ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-02-13
    Description: Domestication entails control of wild species and is generally regarded as a complex process confined to a restricted area and culture. Previous DNA sequence analyses of several domestic species have suggested only a limited number of origination events. We analyzed mitochondrial DNA (mtDNA) control region sequences of 191 domestic horses and found a high diversity of matrilines. Sequence analysis of equids from archaeological sites and late Pleistocene deposits showed that this diversity was not due to an accelerated mutation rate or an ancient domestication event. Consequently, high mtDNA sequence diversity of horses implies an unprecedented and widespread integration of matrilines and an extensive utilization and taming of wild horses. However, genetic variation at nuclear markers is partitioned among horse breeds and may reflect sex-biased dispersal and breeding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vila, C -- Leonard, J A -- Gotherstrom, A -- Marklund, S -- Sandberg, K -- Liden, K -- Wayne, R K -- Ellegren, H -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):474-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, S-75236 Uppsala, Sweden. carles.vila@ebc.uu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161199" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animal Husbandry ; Animals ; Animals, Domestic/*genetics ; Animals, Wild/genetics ; Biological Evolution ; Breeding ; DNA, Mitochondrial/*genetics ; Female ; *Fossils ; *Genetic Variation ; Genetics, Population ; Haplotypes ; Horses/*genetics ; Male ; Microsatellite Repeats ; Pedigree
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-11-26
    Description: Mitochondrial DNA sequences isolated from ancient dog remains from Latin America and Alaska showed that native American dogs originated from multiple Old World lineages of dogs that accompanied late Pleistocene humans across the Bering Strait. One clade of dog sequences was unique to the New World, which is consistent with a period of geographic isolation. This unique clade was absent from a large sample of modern dogs, which implies that European colonists systematically discouraged the breeding of native American dogs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leonard, Jennifer A -- Wayne, Robert K -- Wheeler, Jane -- Valadez, Raul -- Guillen, Sonia -- Vila, Carles -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1613-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic Biology, Ecology and Evolution, University of California, Los Angeles, CA 90095-1606, USA. Leonard.Jennifer@NMNH.SI.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446908" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Animals ; Animals, Domestic/classification/*genetics ; Bolivia ; Breeding ; DNA, Mitochondrial/*genetics ; Dogs/classification/*genetics ; Europe ; Haplotypes ; Humans ; Mexico ; North America ; Peru ; Phylogeny ; Time ; Wolves/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-08-29
    Description: Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin-2, fibroblast growth factor-5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cadieu, Edouard -- Neff, Mark W -- Quignon, Pascale -- Walsh, Kari -- Chase, Kevin -- Parker, Heidi G -- Vonholdt, Bridgett M -- Rhue, Alison -- Boyko, Adam -- Byers, Alexandra -- Wong, Aaron -- Mosher, Dana S -- Elkahloun, Abdel G -- Spady, Tyrone C -- Andre, Catherine -- Lark, K Gordon -- Cargill, Michelle -- Bustamante, Carlos D -- Wayne, Robert K -- Ostrander, Elaine A -- 1R01GM83606/GM/NIGMS NIH HHS/ -- GM063056/GM/NIGMS NIH HHS/ -- R01 GM063056/GM/NIGMS NIH HHS/ -- R01 GM063056-09/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 2;326(5949):150-3. doi: 10.1126/science.1177808. Epub 2009 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19713490" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Dogs/*genetics ; Fibroblast Growth Factor 5/*genetics ; Genome-Wide Association Study ; *Hair/anatomy & histology/growth & development ; Haplotypes ; Keratins, Hair-Specific/*genetics ; Lod Score ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; *Polymorphism, Single Nucleotide ; Sequence Analysis, DNA ; Thrombospondins/*genetics ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-18
