ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-10
    Description: Scientists from 18 countries gathered in Monte Verità, Switzerland, for SOM–5, a workshop dedicated to a discussion of global biogeochemical cycling of organic matter (OM) in soil, river, and marine environments. The 95 participants represented a range of areas of expertise, including soil and ocean science, marine chemistry, global carbon cycling, geomorphology, and organic geochemistry. A large proportion of those attending—40%—were women or early career scientists.
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-10-12
    Description: Chronologies for Late Quaternary marine sediment records are usually based on radiocarbon ages of planktonic foraminifera. Signals carried by other sedimentary components measured in parallel can provide complementary paleoclimate information. A key premise is that microfossils and other indicators within a given sediment horizon are of equal age. We show here that haptophyte-derived alkenones isolated from Bermuda Rise drift sediments are up to 7000 years older than coexisting planktonic foraminifera. This temporal offset, which is apparently due to lateral transport of alkenones on fine-grained particles from the Nova Scotian margin, markedly influences molecular estimates of sea surface temperatures. More broadly, the observation raises questions about both the temporal and the geographic fidelity of paleoenvironmental records encoded by readily transported components of sediments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohkouchi, Nao -- Eglinton, Timothy I -- Keigwin, Lloyd D -- Hayes, John M -- New York, N.Y. -- Science. 2002 Nov 8;298(5596):1224-7. Epub 2002 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376593" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-05-25
    Description: Identifying leads and lags between high- and low-latitude abrupt climate shifts is needed to understand where and how such events were triggered. Vascular plant biomarkers preserved in Cariaco basin sediments reveal rapid vegetation changes in northern South America during the last deglaciation, 15,000 to 10,000 years ago. Comparing the biomarker records to climate proxies from the same sediment core provides a precise measure of the relative timing of changes in different regions. Abrupt deglacial climate shifts in tropical and high-latitude North Atlantic regions were synchronous, whereas changes in tropical vegetation consistently lagged climate shifts by several decades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughen, Konrad A -- Eglinton, Timothy I -- Xu, Li -- Makou, Matthew -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1955-9. Epub 2004 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. khughen@whoi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155911" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon/analysis ; Carbon Isotopes/analysis ; *Climate ; Geography ; Geologic Sediments/chemistry ; Methane ; Organic Chemicals/*analysis ; *Plant Development ; Plants/metabolism ; South America ; Time ; Trees ; *Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2012-03-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eglinton, Tim I -- England -- Nature. 2012 Mar 7;483(7388):165-6. doi: 10.1038/483165a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398553" target="_blank"〉PubMed〈/a〉
    Keywords: Geologic Sediments/*chemistry ; Iron/*chemistry ; Organic Chemicals/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-31
    Description: The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 +/- 2 per cent) the sedimentary carbon budget of the ESAS, the world's largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 +/- 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 +/- 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vonk, J E -- Sanchez-Garcia, L -- van Dongen, B E -- Alling, V -- Kosmach, D -- Charkin, A -- Semiletov, I P -- Dudarev, O V -- Shakhova, N -- Roos, P -- Eglinton, T I -- Andersson, A -- Gustafsson, O -- England -- Nature. 2012 Sep 6;489(7414):137-40. doi: 10.1038/nature11392.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Environmental Science (ITM) and the Bert Bolin Centre for Climate Research, Stockholm University, SE-11418, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22932271" target="_blank"〉PubMed〈/a〉
    Keywords: Alkanes/analysis ; Arctic Regions ; Atmosphere/chemistry ; Bacteria/chemistry ; Biomass ; Carbon/*analysis ; Carbon Dioxide/analysis ; *Freezing ; Geography ; Geologic Sediments/*chemistry ; Global Warming/statistics & numerical data ; Greenhouse Effect/statistics & numerical data ; Ice/analysis ; Oceans and Seas ; Seawater/chemistry ; Siberia ; Soil/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-11-25
    Description: Radiocarbon ages of vascular plant wax-derived n-alkanes preserved in well-dated Holocene sediments in an anoxic fjord (Saanich Inlet, Canada) were found to be not only substantially older than the depositional age but increasingly so during the Holocene. Assuming that n-alkanes serve as a proxy for recalcitrant terrigenous organic matter, this indicates that the accumulation of refractory organic carbon in soils that developed after the deglaciation of the American Pacific Northwest is ongoing and may still be far from equilibrium with mineralization and erosion rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smittenberg, R H -- Eglinton, T I -- Schouten, S -- Damste, J S Sinninghe -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1283-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Marine Biogeochemistry and Toxicology, Royal Netherlands Institute of Sea Research, Post Office Box 59, 1790 AB, Den Burg, Netherlands. smitten@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124318" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-22
    Description: John H. Martin, who discovered widespread iron limitation of ocean productivity, proposed that dust-borne iron fertilization of Southern Ocean phytoplankton caused the ice age reduction in atmospheric carbon dioxide (CO2). In a sediment core from the Subantarctic Atlantic, we measured foraminifera-bound nitrogen isotopes to reconstruct ice age nitrate consumption, burial fluxes of iron, and proxies for productivity. Peak glacial times and millennial cold events are characterized by increases in dust flux, productivity, and the degree of nitrate consumption; this combination is uniquely consistent with Subantarctic iron fertilization. The associated strengthening of the Southern Ocean's biological pump can explain the lowering of CO2 at the transition from mid-climate states to full ice age conditions as well as the millennial-scale CO2 oscillations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Garcia, Alfredo -- Sigman, Daniel M -- Ren, Haojia -- Anderson, Robert F -- Straub, Marietta -- Hodell, David A -- Jaccard, Samuel L -- Eglinton, Timothy I -- Haug, Gerald H -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1347-50. doi: 10.1126/science.1246848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geological Institute, ETH Zurich, 8092 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653031" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; Atlantic Ocean ; Atmosphere ; Biomass ; *Carbon Dioxide/analysis ; *Climate ; Cold Temperature ; Foraminifera/chemistry/metabolism ; *Geologic Sediments/chemistry ; *Ice Cover ; *Iron/analysis ; Nitrates/analysis/metabolism ; Nitrogen Isotopes/analysis ; Phytoplankton/growth & development/metabolism ; Seawater/chemistry ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-11-17
    Description: The stability and potential vulnerability of soil organic matter (SOM) to global change remains incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and sub-alpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally-defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids ( n -alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14 C variations among shorter- and longer-chain n -alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Energy & fuels 3 (1989), S. 112-113 
    ISSN: 1520-5029
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Energy & fuels 2 (1988), S. 81-88 
    ISSN: 1520-5029
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...