetics/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; *Signal Transduction ; *Stress, Physiological ; Suppressor of Cytokine Signaling Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-03-03
    Description: Mammals have single-rowed dentitions, whereas many nonmammalian vertebrates have teeth in multiple rows. Neither the molecular mechanism regulating iterative tooth initiation nor that restricting mammalian tooth development in one row is known. We found that mice lacking the transcription factor odd-skipped related-2 (Osr2) develop supernumerary teeth lingual to their molars because of expansion of the odontogenic field. Osr2 was expressed in a lingual-to-buccal gradient and restricted expression of bone morphogenetic protein 4 (Bmp4), an essential odontogenic signal, in the developing tooth mesenchyme. Expansion of odontogenic field in Osr2-deficient mice required Msx1, a feedback activator of Bmp4 expression. These findings suggest that the Bmp4-Msx1 pathway propagates mesenchymal activation for sequential tooth induction and that spatial modulation of this pathway provides a mechanism for patterning vertebrate dentition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Zunyi -- Lan, Yu -- Chai, Yang -- Jiang, Rulang -- R01 DE013681/DE/NIDCR NIH HHS/ -- R01 DE013681-06/DE/NIDCR NIH HHS/ -- R01 DE013681-07/DE/NIDCR NIH HHS/ -- R01 DE013681-08/DE/NIDCR NIH HHS/ -- R01 DE013681-09/DE/NIDCR NIH HHS/ -- R01DE013681/DE/NIDCR NIH HHS/ -- T32DE007202/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1232-4. doi: 10.1126/science.1167418.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Oral Biology and Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein 4/metabolism ; Dentition ; Epithelium/embryology/metabolism ; Gene Expression ; Gene Expression Profiling ; MSX1 Transcription Factor/genetics/*metabolism ; Mesoderm/embryology/metabolism ; Mice ; Molar/embryology ; Morphogenesis ; Mutation ; *Odontogenesis ; Tooth Germ/embryology/metabolism ; Tooth, Supernumerary/*embryology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-24
    Description: Pancreatic beta cells lower insulin release in response to nutrient depletion. The question of whether starved beta cells induce macroautophagy, a predominant mechanism maintaining energy homeostasis, remains poorly explored. We found that, in contrast to many mammalian cells, macroautophagy in pancreatic beta cells was suppressed upon starvation. Instead, starved beta cells induced lysosomal degradation of nascent secretory insulin granules, which was controlled by protein kinase D (PKD), a key player in secretory granule biogenesis. Starvation-induced nascent granule degradation triggered lysosomal recruitment and activation of mechanistic target of rapamycin that suppressed macroautophagy. Switching from macroautophagy to insulin granule degradation was important to keep insulin secretion low upon fasting. Thus, beta cells use a PKD-dependent mechanism to adapt to nutrient availability and couple autophagy flux to secretory function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goginashvili, Alexander -- Zhang, Zhirong -- Erbs, Eric -- Spiegelhalter, Coralie -- Kessler, Pascal -- Mihlan, Michael -- Pasquier, Adrien -- Krupina, Ksenia -- Schieber, Nicole -- Cinque, Laura -- Morvan, Joelle -- Sumara, Izabela -- Schwab, Yannick -- Settembre, Carmine -- Ricci, Romeo -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):878-82. doi: 10.1126/science.aaa2628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. ; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. Medical Genetics, Department of Medical and Translational Science Unit, Federico II University, Via Pansini 5, 80131 Naples, Italy. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. Nouvel Hopital Civil, Laboratoire de Biochimie et de Biologie Moleculaire, Universite de Strasbourg, 67091 Strasbourg, France. romeo.ricci@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cells, Cultured ; Fasting ; Humans ; Insulin/*secretion ; Insulin-Secreting Cells/*physiology/secretion/ultrastructure ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 13/genetics ; Protein Kinase C/physiology ; Secretory Vesicles/*physiology/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-07
    Description: Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jun -- Okamura, Daiji -- Li, Mo -- Suzuki, Keiichiro -- Luo, Chongyuan -- Ma, Li -- He, Yupeng -- Li, Zhongwei -- Benner, Chris -- Tamura, Isao -- Krause, Marie N -- Nery, Joseph R -- Du, Tingting -- Zhang, Zhuzhu -- Hishida, Tomoaki -- Takahashi, Yuta -- Aizawa, Emi -- Kim, Na Young -- Lajara, Jeronimo -- Guillen, Pedro -- Campistol, Josep M -- Esteban, Concepcion Rodriguez -- Ross, Pablo J -- Saghatelian, Alan -- Ren, Bing -- Ecker, Joseph R -- Izpisua Belmonte, Juan Carlos -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 May 21;521(7552):316-21. doi: 10.1038/nature14413. Epub 2015 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA. ; 1] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] The Salk Institute for Biological Studies, Genomic Analysis Laboratory, La Jolla, California 92037, USA. ; The Salk Institute for Biological Studies, Genomic Analysis Laboratory, La Jolla, California 92037, USA. ; The Salk Institute for Biological Studies, Integrated Genomics, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. ; 1] The Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, California 92037, USA [2] Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan. ; Grado en Medicina, Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, Guadalupe 30107, Spain. ; 1] Grado en Medicina, Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos, 135, Guadalupe 30107, Spain [2] Fundacion Pedro Guillen, Clinica Cemtro, Avenida Ventisquero de la Condesa, 42, 28035 Madrid, Spain. ; Hospital Clinic of Barcelona, Carrer Villarroel, 170, 08036 Barcelona, Spain. ; University of California, Davis, Davis, California 95616, USA. ; The Salk Institute for Biological Studies, Peptide Biology Laboratory, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25945737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques/methods ; Cell Line ; *Chimera ; Embryonic Stem Cells/cytology ; Female ; Germ Layers/cytology ; Humans ; Induced Pluripotent Stem Cells/cytology ; Male ; Mice ; Pan troglodytes ; Pluripotent Stem Cells/*cytology/metabolism ; Regenerative Medicine ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...