    Description: Retrotransposition of processed mRNAs is a common source of novel sequence acquired during the evolution of genomes. Although the vast majority of retroposed gene copies, or retrogenes, rapidly accumulate debilitating mutations that disrupt the reading frame, a small percentage become new genes that encode functional proteins. By using a multibreed association analysis in the domestic dog, we demonstrate that expression of a recently acquired retrogene encoding fibroblast growth factor 4 (fgf4) is strongly associated with chondrodysplasia, a short-legged phenotype that defines at least 19 dog breeds including dachshund, corgi, and basset hound. These results illustrate the important role of a single evolutionary event in constraining and directing phenotypic diversity in the domestic dog.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748762/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748762/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Heidi G -- VonHoldt, Bridgett M -- Quignon, Pascale -- Margulies, Elliott H -- Shao, Stephanie -- Mosher, Dana S -- Spady, Tyrone C -- Elkahloun, Abdel -- Cargill, Michele -- Jones, Paul G -- Maslen, Cheryl L -- Acland, Gregory M -- Sutter, Nathan B -- Kuroki, Keiichi -- Bustamante, Carlos D -- Wayne, Robert K -- Ostrander, Elaine A -- 1R01GM83606/GM/NIGMS NIH HHS/ -- 1R24GM082910/GM/NIGMS NIH HHS/ -- 5R01EY006855/EY/NEI NIH HHS/ -- R01 EY006855/EY/NEI NIH HHS/ -- R01 EY006855-25/EY/NEI NIH HHS/ -- Z99 HG999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Aug 21;325(5943):995-8. doi: 10.1126/science.1173275. Epub 2009 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19608863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breeding ; Chondrocytes/metabolism ; Dogs/anatomy & histology/*genetics ; Evolution, Molecular ; Extremities/*anatomy & histology ; Fibroblast Growth Factor 4/*genetics ; *Gene Duplication ; *Gene Expression Regulation ; Gene Frequency ; Genes, Duplicate ; Genome-Wide Association Study ; Haplotypes ; Humerus/metabolism ; Long Interspersed Nucleotide Elements ; Oligonucleotide Array Sequence Analysis ; Pedigree ; Phenotype ; Polymorphism, Single Nucleotide ; Regulatory Sequences, Nucleic Acid ; Retroelements/*genetics ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-06-13
    Description: Mitochondrial DNA control region sequences were analyzed from 162 wolves at 27 localities worldwide and from 140 domestic dogs representing 67 breeds. Sequences from both dogs and wolves showed considerable diversity and supported the hypothesis that wolves were the ancestors of dogs. Most dog sequences belonged to a divergent monophyletic clade sharing no sequences with wolves. The sequence divergence within this clade suggested that dogs originated more than 100,000 years before the present. Associations of dog haplotypes with other wolf lineages indicated episodes of admixture between wolves and dogs. Repeated genetic exchange between dog and wolf populations may have been an important source of variation for artificial selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vila, C -- Savolainen, P -- Maldonado, J E -- Amorim, I R -- Rice, J E -- Honeycutt, R L -- Crandall, K A -- Lundeberg, J -- Wayne, R K -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1687-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, Los Angeles, CA 90095-1606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Breeding ; Carnivora/*genetics ; Crosses, Genetic ; DNA, Mitochondrial/*genetics ; Dogs/classification/*genetics ; Female ; Haplotypes ; Male ; Molecular Sequence Data ; Phylogeny ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-04
    Description: Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070744/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070744/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorenzen, Eline D -- Nogues-Bravo, David -- Orlando, Ludovic -- Weinstock, Jaco -- Binladen, Jonas -- Marske, Katharine A -- Ugan, Andrew -- Borregaard, Michael K -- Gilbert, M Thomas P -- Nielsen, Rasmus -- Ho, Simon Y W -- Goebel, Ted -- Graf, Kelly E -- Byers, David -- Stenderup, Jesper T -- Rasmussen, Morten -- Campos, Paula F -- Leonard, Jennifer A -- Koepfli, Klaus-Peter -- Froese, Duane -- Zazula, Grant -- Stafford, Thomas W Jr -- Aaris-Sorensen, Kim -- Batra, Persaram -- Haywood, Alan M -- Singarayer, Joy S -- Valdes, Paul J -- Boeskorov, Gennady -- Burns, James A -- Davydov, Sergey P -- Haile, James -- Jenkins, Dennis L -- Kosintsev, Pavel -- Kuznetsova, Tatyana -- Lai, Xulong -- Martin, Larry D -- McDonald, H Gregory -- Mol, Dick -- Meldgaard, Morten -- Munch, Kasper -- Stephan, Elisabeth -- Sablin, Mikhail -- Sommer, Robert S -- Sipko, Taras -- Scott, Eric -- Suchard, Marc A -- Tikhonov, Alexei -- Willerslev, Rane -- Wayne, Robert K -- Cooper, Alan -- Hofreiter, Michael -- Sher, Andrei -- Shapiro, Beth -- Rahbek, Carsten -- Willerslev, Eske -- R01 HG003229/HG/NHGRI NIH HHS/ -- England -- Nature. 2011 Nov 2;479(7373):359-64. doi: 10.1038/nature10574.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22048313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; *Biota ; Bison ; Climate Change/*history ; DNA, Mitochondrial/analysis/genetics ; Europe ; *Extinction, Biological ; Fossils ; Genetic Variation ; Geography ; History, Ancient ; Horses ; Human Activities/*history ; Humans ; Mammals/genetics/*physiology ; Mammoths ; Molecular Sequence Data ; Population Dynamics ; Reindeer ; Siberia ; Species Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-03-20
    Description: Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494089/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494089/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vonholdt, Bridgett M -- Pollinger, John P -- Lohmueller, Kirk E -- Han, Eunjung -- Parker, Heidi G -- Quignon, Pascale -- Degenhardt, Jeremiah D -- Boyko, Adam R -- Earl, Dent A -- Auton, Adam -- Reynolds, Andy -- Bryc, Kasia -- Brisbin, Abra -- Knowles, James C -- Mosher, Dana S -- Spady, Tyrone C -- Elkahloun, Abdel -- Geffen, Eli -- Pilot, Malgorzata -- Jedrzejewski, Wlodzimierz -- Greco, Claudia -- Randi, Ettore -- Bannasch, Danika -- Wilton, Alan -- Shearman, Jeremy -- Musiani, Marco -- Cargill, Michelle -- Jones, Paul G -- Qian, Zuwei -- Huang, Wei -- Ding, Zhao-Li -- Zhang, Ya-Ping -- Bustamante, Carlos D -- Ostrander, Elaine A -- Novembre, John -- Wayne, Robert K -- R01 GM083606/GM/NIGMS NIH HHS/ -- R01 GM083606-03/GM/NIGMS NIH HHS/ -- ZIC HG200365-01/Intramural NIH HHS/ -- ZIC HG200365-02/Intramural NIH HHS/ -- ZIC HG200365-03/Intramural NIH HHS/ -- England -- Nature. 2010 Apr 8;464(7290):898-902. doi: 10.1038/nature08837. Epub 2010 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, 621 Charles E. Young Drive South, University of California, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237475" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/classification/*genetics ; Animals, Wild/classification/genetics ; Breeding ; Computational Biology ; Dogs/classification/*genetics ; Evolution, Molecular ; Far East/ethnology ; Genome/*genetics ; Haplotypes/*genetics ; Middle East/ethnology ; Phenotype ; Phylogeny ; Polymorphism, Single Nucleotide/*genetics ; Wolves/classification/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-04-07
    Description: The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sutter, Nathan B -- Bustamante, Carlos D -- Chase, Kevin -- Gray, Melissa M -- Zhao, Keyan -- Zhu, Lan -- Padhukasahasram, Badri -- Karlins, Eric -- Davis, Sean -- Jones, Paul G -- Quignon, Pascale -- Johnson, Gary S -- Parker, Heidi G -- Fretwell, Neale -- Mosher, Dana S -- Lawler, Dennis F -- Satyaraj, Ebenezer -- Nordborg, Magnus -- Lark, K Gordon -- Wayne, Robert K -- Ostrander, Elaine A -- 063056/PHS HHS/ -- 5T32 HG002536/HG/NHGRI NIH HHS/ -- P50 HG002790/HG/NHGRI NIH HHS/ -- R01 GM063056/GM/NIGMS NIH HHS/ -- R01 GM063056-06/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):112-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, Building 50, Room 5349, 50 South Drive MSC 8000, Bethesda, MD 20892-8000, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412960" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Body Size/genetics ; Breeding ; Dogs/*anatomy & histology/*genetics ; Exons ; Genetic Variation ; Genotype ; Haplotypes ; Heterozygote ; Insulin-Like Growth Factor I/*genetics/metabolism ; Introns ; Mutation ; *Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Selection, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-02-07
    Description: Morphological diversity within closely related species is an essential aspect of evolution and adaptation. Mutations in the Melanocortin 1 receptor (Mc1r) gene contribute to pigmentary diversity in natural populations of fish, birds, and many mammals. However, melanism in the gray wolf, Canis lupus, is caused by a different melanocortin pathway component, the K locus, that encodes a beta-defensin protein that acts as an alternative ligand for Mc1r. We show that the melanistic K locus mutation in North American wolves derives from past hybridization with domestic dogs, has risen to high frequency in forested habitats, and exhibits a molecular signature of positive selection. The same mutation also causes melanism in the coyote, Canis latrans, and in Italian gray wolves, and hence our results demonstrate how traits selected in domesticated species can influence the morphological diversity of their wild relatives.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903542/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903542/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, Tovi M -- vonHoldt, Bridgett M -- Candille, Sophie I -- Musiani, Marco -- Greco, Claudia -- Stahler, Daniel R -- Smith, Douglas W -- Padhukasahasram, Badri -- Randi, Ettore -- Leonard, Jennifer A -- Bustamante, Carlos D -- Ostrander, Elaine A -- Tang, Hua -- Wayne, Robert K -- Barsh, Gregory S -- P01 DK068384/DK/NIDDK NIH HHS/ -- P01 DK068384-050001/DK/NIDDK NIH HHS/ -- R01 GM068882/GM/NIGMS NIH HHS/ -- R01 GM068882-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Mar 6;323(5919):1339-43. doi: 10.1126/science.1165448. Epub 2009 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Genetics and Pediatrics, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19197024" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti Signaling Protein/genetics ; Animals ; *Biological Evolution ; Coyotes/genetics ; Dogs/genetics ; *Ecosystem ; Gene Flow ; Hair Color/*genetics ; Haplotypes ; Linkage Disequilibrium ; Melanins/metabolism ; Molecular Sequence Data ; *Mutation ; Phenotype ; Phylogeny ; Pigmentation/*genetics ; Polymorphism, Single Nucleotide ; Receptor, Melanocortin, Type 1/genetics ; Selection, Genetic ; Sequence Deletion ; Wolves/*genetics ; beta-Defensins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-07
    Description: Environmental change has been observed to generate simultaneous responses in population dynamics, life history, gene frequencies, and morphology in a number of species. But how common are such eco-evolutionary responses to environmental change likely to be? Are they inevitable, or do they require a specific type of change? Can we accurately predict eco-evolutionary responses? We address these questions using theory and data from the study of Yellowstone wolves. We show that environmental change is expected to generate eco-evolutionary change, that changes in the average environment will affect wolves to a greater extent than changes in how variable it is, and that accurate prediction of the consequences of environmental change will probably prove elusive.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coulson, Tim -- MacNulty, Daniel R -- Stahler, Daniel R -- vonHoldt, Bridgett -- Wayne, Robert K -- Smith, Douglas W -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1275-8. doi: 10.1126/science.1209441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK. t.coulson@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22144626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Weight ; *Ecosystem ; *Environment ; Female ; Forecasting ; Genetic Fitness ; Genotype ; Male ; *Models, Biological ; Models, Statistical ; Northwestern United States ; Phenotype ; Population Dynamics ; Survival ; *Wolves/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...